Effect of Surface Temperature on Energy Consumption in a Calibrated Building: A Case Study of Delhi
Abstract
:1. Introduction
2. Data Description and Methodology
2.1. Study Area
2.2. LULC Mapping
2.3. MODIS LST Data
2.4. Building Simulation
2.4.1. Calibrated Building
- Window glazing: It occupies 7% of the external wall area with a U-value of 5.778 Wm−2K−1;
- The heating ventilation air conditioning (HVAC) System: The HVAC system is a direct expansion air conditioning unit (DX system) covering the total conditioned area of 663 m2;
- Power density: 9.9 (W/m2) for general lighting, 11 (W/m2) for computer appliances, 1.18 (W/m2) for office equipment has been used;
- Occupancy: The total occupancy is 61, including students and an instructor. This has been derived by taking into account the number of available seats.
2.4.2. Weather Files
3. Result and Discussion
3.1. Urban heat Island Intensity (UHII) Analysis
3.2. Land Use and Land Cover and UHI Pattern
3.3. Statistical Analysis
3.4. Association Between Urban Heat Island and Building Consumption
4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Overall accuracy achieved: 92% percent.
Class Name | Reference Totals | Classified Totals | Number Correct | Producers Accuracy | Users Accuracy |
---|---|---|---|---|---|
Water Body | 3 | 3 | 3 | 100.00% | 100.00% |
Rocky Terrain | 18 | 18 | 16 | 88.89% | 88.89% |
Built up Area | 23 | 21 | 19 | 82.61% | 90.48% |
Open Land | 17 | 19 | 17 | 100.00% | 89.47% |
Vegetation | 29 | 29 | 27 | 93.10% | 93.10% |
- The overall Kappa statistics achieved by 0.90.
Class Name | Kappa |
---|---|
Water Body | 1 |
Rocky terrain | 0.8645 |
Built up Area | 0.8763 |
Open Land | 0.8732 |
Vegetation | 0.9029 |
Nomenclature and Abbreviation Table
Nomenclature | Abbreviation |
Land surface temperature | LST |
Urban heat island | UHI |
Urban heat island intensity | UHII |
Land use and land cover | LULC |
Heat Transfer coefficient (u-value) | Wm−2K |
Thermal conductivity (k-value) | Wm−1K |
Heating Ventilation Air Conditioning System | HVAC |
References
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Oke, T.R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. Wind Clim. Cities 1995, 81–107. [Google Scholar] [CrossRef]
- Priyadarsini, R. Urban heat island and its impact on building energy consumption. Adv. Build. Energy Res. 2009, 3, 261–270. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Rizwan, A.; Dennis, L.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Landsberg, H.E. Man-made climatic changes. Science (80-) 1970, 170, 1265–1274. [Google Scholar] [CrossRef]
- Santamouris, M.; Paraponiaris, K.; Mihalakakou, G. Estimating the ecological footprint of the heat island effect over Athens, Greece. Clim. Chang. 2007, 80, 265–276. [Google Scholar] [CrossRef]
- Mylona, E.; Daskalopoulou, V.; Sykioti, O.; Koutroumbas, K.; Rontogiannis, A. Classification of Sentinel-2 Images Utilizing Abundance Representation. Proceedings 2018, 2, 328. [Google Scholar] [CrossRef] [Green Version]
- Park, H. Features of the island in Seoul and its surrounding cities. Atmos. Environ. 1986, 20, 1859–1866. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Kohler, M.; Blond, N.; Clappier, A. A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Appl. Energy 2016, 184, 40–54. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. Examining Urban Heat Island Relations to Land Use and Air Pollution: Multiple Endmember Spectral Mixture Analysis for Thermal Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs Remote Sens. 2013, 6, 1749–1756. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A. The July urban heat island of Bucharest as derived from modis images. Theor. Appl. Clim. 2009, 145–153. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Ceriola, G.; Weng, Q.; Rajasekar, U. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens. Environ. 2011, 115, 3080–3090. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Yue, J. Analysis of urban heat Island (UHI) in the Beijing meteropolitan area by time series MODIS data. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3327–3330. [Google Scholar]
