Meteorological and Ancillary Data Resources for Climate Research in Urban Areas
Abstract
:1. Introduction
2. Methodology
3. Data Resources
3.1. Meteorological Data Resources
- (a)
- Temporal and spatial stability and homogeneity. Ideally, the observations should be performed in constant locations, quasi-continuously over time, with limited and isolated gaps. The shortcomings related to missing data or changes in station locations can be successfully secured by homogenization procedures [10,11]. The period covered by satellite images can be too short and contain too many gaps for developing climatic studies, but the remote sensing products are valuable for meteorological applications as much as they are consistent temporally and spatially.While any meteorological data retrieved from urban sensors may bring valuable information, the data stability and homogeneity are sometimes difficult to address due to inherent spatial heterogeneity and to the intense changes of the urban morphology and land cover–land use categories.
- (b)
- Reliability. The observations should comply with the WMO standards for the stations monitoring the regional climate or other known standards for monitoring the local climate [12,13]. Many synoptic stations worldwide are placed within the administrative limits of a city, but it is very likely that more sensors will capture more relevant information about of the multifaceted urban climate even if they are not placed in standard conditions [14,15,16].
- (c)
- Metadata. Geographical coordinates, instrument specifications, information about the working procedures, spatial and temporal resolution and any changes which have eventually occurred along time must be associated to any meteorological observations and remote sensing products. Besides, information about the proximities are particularly important for sensors placed in an urban environment.
3.1.1. In Situ Meteorological Data
3.1.2. Gridded Datasets
3.1.3. Remote Sensing Data
3.2. Ancillary Data Resources
3.2.1. Societal Information
3.2.2. Land Cover
- (a)
- The Global Man-Made Impervious Surface (GMIS) is one of the first 30m global dataset estimates of fractional impervious cover derived from the Global Land Survey (GLS) for 2010. The GMIS dataset includes: the global percent of impervious cover and the uncertainty for the global impervious cover. The urban studies are related to urban extend [102];
- (b)
- The Global Human Built-Up and Settlement Extent (HBASE) is one of the first 30 m global datasets and estimates the urban extend cover derived from the Global Land Survey (GLS) for 2010. The urban studies are related to urban extend [102].
- (c)
- The Urban Landsat: Cities from Space (1999–2003) is one of the first 30m global datasets providing composite Landsat images and raw data for urban areas that can be used in interdisciplinary studies of remote sensing and the environment.
- (a)
- The global LC product is available only for 2015 based on Proba-V at 100 m spatial resolution. It uses the FAO Land Cover Classification System (LCCS), totaling 23 classes [107].
- (b)
- The Pan-European LC products include:
- i.
- Corine Land Cover (CLC) is a land cover inventory (in 44 classes) project initiated in 1980s and updated in 1990, 2000, 2006, 2012 and 2018 with 100 m spatial resolution.;
- ii.
- Pan-European High-Resolution Layers (HRL) provide information on specific land cover characteristics (imperviousness density, forest, grassland, wetland and water bodies and the new small woody features [108], and are complementary to the CLC dataset. The imperviousness data have a spatial resolution of 20 m and 100 m for 2006, 2009, 2012 and 2015.
- iii.
- The European Settlement Map (EMS) is a very high-resolution dataset with spatial resolutions of 2.5 m, 10 m and 100 m. The first dataset, released in 2014, mapped the settlements in Europe based on 2010–2013 images. During the last year, different improvements have been developed: benchmarking process with population data; increases the number of classes to 13 (buildings, green, streets, water, railways, airports, open space inside the built-up area and same categories outside the built-up area) [109].
- (c)
- The Local LC Products include the Urban Atlas (UA) which provide reliable, inter-comparable, high-resolution land use maps with 17 classes for large urban zones and their surroundings (more than 100,000 inhabitants), at 10 m spatial resolution for 2006 and 2012. The UA is also including the Building Height at 10 m spatial resolution for 2012.
