Assessment of Seasonal Winter Temperature Forecast Errors in the RegCM Model over Northern Vietnam
Abstract
:1. Introduction
2. Research Area, Model, Experimental Designs, Dataset, and Verification Methods
2.1. Research Area and Relevant Studies
2.2. Model
2.3. Experimental Design
2.4. Dataset
2.4.1. Initial and Lateral Boundary Conditions
2.4.2. Observational Data
2.4.3. Reanalysis Data
2.5. Verification Methods
3. Results
3.1. Single-Forecast Performances
3.2. Ensemble Performances
4. Conclusions
- Compared to the CFSv2 forecast, the BATS forecast group clearly reduced the negative bias of CFSv2 for the R1 and R2 regions, but CFSv2 provided better ranges of forecast values to RegCM4 for the R3 region;
- The highest sensitivity of the temperature forecast was found for land-surface parameterizations (BATS and CLM schemes), and the BATS forecast group tended to provide a lower temperature forecast than the actual observations. The CLM forecast group, on the other hand, tended to forecast higher temperatures, especially for subclimate region R3; and
- Forecast errors from single forecasts could clearly be reduced using ensemble mean forecasts, but the ensemble spreads were smaller than those RMSEs, which indicated the underdispersal of the ensemble forecast and the need for more postprocessing of the direct forecast from RegCM4.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, D.M.; Scaife, A.A.; Kirtman, B.P. What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ. Res. Lett. 2012, 7, 015602. [Google Scholar] [CrossRef]
- Kushnir, Y.; Scaife, A.A.; Arritt, R.; Balsamo, G.; Boer, G.; Doblas-Reyes, F.; Matei, D. Towards operational predictions of the near-term climate. Nat. Clim. Chang. 2019, 9, 94–101. [Google Scholar] [CrossRef]
- Fink, A.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Giorgi, F. Use of the Reg CM system over East Asia: Review and perspectives. Engineering 2017, 3, 766–772. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Lu, M.-M.; Kim, S. A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett. 2012, 7, 034025. [Google Scholar] [CrossRef]
- Min, S.-K.; Simonis, D.; Hense, A. Probabilistic climate change predictions applying Bayesian Model Averaging. Philos. Trans. R. Soc. A 2007, 365, 2103–2116. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A 2007, 365, 2053–2075. [Google Scholar] [CrossRef]
- Smith, D.; Cusack, S.; Colman, A.; Folland, C.; Harris, G.; Murphy, J. Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model. Science 2007, 317, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.; Phan, V.; Le, N.; Nguyen, Q. Extreme climatic events over Vietnam from observational data and RegCM3 projections. Clim. Res. 2011, 49, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Ngo-Duc, T.; Kieu, C.; Thatcher, M.; Nguyen-Le, D.; Phan-Van, T. Climate projections for Vietnam based on regional climate models. Clim. Res. 2014, 60, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Phan-Van, T.; Ngo-Duc, T.; Ho, T.-M.-H. Seasonal and interannual variations of surface climate elements over Vietnam. Clim. Res. 2009, 40, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.P.; Lu, M.M.; Wang, S. The East Asian winter monsoon. In The Global Monsoon System, 2nd ed.; World Scientific Publishing Co Pte Ltd.: Singapore, 2011. [Google Scholar]
- Wang, L.; Lu, M.-M. The East Asian winter monsoon. In The Global Monsoon System, 3rd ed.; World Scientific Publishing Co Pte Ltd.: Singapore, 2017. [Google Scholar]
- Chen, S.; Song, L. Recent strengthened impact of the winter arctic oscillation on the Southeast Asian surface air temperature variation. Atmosphere 2019, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yang, S. Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Clim. 2012, 25, 7702–7722. [Google Scholar] [CrossRef]
- Lim, J.; Dunstone, N.; Scaife, A.; Smith, D. Skilful seasonal prediction of Korean winter temperature. Atmos. Sci. Lett. 2019, 1. [Google Scholar] [CrossRef]
- Coppola, E.; Giorgi, F.; Mariotti, L.; Bi, X. RegT-Banda tropical band version of RegCM4. Clim. Res. 2012, 52, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Ngo-Duc, T.; Quang, T.N.; Trinh, L.T.; Vu, T.H.; Phan-Van, T.; Cu, P.V. Near future climate projections over the red river delta of vietnam using the regional climate model version 3. Sains Malays. 2012, 41, 1325–1334. [Google Scholar]