- Anniballe, R.; Bonafoni, S.; Pichierri, M. Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sens. Environ. 2014, 150, 163–171. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Streutker, D.R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 2002, 23, 2595–2608. [Google Scholar] [CrossRef]
- Sekertekin, A.; Kutoglu, S.H.; Kaya, S. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environ. Monit. Assess 2016, 188, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Kato, S.; Yamaguchi, Y. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens. Environ. 2005, 99, 44–54. [Google Scholar] [CrossRef]
- Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome. Remote Sens. 2010, 2, 1400–1415. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 2012, 37, 371–383. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Zhang, Y.; Watkins, R. The London heat island and building cooling design. Sol. Energy 2005, 81, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Singh, S.; Berwal, S.; Kumar, D.; Pandey, P.; Prakash, A.; Lodhi, N.; Maithani, S.; Jain, V.K.; Kumar, K. Spatio—temporal variations of urban heat island over Delhi. Urban Clim. 2014, 10, 119–133. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.Y.; Liu, W.D. Spatial and Temporal Characteristics of Beijing Urban Heat Island Intensity. J. Appl. Meteorol. Climatol. 2013, 52, 1803–1816. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, C.Y.; Huang, K.T. Spatial and temporal analysis of urban heat island and global warming on residential thermal comfort and cooling energy in Taiwan. Energy Build. 2017, 152, 804–812. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consuption of building. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Salvati, A.; Coch Roura, H.; Cecere, C. Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Kumar, Y.; Fazal, S.; Bhaskaran, S. Urbanization and Quality of Urban Environment Using Remote Sensing and GIS Techniques in East Delhi-India. J. Geogr. Inf. Syst. 2011, 3, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Joshi, P.K. Monitoring Urban Landscape Dynamics Over Delhi (India) Using Remote Sensing (1998-2011) Inputs. J. Indian Soc. Remote Sens. 2013, 41, 641–650. [Google Scholar] [CrossRef]
- Pandey, P.; Kumar, D.; Prakash, A.; Masih, J.; Singh, M.; Kumar, S.; Jain, V.K.; Kumar, K. A study of urban heat island and its association with particulate matter during winter months over Delhi. Sci. Total. Environ. 2012, 414, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Natarajan, B.; Bhagat, G. Peak load prediction using weather Variables. Energy 1988, 13, 671–679. [Google Scholar] [CrossRef]
- Gupta, E. Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach. Energy Econ. 2012, 34, 1407–1421. [Google Scholar] [CrossRef] [Green Version]
- Chandramouli, C. Census of India 2011, Primary Census Abstract; Office of the Registrar General & Census Commissioner: New Delhi, India, 2012.
- India Meteorological Department (Ministry of Earth Sciences) Home Page 2014. Available online: https://mausam.imd.gov.in/imd_latest/contents/index_smart_cities1.php (accessed on 10 March 2020).
- Ball, G.H.; Hall, D.J. Isodata, a Novel Method of Data Analysis and Pattern Classification. In Clearinghouse for Federal Scientific &Technical Information Springfield; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Zhong, Y.; Zhang, L.; Huang, B.; Li, P. An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 420–431. [Google Scholar] [CrossRef]
- Fukue, K.; Shimoda, H.; Matumae, Y.; Yamaguchi, R.; Sakata, T. Evaluations of unsupervised methods for land-cover/use classifications of landsat TM data. Geocarto Int. 1988, 3, 37–44. [Google Scholar] [CrossRef]
- Babykalpana, Y.; ThanushKodi, D.K. Supervised/Unsupervised Classification of LULC Using Remotely Sensed data for Coimbatore city, India. Int. J. Comput. Appl. 2010, 2, 26–30. [Google Scholar] [CrossRef]
- Al-Tamimi, S.; Al-Bakri, J.T. Comparison Between Supervised and Unsupervised Classifications for Mapping Land Use/Cover in Ajloun Area. Jordan J. Agric. Sci. 2005, 1, 73–83. [Google Scholar]
- Justice, C.O.; Vermote, E.; Townshend, J.R.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Land processes distribute active archive center (LP DAAC) Home Page. Available online: https://lpdaac.usgs.gov/products/ (accessed on 10 March 2020).