3.2.3. Urban Morphology
3.2.4. Climate Change, Adaptation and Urban Resilience
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The World Bank Group. 2019. Available online: https://data.worldbank.org/indicator/sp.urb.totl.in.zs (accessed on 10 January 2020).
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.; Franssen, W.; Gerten, D.; Gosling, S.; et al. Hydrological Droughts in the 21st Century, Hotspots and Uncertainties from a Global Multimodel Ensemble Experiment. Proc. Natl. Acad. Sci. USA 2013, 111. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Palazzi, E.; von Hardenberg, J.; Provenzale, A. Observed climate change hot-spots. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- de Sherbinin, A. Climate Change Hotspots Mapping: What Have We Learned? Clim. Chang. 2013, 123, 23–37. [Google Scholar] [CrossRef]
- Chandler, T.J. Urban Climatology and Its Relevance to Urban Design; WMO No 438, Technical Note No 149; WHO: Geneva, Switzerland, 1976; 80p. [Google Scholar]
- Stewart, I.D. A systematic review and scientific critique literature of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.D.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018. [Google Scholar] [CrossRef]
- Muller, C.; Chapman, L.; Grimmond, C.; Young, D.; Cai, X. Sensors and the city: A review of urban meteorological networks. Int. J. Clim. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Savić, S.; Milošević, D.; Marković, V.; Kujundžić-Dačović, R. Homogenisation of mean air temperature time series from Vojvodina (North Serbia). Geogr. Pannonica 2012, 16, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, A.; Cheval, S.; Guijarro, J.A. Homogenization of a combined hourly air temperature dataset over Romania. Int. J. Climatol. 2019. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; WMO/TD No. 1250; WMO: Geneva, Switzerland, 2006; 51p. [Google Scholar]
- WMO. Guide to Meteorological Instruments and Methods of Observations; WMO-no.8; WMO: Geneva, Switzerland, 2017; 1177p. [Google Scholar]
- Caluwaerts, S.; Hamdi, R.; Top, S.; Lauwaet, D.; Berckmans, J.; Degrauwe, D.; Dejonghe, H.; De Ridder, K.; De Troch, R.; Duchêne, F.; et al. The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Clim. 2020, 31, 100565. [Google Scholar] [CrossRef]
- Bilandžija, D. Spatio-Temporal Climate and Agroclimate Diversities over the Zagreb City Area. Geogr. Pannonica 2019, 23, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Dian, C.; Pongrácz, R.; Incze, D.; Bartholy, J.; Talamon, A. Analysis of the Urban Heat Island Intensity Based on air Temperature Measurements in a Renovated Part of Budapest (Hungary). Geogr. Pannonica 2019, 23, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Camuffo, D.; Bertolin, C. The earliest temperature observations in the world: The Medici Network (1654-1670). Clim. Chang. 2012, 111, 335–363. [Google Scholar] [CrossRef]
- Burt, S. The Weather Observer’s Handbook; Cambridge University Press: Cambridge, UK, 2012; 458p. [Google Scholar]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Smith, A.; Lott, N.; Vose, R. The integrated surface database: Recent developments and partnerships. Bull. Am. Meteorol. Soc. 2011, 92, 704–708. [Google Scholar] [CrossRef]
- Dunn, R.; Willett, K.; Parker, E.D.; Mitchell, L. Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst. 2016, 5, 473–491. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lattenmaier, D.P. Changes in observed climate extremes in global urban areas. Environ. Res. Lett. 2015, 10, 024005. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Heino, R. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Cornes, R.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Heat waves and cold spells changes in Iberia for a future climate scenario. Int. J. Clim. 2017, 37, 5192–5205. [Google Scholar] [CrossRef] [Green Version]
