The Spatiotemporal Patterns of Climate Asymmetric Warming and Vegetation Activities in an Arid and Semiarid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Research Methods
3. Results
3.1. Interpreting Trends in Asymmetric Warming over Time
3.2. Spatial Distribution Characteristics of Asymmetric Warming
3.3. Abruption Characteristics of DNW Warming
3.4. Partial Correlation Analysis between Vegetation Activity and Asymmetric DNW in Xinjiang
4. Discussion
4.1. Causes of Asymmetric Warming
4.2. Abruption Trend Analysis of Asymmetric Warming
4.3. Effects of Asymmetric Warming on Vegetation NDVI
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sévellec, F.; Drijfhout, S.S. A novel probabilistic forecast system predicting anomalously warm 2018-2022 reinforcing the long-term global warming trend. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Hui, C.; Zheng, X. Uncertainty in Indian Ocean Dipole response to global warming: The role of internal variability. Clim. Dyn. 2018, 51, 3597–3611. [Google Scholar] [CrossRef]
- Wills, R.C.J.; Schneider, T.; Wallace, J.M.; Dbattisti, D.S.; Hartmann, D.L. Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures. Geophys. Res. Lett. 2018, 45, 2487–2496. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Alexander, L.V. The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Piao, S.; Chen, A.; Zeng, Z.; Ciais, P.; Janssens, I.A.; Mao, J.; Myneni, R.B.; Peng, S.; Peñuelas, J.; et al. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Glob. Chang. Biol. 2014, 21, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.S.; Melillo, J.; Mohan, J.; Salk, C. The seasonal timing of warming that controls onset of the growing season. Glob. Chang. Biol. 2013, 20, 1136–1145. [Google Scholar] [CrossRef]
- Jansen, M.F.; Ferrari, R.; Mooring, T.A. Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; George, K.; Thomas, C.P. A New Perspective on Recent Global Warming: Asymmetric Trends of Daily Maximum and Minimum Temperature. Bull. Am. Meteor. Soc. 1993, 74, 1007–1024. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Song, H.; Zeng, H. Spring phenophases of larch are more sensitive to spring warming than to year-round warming: Results of a seasonally asymmetric warming experiment. For. Ecol. Manag. 2020, 474, 118368. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Shen, Y.; Li, X.; Xu, J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011, 21, 1007–1018. [Google Scholar] [CrossRef]
- Chou, C.; Neelin, J.D. Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. J. Clim. 2004, 17, 2688–2701. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.; Wittenberg, A.T. Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef]
- Dong, W.; Jiang, Y.; Yang, S. Response of the starting dates and the lengths of seasons in Mainland China to global warming. Clim. Chang. 2009, 99, 81–91. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, B.; Qian, W. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- He, W.P.; Feng, G.; Wang, L.; Wang, C.J.; Zhou, G.H.; Wan, S.Q. Potential impacts of global warming on extreme warm month events in China. Acta Phys. Sin. 2009, 58, 5083–5090. [Google Scholar]
- Zhang, A.; Bian, R.; Hussain, Q.; Li, L.; Pan, G.; Zheng, J.; Zhang, X.; Zheng, J. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agric. Ecosyst. Environ. 2013, 173, 37–45. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y. Satellite-based regional warming hiatus in China and its implication. Sci. Total. Environ. 2019, 648, 1394–1402. [Google Scholar] [CrossRef]
- Zhou, M.; Zhou, G.; Lv, X.; Zhou, L.; Ji, Y. Global warming from 1.5 to 2 °C will lead to increase in precipitation intensity in China. Int. J. Clim. 2019, 39, 2351–2361. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Wang, H.; Yu, E. Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models. Sci. Total. Environ. 2018, 641, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.F. An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Clim. Chang. 2009, 97, 469–482. [Google Scholar] [CrossRef]
- Davy, R.; Esau, I.; Chernokulsky, A.; Outten, S.; Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Clim. 2017, 37, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.; et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nat. Cell Biol. 2013, 501, 88–92. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote. Sens. 2014, 6, 3263–3283. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Cong, N.; Shen, M.; Yang, W.; Yang, Z.; Zhang, G.; Piao, S. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. Int. J. Biometeorol. 2017, 61, 1433–1444. [Google Scholar] [CrossRef]