- Phan-Van, T.; Van Nguyen, H.; Trinh Tuan, L.; Nguyen Quang, T.; Ngo-Duc, T.; Laux, P.; Xuan, T.N. Seasonal prediction of surface air temperature across Vietnam using the regional climate model version 4.2 (RegCM4.2). Adv. Meteorol. 2014, 2014, 245104. [Google Scholar] [CrossRef]
- Phan-Van, T.; Nguyen-Xuan, T.; Nguyen, H.V.; Laux, P.; Pham-Thanh, H.; Ngo-Duc, T. Evaluation of the NCEP climate forecast system and its downscaling for seasonal rainfall prediction over Vietnam. Weather Forecast. 2018, 33, 615–640. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Phan-Van, T.; Trinh-Tuan, L.; Bui-Hoang, H.; Kieu, C. Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2. Clim. Res. 2015, 62, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.-L. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- McCaa, J.R.; Bretherton, C.S. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Sub-tropical Cloud-Topped Boundary Layers. Part II: Regional Sim-ulations of Marine Boundary Layer Clouds. Mon. Wea. Rev. 2004, 132, 883–896. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.E.; Eltahir, E.A.B. Simulation of regional—Scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. 2000, 105, 29579–29594. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Breigleb, B.P.; Williamson, D.; Rasch, P. Description of the ncar community climate model (ccm3) (No. NCAR/TN-420+STR). Univ. Corp. Atmos. Res. 1996. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model (No. NCAR/TN-387+STR). Univ. Corp. Atmos. Res. 1993. [Google Scholar] [CrossRef]
- Brunke, M.A.; Broxton, P.; Pelletier, J.; Gochis, D.; Hazenberg, P.; Lawrence, D.M.; Leung, L.R.; Niu, G.; Troch, P.A.; Zeng, X. Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5). J. Clim. 2016, 29, 3441–3461. [Google Scholar] [CrossRef]
- Anthes, R.A.; Hsie, E.-Y.; Kuo, Y.-H. Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4); National Center for Atmosphere Research: Boulder, CO, USA, 1987.
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. A Scheme for Representing Cumulus Convection in Large-Scale Models. J. Atmos. Sci. 1991, 48, 2313–2329. [Google Scholar] [CrossRef]
- Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-scale Models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- RegCM4 Model Source Code. Available online: https://gforge.ictp.it/gf/project/regcm (accessed on 12 April 2020).
- Yang, Z.; Arritt, R.W. Tests of a perturbed physics ensemble approach for regional climate modeling. J. Clim. 2002, 15, 2881–2896. [Google Scholar] [CrossRef]
- Güttler, I.; Branković, Č.; O’Brien, T.A.; Coppola, E.; Grisogono, B.; Giorgi, F. Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterization. Clim. Dyn. 2014, 43, 1753–1772. [Google Scholar] [CrossRef]
- Koné, B.; Diedhiou, A.; N’datchoh, E.T.; Sylla, M.B.; Giorgi, F.; Anquetin, S.; Bamba, A.; Diawara, A.; Kobea, A.T. Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa. Earth Syst. Dyn. 2018, 9, 1261–1278. [Google Scholar] [CrossRef] [Green Version]
- Bellprat, O.; Kotlarski, S.; Lüthi, D.; Schär, C. Exploring perturbed physics ensembles in a regional climate model. J. Clim. 2012, 25, 4582–4599. [Google Scholar] [CrossRef]
- Collins, M.; Booth, B.B.B.; Bhaskaran, B.; Harris, G.R.; Murphy, J.M.; Sexton, D.M.H.; Webb, M.J. Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multimodel ensembles. Clim. Dyn. 2011, 36, 1737–1766. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M.; Santer, B.D.; Collins, W.D.; Arblaster, J.M.; Hu, A.; Lawrence, D.M.; Teng, H.; Buja, L.E.; Strand, W.G. Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3. J. Clim. 2006, 19, 2597–2616. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble Forecasting at NCEP and the Breeding Method. Mon. Wea. Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef]
- Ngo-Duc, T.; Tangang, F.T.; Santisirisomboon, J.; Cruz, F.; Trinh-Tuan, L.; Nguyen-Xuan, T.; Phan-Van, T.; Juneng, L.; Narisma, G.; Singhruck, P.; et al. Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region. Int. J. Climatol. 2017, 37, 1634–1647. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- The Operational CFSv2 Data Download Link. Available online: https://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_flxf/ and https://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_pgbf/; (accessed on 12 April 2020).