- Fallmann, J.; Wagner, S.; Emeis, S. High resolution climate projections to asses the future vulnerability of European urban areas to climatological extreme events. Theor. Appl. Climatol. 2017, 127, 667–683. [Google Scholar] [CrossRef] [Green Version]
- Soutullo, S.; Giancola, E.; Jiménez, M.J.; Ferrer, J.A.; Sánchez, M.N. How climate trends impact on the thermal performance of a typical residential building in Madrid. Energies 2019, 13, 237. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Lorenz, R.; Stalhandske, Z.; Fischer, E.M. Detection of a climate change signal in extreme heat, heat stress d cold in Europe from observations. Geophys. Res. Lett. 2019, 46, 8363–8374. [Google Scholar] [CrossRef] [Green Version]
- Founda, D.; Oierros, F.; Katavoutas, G.; Keramitsoglou, I. Observed trends in thermal stress at European Cities with different background climates. Atmosphere 2019, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Dumitrescu, A. Rapid daily and sub-daily temperature variations in an urban environment. Clim. Res. 2017, 73, 233–246. [Google Scholar] [CrossRef]
- Chapman, L.; Muller, C.L.; Young, D.T.; Cai, X.-M.; Grimmond, C.S.B. An introduction to the Birmingham urban climate laboratory. In Proceedings of the 8th International Conference on Urban Climates, Dublin, Ireland, 6–10 August 2012. [Google Scholar]
- Azevedo, J.A.; Chapman, L.; Muller, C.L. Quantifying the daytime and night-time urban heat island in Birmingham, UK: A comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sens. 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.; Savić, S.; Milošević, D.; Marković, V.; Bajšanski, I. Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geogr. Pannonica 2015, 19, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.; Savić, S.; Milošević, D.; Arsenović, D.M.; Dolinaj, D.M.; Popov, S.B. Progressing urban climate research using a high-density monitoring network system. Environ. Monit Assess. 2019, 191, 89. [Google Scholar] [CrossRef]
- Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in the “local climate zones” of Szeged, Hungary. Int. J. Climatol. 2017, 37, 582–596. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Nelson, F.E. Anthropogenic heat island at Barrow, Alaska, during winter (2001-2005). J. Geophys. Res. Atmos. 2007, 112, D6. [Google Scholar] [CrossRef]
- Klene, A.E.; Nelson, F.E.; Hinkel, K.M. Urban–rural contrasts in summer soil-surface temperature and active-layer thickness, Barrow, Alaska, USA. Polar Geogr. 2013, 36, 183–201. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Konstantinov, P.I.; Samsonov, T.E.; Repina, I.A. Investigation of the urban heat island phenomenon during polar night based on experimental measurements and remote sensing of Norilsk city (in Russian). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemliiz Kosm. 2014, 11, 329–337. [Google Scholar]
- Konstantinov, P.I.; Grishchenko, M.Y.; Varentsov, M.I. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast) Izv. Atmos. Ocean Phy. 2015, 51, 992–998. [Google Scholar] [CrossRef]
- Konstantinov, P.; Varentsov, M.; Esau, I. A high density urban temperature network deployed for several cities of Euroasian Arctic. Environ. Res. Lett. 2018, 13, 075007. [Google Scholar] [CrossRef]
- Lee, T.; Wong, W.; Tam, K. Urban-focused weather and climate services in Hong Kong. Geosci. Lett. 2018, 5, 18. [Google Scholar] [CrossRef]
- IPCC. 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., V. Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M.T., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; 582p. [Google Scholar]
- Wolters, D.; Brandsma, T. Estimating the urban heat island in residential areas in The Netherlands using observations by weather amateurs. J. Appl. Meteorol. Climatol. 2012, 51, 711–721. [Google Scholar] [CrossRef]