- Xu, C.; Li, J.; Zhao, J.; Gao, S.; Chen, Y. Climate variations in northern Xinjiang of China over the past 50 years under global warming. Quat. Int. 2015, 358, 83–92. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and Future Climate Change in Northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Tao, H.; Fischer, T.; Su, B.; Mao, W.; Jiang, T.; Fraedrich, K. Observed changes in maximum and minimum temperatures in Xinjiang autonomous region, China. Int. J. Clim. 2017, 37, 5120–5128. [Google Scholar] [CrossRef]
- Su, T.; Feng, G.; Zhou, J.; Ye, M. The response of actual evaporation to global warming in China based on six reanalysis datasets. Int. J. Clim. 2014, 35, 3238–3248. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, D.; Shi, X.; Weindorf, D.C.; Zhao, L.; Ding, W.; Wang, H.; Pan, J.; Li, C. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1:50,000 soil database with DNDC model. Atmos. Environ. 2009, 43, 2737–2746. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, S.; Yu, R. Long-Term Changes in Rainfall over Eastern China and Large-Scale Atmospheric Circulation Associated with Recent Global Warming. J. Clim. 2010, 23, 1544–1562. [Google Scholar] [CrossRef]
- Feng, Y.; Coleman, R.G.; Tilton, G.; Xiao, X. Tectonic evolution of the West Junggar Region, Xinjiang, China. Tectonics 1989, 8, 729–752. [Google Scholar] [CrossRef]
- Woods, P.R.; Bailey, K.R.; Wood, C.M.; Johnson, B.D. Submaximal exercise gas exchange is an important prognostic tool to predict adverse outcomes in heart failure. Eur. J. Hear. Fail. 2011, 13, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Decundo, J.; Susana, N.; Diéguez, G.M.; Agustina, R.; Alejandro, L.S. Impact of water hardness on oxytetracycline oral bioavailability in fed and fasted piglets. Vet. Med. Sci. 2019, 5. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Z.; Huang, G.; Wang, R. Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China. Int. J. Environ. Res. Public Heal. 2019, 16, 1706. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, R.; Tian, X.; Zhong, X.; Gangopadhyay, J.; Cole, R.; Ikemoto, N.; Chen, S.R.W.; Wagenknecht, T. Dynamic, inter-subunit interactions between the N-terminal and central mutation regions of cardiac ryanodine receptor. J. Cell Sci. 2010, 123, 1775–1784. [Google Scholar] [CrossRef] [Green Version]
- Suh, W.W.; Cho, S.H.; Yoo, J.Y.; Kim, H.S.; Song, H.R.; Kim, W.J.; Lee, S.M.; Hong, M. Relationship between Psychological Correlates and Empathy in Medical Students: A Cross-Sectional Study. Psychiatry Investig. 2019, 16, 766–772. [Google Scholar] [CrossRef]
- Wj, J.; Chen, X.; Khaytin, I.; Bonds, A.B.; Casagrande, V.A. Relationship between spontaneous and evoked spike-time correlations in primate visual cortex. J. Neurophysiol. 2009, 101, 2279–2289. [Google Scholar] [CrossRef] [Green Version]
- Buermann, W.; Forkel, M.; O’Sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V.; Jain, A.K.; Kato, E.; Kautz, M.; Lienert, S.; et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N.; Changery, M.J.; Quayle, R.G.; Heim, R.R.; Easterling, D.R.; Bin Fu, C. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, K.; Mao, Y. Rapid Local Urbanization around Most Meteorological Stations Explain the Observed Daily Asymmetric Warming Rates across China from 1985 to 2017. J. Clim. 2020, 33, 1–57. [Google Scholar] [CrossRef]
- Che, R.; Deng, Y.; Wang, W.; Rui, Y.; Cui, X.; Tahmasbian, I.; Tang, L.; Wang, S.; Wang, Y.; Xu, Z.; et al. Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures. Geoderma 2018, 316, 1–10. [Google Scholar] [CrossRef]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heng, T.; Feng, G.; Ouyang, Y.; He, X. The Spatiotemporal Patterns of Climate Asymmetric Warming and Vegetation Activities in an Arid and Semiarid Region. Climate 2020, 8, 145. https://doi.org/10.3390/cli8120145
Heng T, Feng G, Ouyang Y, He X. The Spatiotemporal Patterns of Climate Asymmetric Warming and Vegetation Activities in an Arid and Semiarid Region. Climate. 2020; 8(12):145. https://doi.org/10.3390/cli8120145
Chicago/Turabian StyleHeng, Tong, Gary Feng, Ying Ouyang, and Xinlin He. 2020. "The Spatiotemporal Patterns of Climate Asymmetric Warming and Vegetation Activities in an Arid and Semiarid Region" Climate 8, no. 12: 145. https://doi.org/10.3390/cli8120145
APA StyleHeng, T., Feng, G., Ouyang, Y., & He, X. (2020). The Spatiotemporal Patterns of Climate Asymmetric Warming and Vegetation Activities in an Arid and Semiarid Region. Climate, 8(12), 145. https://doi.org/10.3390/cli8120145