- The Restrospective CFSv2 Data Download Link. Available online: https://nomads.ncdc.noaa.gov/modeldata/cfs_reforecast_6-hourly_9mon_flxf/ and https://nomads.ncdc.noaa.gov/modeldata/cfs_reforecast_6-hourly_9mon_pgbf/; (accessed on 22 May 2020).
- Tien, D.D.; Lars, R.H.; Duc, T.A.; Cuong, H.D.; Thuy, N.B. Verification of forecast weather surface variables over vietnam using the national numerical weather prediction system. Adv. Meteorol. 2016, 8152413. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Kamahori, H.; Kobayashi, C.; Endo, H.; Kobayashi, S.; Ota, Y.; Onoda, H.; Onogi, K.; Miyaoka, K.; Takahashi, K. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteorol. Soc. Jpn. 2016, 94, 269–302. [Google Scholar] [CrossRef] [Green Version]
- JRA55 Monthly Data Download Link. Available online: http://gpvjma.ccs.hpcc.jp/data/jra55/Hist/Monthly/anl_p125 (accessed on 12 April 2020).
- Wilks, D. Statistical Methods in the Atmospheric Sciences; Elsevier Academic Press: New York, NY, USA, 2006. [Google Scholar]
- Fortin, V.; Abaza, M.; Anctil, F.; Turcotte, R. Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeorol. 2014, 15, 1708–1713. [Google Scholar] [CrossRef]
Abbreviation | Model Physic Configurations | ||
---|---|---|---|
Land Surface Scheme | Radiation Scheme | Cumulus Scheme | |
BAT01 | BATS | RRTM | Grell |
BAT02 | BATS | CCRM | Grell |
BAT03 | BATS | RRTM | Tiedtke |
BAT04 | BATS | CCRM | Tiedtke |
BAT05 | BATS | RRTM | Kain-Fritsch |
BAT06 | BATS | CCRM | Kain-Fritsch |
CLM01 | CLM45 | RRTM | Grell |
CLM02 | CLM45 | CCRM | Grell |
CLM03 | CLM45 | RRTM | Tiedtke |
CLM04 | CLM45 | CCRM | Tiedtke |
CLM05 | CLM45 | RRTM | Kain-Fritsch |
CLM06 | CLM45 | CCRM | Kain-Fritsch |
Subclimate Region | R1 | R2 | R3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Forecast Month | Dec. | Jan. | Feb. | Dec. | Jan. | Feb. | Dec. | Jan. | Feb. |
CLIM | 2.26 | 2.19 | 2.45 | 2.32 | 2.41 | 2.53 | 2.44 | 2.87 | 2.64 |
CFS | 4.61 | 4.19 | 2.51 | 3.93 | 3.92 | 2.08 | 3.76 | 4.13 | 3.05 |
ENS12 | 3.65 | 2.54 | 2.13 | 2.68 | 2.17 | 1.69 | 2.84 | 2.96 | 3.17 |
ENS36 | 3.61 | 2.46 | 2.01 | 2.51 | 2 | 1.44 | 2.39 | 2.58 | 2.76 |
BAT01 | 4.19 | 3.11 | 3.05 | 3.41 | 2.72 | 2.21 | 3.14 | 2.91 | 2.7 |
BAT02 | 4.59 | 3.37 | 3.32 | 3.56 | 2.78 | 2.22 | 2.91 | 2.75 | 2.62 |
BAT03 | 4.09 | 3.06 | 2.98 | 3.39 | 2.71 | 2.19 | 3.14 | 2.89 | 2.69 |
BAT04 | 4.74 | 3.53 | 3.56 | 3.6 | 2.77 | 2.19 | 3.08 | 2.87 | 2.79 |
BAT05 | 4.51 | 3.4 | 3.52 | 3.49 | 2.74 | 2.19 | 3.22 | 2.93 | 2.73 |
BAT06 | 5.25 | 3.89 | 4.16 | 3.6 | 2.77 | 2.32 | 2.84 | 2.76 | 2.79 |
CLM01 | 3.01 | 2.59 | 2.32 | 2.3 | 2.52 | 2.67 | 2.81 | 3.51 | 4.11 |
CLM02 | 2.57 | 2.61 | 2.5 | 2.15 | 2.53 | 2.7 | 2.86 | 3.36 | 3.84 |