- Bell, S.; Cornford, D.; Bastin, L. How good are citizen weather stations? Addressing a biased opinion. Weather 2015, 70, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.L.; Chapman, L.; Johnston, S.; Kidd, C.; Illingworth, S.; Foody, G.; Overreem, A.; Leigh, R.R. Crowdsourcing for climate and atmospheric sciences: Current status and future potential. Int. J. Climatol. 2015, 35, 3185–3203. [Google Scholar] [CrossRef] [Green Version]
- Meier, F.; Fenner, D.; Grassmann, T.; Marco, O.; Scherer, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Clim. 2017, 19, 170–191. [Google Scholar] [CrossRef]
- Overeem, A.; Robinson, J.; Leijnse, H.; SteeneveldGert-Jan Horn, B.; Uijlenhoet, R. Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 2013, 40, 4081–4085. [Google Scholar] [CrossRef]
- Droste, A.; Pape, J.J.; Overeem, A.; Leijnse, H.; SteeneveldGert-Jan van Delden, A.; Uijlenhoet, R. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil. J. Atmos. Ocean. Technol. 2017, 34, 1853–1866. [Google Scholar] [CrossRef]
- Cifelli, R.; Doesken, N.; Kennedy, P.; Carey, L.D.; Rutledge, S.A.; Gimmestad, C.; Depue, T. The community collaborative rain, hail, and snow network: Informal education for scientists and citizens. Bull. Am. Meteorol. Soc. 2005, 86, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Shan, Q.; Brown, D. Wireless temperature sensor using bluetooth. In Proceedings of the IWAN 2005: International Workshop on Wireless Ad Hoc Networks, London, UK, 23–26 May 2005. [Google Scholar]
- Anderson, A.R.S.; Chapman, M.; Drobot, S.D.; Tadesse, A.; Lambi, B.; Wiener, G.; Pisano, P. Quality of mobile air temperature and atmospheric pressure observations from the 2010 development test environment experiment. J. Appl. Meteorol. Clim. 2012, 51, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Devarakonda, S.; Sevusu, P.; Liu, H.; Liu, R.; Iftode, L.; Nath, B. Real-time Air Quality Monitoring through Mobile Sensing in Metropolitan Areas. In Proceedings of the Conference UrbComp’13, Chicago, IL, USA, 11–14 August 2013. [Google Scholar]
- Vargo, J.; Xiao, Q.; Liu, Y. The performance of the National Weather Service Heat Warning System against ground observations and satellite imagery. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Uteov, A.; Kalyuzhnaya, A.; Boukhanovsky, A. The cities weather forecast by crowdsourced atmospheric data. Procedia Comput. Sci. 2019, 156, 347–356. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the Earth land surface areas. Sci. Data 2016, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Kim, Y.; Chan Sung, H.; Ryu, J.; Woo Jeon, S. Trend analysis of urban island intensity according to urban area change in Asian Mega Cities. Sustainability 2020, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Rohde, R.; Muller, R.; Jacobsen, R.; Perlmutter, S.; Rosenfeld, A.; Wurtele, J.; Curry, J.; Wickham, C.; Mosher, S. Berkeley earth temperature averaging process. Geoinfor. Geostat. An Overv. 2013, 1, 2. [Google Scholar] [CrossRef]
- Menne, M.J.; Williams, C.N., Jr. Homogenization of Temperature Series via Pairwise Comparisons. J. Clim. 2009, 22, 1700–1717. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, R.D. Observations of the Urban Heat Island Effect in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Gaitani, N.; Burud, I.; Thiis, T.; Santamouris, M. High-resolution spectral mapping of urban thermal propertieswith Unmanned Aerial Vehicles. Build. Environ. 2017, 121, 215–224. [Google Scholar] [CrossRef]
- Naughton, J.; Mcdonald, W. Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.; Oke, T. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Zhan, W. Comparing surface- and canopy-layer urban heat islands over Beijing using MODIS data. Int. J. Remote Sens. 2015, 36, 5448–5465. [Google Scholar] [CrossRef]
- OSCAR. Observing Systems Capability Analysis and Review Tool. 2019. Available online: https://www.wmo-sat.info/oscar/gapanalyses?variable=96 (accessed on 20 October 2019).
