Spatial Process of Surface Urban Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Seoul Metropolitan Area, Republic of Korea
2.2. Data Descriptions and Data Preprocessing: Satellite Imagery
2.3. Extraction of Land Use and Land Cover
2.4. LST Extraction
2.5. SUHI Profiling
- Step 1: Located the city center in Seoul called 0 kilometers.
- Step 3: The grid where the city center was located was chosen as the center grid (0 grid).
- Step 4: All other grids in the orthogonal and diagonal directions were created.
- Step 5: Mean LST, fraction PIS, and NAIS were computed to identify multidirectional and multitemporal SUHI profiles of the study area.
2.6. SUHI Intensity Measurement
3. Results
3.1. LULC Changes and LST Distribution
3.2. Magnitude and Trend of SUHI Effect
3.2.1. SUHIIIS-FS Based on Cross-Cover Comparison
3.2.2. SUHIIGZ along the Gradient Zones
3.3. Multidirectional Analysis
4. Discussion
4.1. Urbanization and Its Impact
4.2. Intensifying SUHI Effect
4.3. Implications for Urban Sustainability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Classified Data | Reference Data | Total | User Accuracy (%) | |||
---|---|---|---|---|---|---|
FS | IS | WB | OL | |||
Forest surface (FS) | 134 | 3 | 0 | 9 | 146 | 91.78 |
Impervious surface (IS) | 0 | 200 | 1 | 10 | 211 | 94.79 |
Water bodies (WB) | 1 | 0 | 16 | 1 | 18 | 88.89 |
Other lands (OL) | 2 | 6 | 1 | 116 | 125 | 92.80 |
Total | 137 | 209 | 18 | 136 | 500 | |
Producer accuracy (%) | 97.81 | 95.69 | 88.89 | 85.29 |
Classified Data | Reference Data | Total | User Accuracy (%) | |||
---|---|---|---|---|---|---|
FS | IS | WB | OL | |||
Forest surface (FS) | 138 | 1 | 1 | 3 | 143 | 96.50 |
Impervious surface (IS) | 6 | 245 | 2 | 7 | 260 | 94.23 |
Water bodies (WB) | 0 | 0 | 14 | 1 | 15 | 93.33 |
Other lands (OL) | 4 | 5 | 0 | 73 | 82 | 89.02 |
Total | 148 | 251 | 17 | 84 | 500 | |
Producer accuracy (%) | 93.24 | 97.61 | 82.35 | 86.90 |
Classified Data | Reference Data | Total | User Accuracy (%) | |||
---|---|---|---|---|---|---|
FS | IS | WB | OL | |||
Forest surface (FS) | 161 | 6 | 1 | 2 | 170 | 94.71 |
Impervious surface (IS) | 8 | 259 | 2 | 4 | 273 | 94.87 |
Water bodies (WB) | 0 | 1 | 16 | 0 | 17 | 94.12 |
Other lands (OL) | 1 | 2 | 0 | 37 | 40 | 92.50 |
Total | 170 | 268 | 19 | 43 | 500 | |
Producer accuracy (%) | 94.71 | 96.64 | 84.21 | 86.05 |
References
- United Nations. World Urbanization Prospects: The 2018 Revision, Key Facts; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Zhang, Y. Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Sci. Total. Environ. 2019, 654, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in Sub-Saharan region: A case study of Addis Ababa using Landsat Data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef]
- Arsiso, B.K.; Tsidu, G.M.; Stoffberg, G.H.; Tadesse, T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Phys. Chem. Earth Parts A/B/C 2018, 105, 212–223. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Reducing Urban Heat Islands: Compendium of Strategies. Heat Island Reduction Activities; EPA: Washington, DC, USA, 2008.
- Huang, C.-H.; Lin, P.-Y. The influence of evapotranspiration by urban greenery on thermal environment in urban microclimate. Int. Rev. Spat. Plan. Sustain. Dev. 2013, 1, 1–12. [Google Scholar] [CrossRef]
- Voogt, J.; Oke, T. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics; EPA: Washington, DC, USA, 2008.