CLM03 | 3.05 | 2.63 | 2.33 | 2.2 | 2.56 | 2.74 | 3.04 | 3.73 | 4.3 |
CLM04 | 2.68 | 2.6 | 2.38 | 2.08 | 2.56 | 2.76 | 3.02 | 3.54 | 4.01 |
CLM05 | 3.66 | 2.63 | 2.19 | 2.22 | 2.49 | 2.66 | 3.05 | 3.77 | 4.43 |
CLM06 | 3.06 | 2.45 | 2.14 | 2.06 | 2.48 | 2.64 | 2.85 | 3.32 | 3.92 |
Subclimate Region | R1 | R2 | R3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Forecast Month | Dec. | Jan. | Feb. | Dec. | Jan. | Feb. | Dec. | Jan. | Feb. |
CFS | 0.21 | 0.29 | 0.01 | 0.33 | 0.38 | 0.07 | 0.08 | 0.32 | −0.15 |
ENS12 | 0.72 | 0.81 | 0.54 | 0.65 | 0.69 | 0.44 | 0.22 | 0.42 | −0.17 |
ENS36 | 0.75 | 0.85 | 0.62 | 0.68 | 0.72 | 0.52 | 0.25 | 0.51 | −0.29 |
BAT01 | 0.71 | 0.79 | 0.55 | 0.61 | 0.66 | 0.4 | 0.14 | 0.39 | −0.22 |
BAT02 | 0.69 | 0.79 | 0.57 | 0.6 | 0.65 | 0.43 | 0.15 | 0.37 | −0.2 |
BAT03 | 0.7 | 0.8 | 0.55 | 0.61 | 0.67 | 0.41 | 0.14 | 0.43 | −0.2 |
BAT04 | 0.69 | 0.79 | 0.51 | 0.6 | 0.66 | 0.4 | 0.17 | 0.42 | −0.24 |
BAT05 | 0.71 | 0.8 | 0.52 | 0.61 | 0.67 | 0.39 | 0.21 | 0.49 | −0.24 |
BAT06 | 0.7 | 0.8 | 0.55 | 0.6 | 0.67 | 0.43 | 0.2 | 0.41 | −0.19 |
CLM01 | 0.7 | 0.78 | 0.55 | 0.65 | 0.67 | 0.47 | 0.17 | 0.29 | −0.07 |
CLM02 | 0.72 | 0.79 | 0.54 | 0.66 | 0.67 | 0.44 | 0.21 | 0.29 | −0.13 |
CLM03 | 0.69 | 0.79 | 0.51 | 0.64 | 0.68 | 0.43 | 0.19 | 0.35 | −0.15 |
CLM04 | 0.72 | 0.79 | 0.5 | 0.65 | 0.68 | 0.43 | 0.22 | 0.35 | −0.16 |
CLM05 | 0.69 | 0.8 | 0.52 | 0.64 | 0.69 | 0.45 | 0.23 | 0.37 | −0.09 |
CLM06 | 0.72 | 0.81 | 0.55 | 0.66 | 0.69 | 0.48 | 0.23 | 0.32 | −0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo Van, H.; Du Duc, T.; Mai Khanh, H.; Robert Hole, L.; Tran Anh, D.; Luong Thi Thanh, H.; Dang Dinh, Q. Assessment of Seasonal Winter Temperature Forecast Errors in the RegCM Model over Northern Vietnam. Climate 2020, 8, 77. https://doi.org/10.3390/cli8060077
Vo Van H, Du Duc T, Mai Khanh H, Robert Hole L, Tran Anh D, Luong Thi Thanh H, Dang Dinh Q. Assessment of Seasonal Winter Temperature Forecast Errors in the RegCM Model over Northern Vietnam. Climate. 2020; 8(6):77. https://doi.org/10.3390/cli8060077
Chicago/Turabian StyleVo Van, Hoa, Tien Du Duc, Hung Mai Khanh, Lars Robert Hole, Duc Tran Anh, Huyen Luong Thi Thanh, and Quan Dang Dinh. 2020. "Assessment of Seasonal Winter Temperature Forecast Errors in the RegCM Model over Northern Vietnam" Climate 8, no. 6: 77. https://doi.org/10.3390/cli8060077
APA StyleVo Van, H., Du Duc, T., Mai Khanh, H., Robert Hole, L., Tran Anh, D., Luong Thi Thanh, H., & Dang Dinh, Q. (2020). Assessment of Seasonal Winter Temperature Forecast Errors in the RegCM Model over Northern Vietnam. Climate, 8(6), 77. https://doi.org/10.3390/cli8060077