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E.; Zhang, D.-L. The footprint of urban areas on global climate as characterized by MODIS. J. Clim. 2005, 18, 1551–1565. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. Int. J. Climatol. 2012, 32, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Dumitrescu, A. The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theor. Appl. Climatol. 2015, 121, 631–640. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Di Stefano, V.; Orlandini, S.; Dalal, K. Urban-hazard risk analysis: Mapping of heat-related risks in the elderly in major Italian cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, V.; Esau, I. Seasonal and spatial characteristics of urban heat islands (UHIs) in Northern West Siberian cities. Remote Sens. 2017, 9, 989. [Google Scholar] [CrossRef] [Green Version]
- Polydoros, A.; Mavrakou, T.; Cartalis, C. Quantifying the trends in land surface temperature and surface urban heat island intensity in Mediterranean cities in view of smart urbanization. Urban Sci. 2018, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Ding, M.Y.X.; Hu, K.; Qi, J. Spatially explicit assessment of heat health risk using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China. Int. J. Health Geogr. 2018, 17, 15. [Google Scholar] [CrossRef]
- Gutman, G.G. Multi-annual time series of AVHRR-derived land surface temperature. Adv. Space Res. 1994, 14, 27–30. [Google Scholar] [CrossRef]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Che, Y.; Guang, J.; de Leeuw, G.; Xue, Y.; Sun, L.; Che, H. Investigations into the development of a satellite-based aerosol climate data record using ATSR-2, AATSR and AVHRR data over north-eastern China from 1987 to 2012. Atmos. Meas. Tech. 2019, 12, 4091–4112. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, Y. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, U.; Avdan, Z.Y. 2018. Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 358. [Google Scholar]
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online Global Land Surface Temperature Estimation from Landsat. Remote Sens. 2019, 9, 1208. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. J. Geophys. Res. Atmos. 2016, 121, 2638–2657. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Shumilo, L.; Kussul, N.; Shelestov, A.; Korsunska, Y.; Yailymov, B. Sentinel-3 Urban Heat Island Monitoring and analysis for Kyiv Based on Vector Data. In Proceedings of the 10th International Conference on Dependable Systems, Services and Technologies (DESSERT), Leeds, UK, 5–7 June 2019; pp. 131–135. [Google Scholar]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Garnett, R.; Adams, M.D. LIDAR—A technology to assist with smart cities and climate change resilience: A case study in an urban metropolis. ISPRS Int. J. Geo-Inf. 2018, 7, 161. [Google Scholar] [CrossRef] [Green Version]
- Haile, A.; Rientjes, T. Effects of LiDAR DEM resolution in flood modelling: A model sensitivity study for the city of Tegucigalpa, Honduras. In Proceedings of the ISPRS Wg Iii/3, Iii/4, Vienna, Austria, 29–30 August 2005; pp. 168–173. [Google Scholar]
- Rowlands, I.H.; Kemery, B.P.; Beausoleil-Morrison, I. Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study. Energy Policy 2011, 39, 1397–1409. [Google Scholar] [CrossRef]
- Szabó, Z.; Schlosser, A.; Túri, Z.; Szabó, S. A Review of Climatic and Vegetation Surveys in Urban Environment with Laser Scanning: A Literature-based Analysis. Geogr. Pannonica 2019, 23, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of threedimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G. Impact of level of details in the 3D reconstruction of trees for microclimate modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 257–264. [Google Scholar] [CrossRef]