- Mirzaei, P.A.; Haghighat, F. Approaches to study urban heat island—abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Measuring sustainability based upon various perspectives: A case study of a hill station in Southeast Asia. Ambio 2014, 43, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Chunho, L. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar]
- Heaviside, C.; MacIntyre, H.; Vardoulakis, S. The urban heat island: implications for health in a changing environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo Metropolitan Area, Sri Lanka, based on Landsat Data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: implications for sustainability planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy city, Sri Lanka. Climate 2019, 7, 99. [Google Scholar] [CrossRef]
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 341. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of metropolitan city Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization (WMO): Geneva, Switzerland, 2006. [Google Scholar]
- Stewart, I.; Oke, T. Classifying urban climate field sites by “local climate zones”: The case of Nagano, Japan. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009; pp. 1–5. [Google Scholar]
- Gunaalan, K.; Ranagalage, M.; Gunarathna, M.H.J.P.; Kumari, M.K.N.; Vithanage, M.; Srivaratharasan, T.; Saravanan, S.; Warnasuriya, T. Application of geospatial techniques for groundwater quality and availability assessment: A case study in Jaffna Peninsula, Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 20. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land use/land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land Use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the Ethiopian Highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2018, 5, 291–306. [Google Scholar] [CrossRef]
- Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.M.S.L.B.; Murayama, Y.; Simwanda, M. Spatial forecasting of the landscape in rapidly urbanizing hill stations of south asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sens. 2019, 11, 1743. [Google Scholar] [CrossRef]
- Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 2013, 5, 2838–2856. [Google Scholar] [CrossRef]
- Goslee, S.C. Analyzing remote sensing data in R: The Landsat package. J. Stat. Softw. 2015, 43. [Google Scholar] [CrossRef]
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; García, Á.L.; Heredia, I.; Malík, P.; Hluchý, L. Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J.; Murakami, H. Mapping woodland cover in the Miombo ecosystem: A comparison of machine learning classifiers. Land 2014, 3, 524–540. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Efficiency of landscape metrics characterizing urban land surface temperature. Landsc. Urban Plan. 2018, 180, 36–53. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Kil, S.-H.; Yun, Y.-J. Understanding the LST (Land Surface Temperature) effects of urban-forests in Seoul, Korea. J. For. Environ. Sci. 2018, 34, 246–248. [Google Scholar]
- Choi, Y.-Y.; Suh, M.-S.; Park, K.-H. Assessment of surface urban heat islands over three megacities in East Asia using land surface temperature data retrieved from COMS. Remote Sens. 2014, 6, 5852–5867. [Google Scholar] [CrossRef]
- Spatial Information Science Laboratory (SIS). Megacities Project. Available online: http://giswin.geo.tsukuba.ac.jp/mega-cities/asia_index.html (accessed on 9 July 2019).
- United Nations. World Urbanization Prospects. Available online: https://population.un.org/wup/Download/ (accessed on 9 July 2019).
- Ma, S.; An, S.; Park, D. Urban-rural migration and migrants’ successful settlement in Korea. Dev. Soc. 2018, 47, 285–312. [Google Scholar]
- United Nations. Social and Solidarity Economy for the Sustainable Development Goals: Spotlight on the Social Economy in Seoul; UNRISD: Geneva, Switzerland, 2018. [Google Scholar]
- Park, S.; Lim, J.; Lim, H.S. Past climate changes over South Korea during MIS3 and MIS1 and their links to regional and global climate changes. Quat. Int. 2019, 519, 74–81. [Google Scholar] [CrossRef]
- Lee, D.; Oh, K. Classifying urban climate zones (UCZs) based on statistical analyses. Urban Clim. 2018, 24, 503–516. [Google Scholar] [CrossRef]
- Geographic Guide. World in Images—Tourist Destinations. Available online: http://www.geographicguide.net/ (accessed on 18 April 2019).
- DIVA-GIS. DIVA-GIS|Free, Simple, and Effective. Available online: http://www.diva-gis.org/ (accessed on 18 April 2019).
- USGS. EarthExplorer—Home. Available online: https://earthexplorer.usgs.gov/ (accessed on 18 April 2019).
- USGS. Landsat Science Products. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-science-products (accessed on 18 April 2019).
- Estoque, R.C.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Handayani, H.H. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos city, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GISci. Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- Ye, S.; Pontius, R.G.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Kim, H.M.; Han, S.S. Seoul. Cities 2012, 29, 142–154. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
- United Nations. World Population Prospects. Available online: https://population.un.org/wpp/ (accessed on 12 April 2019).
- Jeong, J.-C. The land surface temperature analysis of Seoul city using Satellite Image. J. Environ. Impact Assess. 2013, 22, 19–26. [Google Scholar] [CrossRef]
- Shin, J.; Park, H.; Seo, J.; Lee, J.; Park, H. Analysis of local and periodical transition in Cheong-Gye-Cheon to harmonize locality for urban green growth. KSCE J. Civ. Eng. 2015, 19, 2005–2016. [Google Scholar] [CrossRef]
- Huang, C.; Ye, X. Spatial modeling of urban vegetation and land surface temperature: A case study of Beijing. Sustainability 2015, 7, 9478–9504. [Google Scholar] [CrossRef]
- Korea Forest Service. Korea Urban Forest Policies; Korea Forest Service: Daejeon, Korea, 2006.
- Korea Forest Service. Forest Policy. Available online: http://english.forest.go.kr/newkfsweb/html/EngHtmlPage.do?pg=/esh/policy/UI_KFS_0102_010500.html&mn=ENG_02_01_05 (accessed on 29 July 2019).