- Bhatia, A.; Mathur, J.; Garg, V. Calibrated simulation for estimating energy savings by the use of cool roof in five Indian climatic zones. J. Renew. Sustain. Energy 2011, 3. [Google Scholar] [CrossRef]
- Su, W.; Gu, C.; Yang, G. Assessing the Impact of Land Use/Land Cover on Urban Heat Island Pattern in Nanjing City, China. J. Urban Plan. Dev. 2011, 136, 365–373. [Google Scholar] [CrossRef]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
Type of Building Envelope | Material Description | Heat Transfer Coefficient (U-value) | Thermal Conductivity (k-value) |
---|---|---|---|
External Wall | 228 mm brick with mortar plaster on both sides | 1.62 Wm−2K | 0.840 Wm−1K for brick and 0.88 Wm−1K for mortar plaster |
Internal Wall | 190 mm brick with gypsum plaster on both sides | 2.0 Wm−2K | 0.840 Wm−1K for brick and 0.18 Wm−1K−1for gypsum plaster |
Grey Roof | 101.60 mm concrete slab with 20.30 mm plaster on the upper side and expanded polystyrene thermocol for roof insulation. An air gap of 0.9 m is provided in the ceiling made of a plasterboard | 0.618 Wm−2K and an absorptance of 0.7 Wm−2K | 1.35 Wm−1K for roof slab and 0.046 Wm−1K−1 for expanded polystyrene |
Sites | VEGETATION 1 km × 1 km | WATER_BODY 1 km × 1 km | OPEN_LAND 1 km × 1 km | ROCKY_TERRAIN 1 km × 1 km | BUILT_UP_AREA 1 km × 1 km |
---|---|---|---|---|---|
Site-I (Shadipur) | 5% | 1% | 2% | 0% | 93% |
Site-II (Nehru Nagar) | 27% | 3% | 6% | 0% | 65% |
Site-III (Bawana) | 54% | 2% | 5% | 0% | 38% |
Vegetation | Water Body | Open Land | Rocky Terrain | Built-up Area | Nighttime LST | ||
---|---|---|---|---|---|---|---|
Vegetation | Pearson Correlation | 1 | −0.100 ** | −0.445 ** | −0.328 ** | −0.797 ** | −0.713 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Water body | Pearson Correlation | −0.100 ** | 1 | −0.001 | −0.034 ** | 0.023 | 0.091 ** |
Sig. (2-tailed) | 0.000 | 0.930 | 0.005 | 0.055 | 0.000 | ||
Open land | Pearson Correlation | −0.445 ** | −0.001 | 1 | −0.127 ** | 0.380 ** | 0.196 ** |
Sig. (2-tailed) | 0.000 | 0.930 | 0.000 | 0.000 | 0.000 | ||
Rocky terrain | Pearson Correlation | −0.328 ** | −0.034 ** | −0.127 ** | 1 | −0.156 ** | 0.300 ** |
Sig. (2-tailed) | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | ||
Built-up area | Pearson Correlation | −0.797 ** | 0.023 | 0.380 ** | −0.156 ** | 1 | 0.657 ** |
Sig. (2-tailed) | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | ||
Nighttime LST | Pearson Correlation | −0.713 ** | 0.091 ** | 0.196 ** | 0.300 ** | 0.657 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Model Description | Dependent Variable | Explanatory Variable | B | Std. Error | t-value | Sig. Level | Adjusted R Square |
---|---|---|---|---|---|---|---|
Linear regression model for Nighttime LST | Nighttime LST_ | Constant | 289.115 | 0.088 | 3270.879 | 0.000 | 0.55 |
Built-up area | 0.021 | 0.001 | 19.565 | 0.000 | |||
Vegetation | −0.040 | 0.001 | −41.796 | 0.000 | |||
Open land | −0.047 | 0.003 | −17.777 | 0.000 | |||
Water body | 0.017 | 0.005 | 3.389 | 0.001 |
Sites | Location | Annual UHII (K) | Average Annual UHI (K) | Annual Electricity Consumption (MWh/y) | Annual Cooling electricity consumption(MWh/y) | |
---|---|---|---|---|---|---|
Minimum | Maximum | |||||
Site-I | Shadipur (28.6510° N, 77.1562° E) | 0.9 | 5.9 | 293.5 | 255.21 | 143.82 |
Site-II | Nehru Nagar 28.5706° N, 77.2506° E | 0.1 | 50.0 | 292.1 | 243.49 | 132.10 |
Site-III | Bawana (28.7932° N, 770.0483° E | 0.0 | 0.4 | 290.02 | 235.69 | 124.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, P.; Kapur, S.; Garg, V.; Kumar, K. Effect of Surface Temperature on Energy Consumption in a Calibrated Building: A Case Study of Delhi. Climate 2020, 8, 71. https://doi.org/10.3390/cli8060071
Kumari P, Kapur S, Garg V, Kumar K. Effect of Surface Temperature on Energy Consumption in a Calibrated Building: A Case Study of Delhi. Climate. 2020; 8(6):71. https://doi.org/10.3390/cli8060071
Chicago/Turabian StyleKumari, Priyanka, Sukriti Kapur, Vishal Garg, and Krishan Kumar. 2020. "Effect of Surface Temperature on Energy Consumption in a Calibrated Building: A Case Study of Delhi" Climate 8, no. 6: 71. https://doi.org/10.3390/cli8060071