- Masson, V.; Heldens, W.; Bocher, E.; Bonhomme, M.; Bucher, B.; Burmeister, C.; de Munck, C.; Esch, T.; Hidalgo, J.; Kanani-Sühring, F.; et al. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Clim. 2019, 31, 100536. [Google Scholar] [CrossRef]
- EEA. Urban Adaptation to Climate Change in Europe. Challenges and Opportunities for Cities Together with Supportive National and European Policies; EEA Report 2/2012; EEA: Luxemburg, 2012; 148p. [Google Scholar]
- Reckien, D.; Flacke, J.; Olazabal, M.; Heidrich, O. The influence of drivers and barriers in urban adaptation and mitigation plans—Empirical analysis of European cities. PLoS ONE 2015, 10, e0135597. [Google Scholar] [CrossRef] [PubMed]
- Tapia, C.; Abajo-Alda, B.; Feliu, E.; Mendizabal, M.; Martínez-Sáenz, J.; Fernández, G.J.; Laburu, T.; Lejarazu, A. Profiling urban vulnerability to climate change: An indicator-based vulnerability assessment for European cities. Ecol. Indic. 2017, 78, 142–155. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Clark, E.; Elliott, T.; Hart, S.; van den Hoogen, J.; Hordijk, I.; Ma, H.; Majumder, S.; Manoli, G.; Maschler, J.; et al. Understanding climate change from a global analysis of city analogues. PLoS ONE 2019, 14, e0217592. [Google Scholar] [CrossRef] [Green Version]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Wang, P.H. Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data. Remote Sens. 2017, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; de Sherbinin, A.; Zhan, Y. Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. Remote Sens. 2019, 11, 1247. [Google Scholar] [CrossRef] [Green Version]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Dramatic Loss of Agricultural Land Due to Urban Expansion Threatens Food Security in the Nile Delta, Egypt. Remote Sens. 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100m: Epoch 2015: Globe. Zenodo 2019. [Google Scholar] [CrossRef]
- Congedo, L.; Sallustio, L.; Munafo, M.; Ottaviano, M.; Tonti, D.; Marchetti, M. Copernicus high-resolution layers for land cover classification in Italy. J. Maps 2016, 12, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Ferri, S.; Siragusa, A.; Sabo, F.; Pafi, M.; Halkia, M. The European settlement map 2017 release. Methodology and output of the European settlement map (ESM2p5m); JRC Technical reports; UR 28644 EN; European Commission: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T. Local Climate Zones for Urban Temperature Studies. Bull. Amer. Meteor. Soc. 2012, 93, 879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 4. [Google Scholar] [CrossRef]
- Dijkstra, L.; Poelman, H. Cities in Europe the New OECD-EC Definition. European Commision. RF 01/2012. Available online: https://ec.europa.eu/regional_policy/sources/docgener/focus/2012_01_city.pdf (accessed on 3 December 2019).
Sensor | Satellite | Spatial Resolution | Temporal Resolution | Time Span |
---|---|---|---|---|
SEVIRI | MSG | 3 to 5 km | 15 min | 2004 to date |
AVHRR | NOAA | 1.1 km | 2 images/24 h | 1981 to date |
MODIS | Terra/Aqua | 1 km | 4 images/24 h | 2000/2002 to date |
SLSTR | Copernicus Sentinel-3 | 1 km | 1 image/24 h | 2017 to date |
TM, ETM+, OLI, TIRS | Landsat 4, 5, 7, 8 | 60–120 m (30 m resampled) | 1 image/8 or16 days | 1982 to date |
Category | Dataset | Data Format | Spatial Resolution | Temporal Resolution | Temporal Coverage | Source |
---|---|---|---|---|---|---|
In situ | Integrated Surface Database (ISD) | ASCII | Data from 35,000 weather stations worldwide | Hourly, daily | 1901 to present | https://www.ncdc.noaa.gov/isd |
Global Summary of the Day (GSOD) | ASCII | Data from over 9000 weather stations | 1929 to present (since 1973 data are the most complete) | http://www.climate.gov/global-summary-day-gsod | ||
European Climate Assessment and Dataset (ECA&D) | ASCII | Data from 18,909 weather stations across Europe and the Mediterranean | Daily | 1900 to present (blended series) and 1900 to a certain year (depending on the ECA&D participant) | https://www.ecad.eu/ | |