- Estoque, R.C.; Murayama, Y.; Ranagalage, M.; Hou, H.; Subasinghe, S. Validating ALOS PRISM DSM-derived surface feature height: Implications for urban volume estimation. Tsukuba Geoenviron. Sci. 2017, 20, 378–383. [Google Scholar]
- Ranagalage, M.; Murayama, Y. Measurement of urban built-up volume using remote sensing data and geospatial techniques. Tsukuba Geoenviron. Sci. 2018, 14, 19–29. [Google Scholar]
- Handayani, H.H.; Murayama, Y.; Ranagalage, M.; Liu, F.; Dissanayake, D. Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: A case study of Surabaya, Indonesia. Remote Sens. 2018, 10, 1599. [Google Scholar] [CrossRef]
- Han, H.; Huang, C.; Ahn, K.-H.; Shu, X.; Lin, L.; Qiu, D. The effects of greenbelt policies on land development: Evidence from the deregulation of the greenbelt in the Seoul Metropolitan Area. Sustainability 2017, 9, 1259. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Hanink, D.M.; Liu, Y.; Zhai, R. Analyzing horizontal and vertical urban expansions in three East Asian megacities with the SS-coMCRF model. Landsc. Urban Plan. 2018, 177, 114–127. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
Sensor | Landsat-5 TM | Landsat-5 TM | Landsat-8 OLI/TIRS |
---|---|---|---|
Scene ID | LT51160341996245CLT00 | LT51160342006256IKR00 | LC81160342017238LGN00 |
Temporal Resolution | 01 September 1996 | 13 September 2006 | 26 August 2017 |
Path/Row | 116/34 | ||
Local Time (GMT+9) * | 10:27:59 | 11:04:48 | 11:11:08 |
* GMT is known as Greenwich Mean Time |
Accuracy | LULC Category | 1996 | 2006 | 2017 |
---|---|---|---|---|
User accuracy (%) | Forest surface (FS) | 91.78 | 96.50 | 94.71 |
Impervious surface (IS) | 94.79 | 94.23 | 94.87 | |
Water bodies (WB) | 88.89 | 93.33 | 94.12 | |
Other lands (OL) | 92.80 | 89.02 | 92.50 | |
Producer accuracy (%) | Forest surface (FS) | 97.81 | 93.24 | 94.71 |
Impervious surface (IS) | 95.69 | 97.61 | 96.64 | |
Water bodies (WB) | 88.89 | 82.35 | 84.21 | |
Other lands (OL) | 85.29 | 86.90 | 86.05 | |
Overall accuracy (%) | 93.20 | 94.00 | 94.60 | |
Kappa coefficient | 0.90 | 0.90 | 0.91 |
LULC | 1996 | 2006 | 2017 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
FS | 70,734.1 | 33.1 | 70,150.7 | 32.9 | 82,105.9 | 38.5 |
IS | 79,379.4 | 37.2 | 100,335.3 | 47.0 | 107,853.5 | 50.5 |
WB | 6331.5 | 3.0 | 5216.0 | 2.4 | 5702.2 | 2.7 |
OL | 56,999.0 | 26.7 | 37,742.0 | 17.7 | 17,782.4 | 8.3 |
Total | 213,444.0 | 100.0 | 213,444.0 | 100.0 | 213,444.0 | 100.0 |
1996–2006 | 2006–2017 | 1996–2017 | ||||
---|---|---|---|---|---|---|
LULC | LULC Change (ha) | Growth Rate (ha/year) | LULC Change (ha) | Growth Rate (ha/year) | LULC Change (ha) | Growth Rate (ha/year) |
FS | −583.4 | −58.3 | 11,955.2 | 1086.8 | 11,371.8 | 541.5 |
IS | 20,955.9 | 2095.6 | 7518.2 | 683.5 | 28,474.1 | 1355.9 |
WB | −1115.5 | −111.6 | 486.2 | 44.2 | −629.3 | −30.0 |
OL | −19,257.0 | −1925.7 | −19,959.6 | −1814.5 | −39,216.6 | −1867.5 |
(a) Mean LST of FS, IS, PIS, and NAIS (°C) | ||
LULC | 2006 | 2017 |
FS | 21.4 | 25.6 |
IS | 27.1 | 31.1 |
PIS | 27.5 | 31.5 |
NAIS | 26.0 | 29.0 |
(b) Magnitude and trend of SUHII (°C) | ||
LULC (cross-cover comparison) | 2006 | 2017 |
IS–PIS | −0.4 | −0.4 |
IS–NAIS | 1.2 | 2.1 |
PIS–NAIS | 1.5 | 2.5 |
IS–FS | 5.7 | 5.5 |
PIS–FS | 6.1 | 5.9 |
NAIS–FS | 4.5 | 3.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyankara, P.; Ranagalage, M.; Dissanayake, D.; Morimoto, T.; Murayama, Y. Spatial Process of Surface Urban Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–2017). Climate 2019, 7, 110. https://doi.org/10.3390/cli7090110
Priyankara P, Ranagalage M, Dissanayake D, Morimoto T, Murayama Y. Spatial Process of Surface Urban Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–2017). Climate. 2019; 7(9):110. https://doi.org/10.3390/cli7090110
Chicago/Turabian StylePriyankara, Prabath, Manjula Ranagalage, DMSLB Dissanayake, Takehiro Morimoto, and Yuji Murayama. 2019. "Spatial Process of Surface Urban Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–2017)" Climate 7, no. 9: 110. https://doi.org/10.3390/cli7090110
APA StylePriyankara, P., Ranagalage, M., Dissanayake, D., Morimoto, T., & Murayama, Y. (2019). Spatial Process of Surface Urban Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–2017). Climate, 7(9), 110. https://doi.org/10.3390/cli7090110