Urban Meteorological Networks (UMNs) | ASCII | Various | Hourly or sub-hourly | Various | http://en.urban-path.hu/monitoring-system.html https://www.birmingham.ac.uk/schools/gees/centres/bucl/maps-data/index.aspx Data could be accessed by contacting the owners | |
Crowdsourcing | ASCII | Various | Sub-hourly | Various | https://dev.netatmo.com/ https://www.wunderground.com/pws/overview | |
Gridded Datasets | E-OBS | Grid (NetCDF- 4) | 0.1 to 0.25° regular grids | Daily | 1950-01-01 to 2019-07-31 (v20.0e the latest version —released on October 2019) | https://www.ecad.eu/download/ensembles/download.php |
Climatologies at High Resolution for the Earth’s Land Surface Areas (CHELSA) | Grid (tif) | 30 arcsec, ~1 km | Monthly | 1979–2013 | http://chelsa-climate.org/ | |
Berkeley Earth | ASCII, graphs | - | Monthly and annual summaries | 1750-present (land only) 1850-present (land and ocean) | http://berkeleyearth.org/ | |
Service for Water Indicators in Climate Change Adaptation (SWICCA) | http://swicca.eu/ | |||||
Remote Sensing Data | Moderate-resolution Imaging Spectro-radiometer (MODIS) | HDF4 | 1 km | Daily eight-day mean | 2000-present | https://lpdaac.usgs.gov/tools/data-pool/ https://lpdaac.usgs.gov/tools/earthdata-search/ |
Spinning Enhanced Visible Infra-Red Imager (SEVIRI) | HDF5 | 3 km | 15 min Hourly Daily Weekly Monthly Seasonal Yearly | 1991-present | https://landsaf.ipma.pt/ChangeSystemProdLong.do?system=LandSAF+MSG&algo=LST https://wui.cmsaf.eu/safira/action/viewProduktSearch?menuName=PRODUKT_SUCHE, https://land.copernicus.eu/global/products/lst | |
NOAA’s Advanced Very High Resolution Radiometer (AVHRR) | NetCDF | 4 km | Daily | 1978-present | https://www.bou.class.noaa.gov/saa/products/search?sub_id=0&datatype_family=AVHRR&submit.x=15&submit.y=6 | |
the Landsat’s Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) | 30 m | 1982-present | http://rslab.gr/downloads_LandsatLST.html | |||
Sea and Land Surface Temperature Radiometer (SLSTR) | NC | 1 km | Daily | 2016-present | https://scihub.copernicus.eu/dhus/#/home https://search.earthdata.nasa.gov/ | |
Copernicus Atmosphere Monitoring Service (CAMS) | Grid (NetCDF, Grib Edition2) | - | Daily and hourly | Near real-time data and hourly forecast | http://copernicus-atmosphere.eu |
Dataset | Details (e.g., Data Format, Resolution, Year of Compliance) | Source | |
---|---|---|---|
Societal information | Urban Audit data collection of EUROSTAT | Data format: ASCII Temporal coverage: 2010–2019 (depending on the indicator) | https://ec.europa.eu/eurostat/web/cities/data/database |
LandScan High Resolution global Population Dataset | Data format: ESRI Grid Spatial resolution: 30 arc seconds or ~1km at equator | https://www.eastview.com/resources/e-collections/landscan/ | |
Land cover | Global Land Survey (GLS) | Data format: GeoTIFF Spatial resolution: 30 m Temporal coverage: 2010 | http://earthexplorer.usgs.gov/ |
The Global Man-made Impervious Surface (GMIS) | https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1/data-download | ||
Global Human Built-up And Settlement Extent (HBASE) | https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1/data-download | ||
Urban Landsat: Cities from Space | https://sedac.ciesin.columbia.edu/data/set/ulandsat-cities-from-space/data-download | ||
GlobeLand30 (GLOB) | Data format: GeoTIFF Spatial resolution: 30 m Temporal coverage: 2010 (2009–2011) | http://www.globallandcover.com/GLC30Download/index.aspx | |
Copernicus Land Monitoring Service (CLMS) | Data format: GeoTIFF Spatial resolution: 100 m Temporal coverage: 2015 | https://lcviewer.vito.be/download | |
Corine Land Cover (CLC) | Data format: GeoTIFF, ESRI Geodatabase, SQLite Database Spatial resolution: 100 m Temporal coverage: 1990 (1986–1998), 2000 (+/- 1 year), 2006 (+/- 1 year), 2012 (2011–2012), 2018 (2017–2018) | https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download | |
Pan-European High-Resolution Layers (HRL) | Data format: GeoTIFF Spatial resolution: 20 m and 100 m Temporal coverage: 2006 (2005–2007), 2009 (2008–2010), 2012 (2011–2013), 2015 (2014–2016) | https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2015?tab=download | |
European Settlement Map (EMS) | Data format: GeoTIFF Spatial resolution: 2.5 m, 10 m and 100 m Temporal coverage: 2012 (2010–2013) Release: 2014, 2016, 2017 | https://land.copernicus.eu/pan-european/GHSL/european-settlement-map/esm-2012-release-2017-urban-green?tab=download | |
Urban Atlas (UA) | Data format: vector file ESRI format Spatial resolution: 10 m Temporal coverage: 2006 (2005–2007), 2012 (2011–2013) | https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012?tab=download | |
Building Height | Data format: GeoTIFF Spatial resolution: 10 m Temporal coverage: 2012 (2011–2014) | https://land.copernicus.eu/local/urban-atlas/building-height-2012?tab=download | |
MODIS Land Cover | Data format: HDF4 Spatial resolution: 500 m Temporal coverage: 2001-2018 | https://lpdaac.usgs.gov/tools/earthdata-search/, https://lpdaac.usgs.gov/tools/usgs-earthexplorer/, https://lpdaac.usgs.gov/tools/data-pool/ | |
GlobCover Portal | Data format: GeoTIFF Spatial resolution: 300 m Temporal coverage: 2005, 2009 | http://due.esrin.esa.int/page_globcover.php | |
Open-ECOCLIMAP | Data format: ASCII Spatial resolution: 1 km Temporal coverage: 2005, 2009 | https://opensource.umr-cnrm.fr/projects/ecoclimap/files | |
Urban morphology | World Urban Database and Access Portal Tool (WUDAPT) | http://www.wudapt.org/ | |
Climate change, adaptation and urban resilience | Urban Audit dataset | Data format: ESRI shapefile and geodatabase Scale 1:100000 (UA2018, 2011–2014), scale 1:3 Million (UA2004, 2001) Temporal availability: 2015–2018 (UA2018), 2011–2014 (UA2011–2014), 2004 (UA2004), 2001 (UA2001) | https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/urban-audit |
Urban Adaptation Map Viewer (UAMV) | Available only for visualization (e.g., in ArcGIS JavaScript, ArcGIS Online Map Viewer, ArcGis Earth) Dataset comprises 15 indicators of climate and climate-related hazards (e.g., heat waves, heavy precipitation, meteorological drought, fire danger); 7 exposure indicators of cities to climate-related hazards (e.g., wildfires, river flooding, sea level rise); 4 indicators of physical characteristics of urban areas (e.g., urban morphological zone; percentage of impervious area in core city); 10 socio-economic indicators for cities (e.g., population, total use of water); adaptation activities of cities. | https://climate-adapt.eea.europa.eu/knowledge/tools/urban-adaptation/Urban-Adaptation-datasets | |
LOBELIA EARTH | Available only for visualization as distribution maps and graphs using Climate Explorer (past climate) | https://www.lobelia.earth/ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheval, S.; Micu, D.; Dumitrescu, A.; Irimescu, A.; Frighenciu, M.; Iojă, C.; Tudose, N.C.; Davidescu, Ș.; Antonescu, B. Meteorological and Ancillary Data Resources for Climate Research in Urban Areas. Climate 2020, 8, 37. https://doi.org/10.3390/cli8030037
Cheval S, Micu D, Dumitrescu A, Irimescu A, Frighenciu M, Iojă C, Tudose NC, Davidescu Ș, Antonescu B. Meteorological and Ancillary Data Resources for Climate Research in Urban Areas. Climate. 2020; 8(3):37. https://doi.org/10.3390/cli8030037
Chicago/Turabian StyleCheval, Sorin, Dana Micu, Alexandru Dumitrescu, Anișoara Irimescu, Maria Frighenciu, Cristian Iojă, Nicu Constantin Tudose, Șerban Davidescu, and Bogdan Antonescu. 2020. "Meteorological and Ancillary Data Resources for Climate Research in Urban Areas" Climate 8, no. 3: 37. https://doi.org/10.3390/cli8030037