Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Hydrological Model
2.3. Model Set Up, Calibration, and Evaluation
2.4. Climate Change Scenarios
2.5. Flood Frequency and Low Flow Analysis
2.6. Land Use/Land Cover (LULC) Management Scenarios
2.7. Combined Scenarios Analysis
3. Results
3.1. Model Performance
3.2. Projected Climate Changes
3.2.1. Bias Correction
3.2.2. Projected Climate Changes
3.3. Impacts of Climate Change on Water Resources
3.3.1. Projected Changes in the Catchment Water Balance
3.3.2. Projected Changes in Discharge
3.3.3. Changes in Flood Frequency and Low Flows
3.4. Impact of Land Use Management Scenarios on Catchment Water Balance
3.5. Combined Effects of Climate Change and Land Use Management Scenarios on the Water Balance
4. Discussion
4.1. Model Performance
4.2. Projected Climate Change in the Inland Valley
4.2.1. Bias Correction
4.2.2. Climate Change Signal
4.3. Impact of Climate Change on Water Resources
4.3.1. Projected Changes in the Annual Water Balance
4.3.2. Flood Frequency and Low Flow Analysis
4.3.3. Combined Effects of Climate and LULC Change Scenarios
5. Conclusions
- Bias correction of individual climate models improved estimates of local precipitation and temperature in relation to the ground observations in the inland valley. The applied bias correction method did not alter the annual cycle of precipitation, but its magnitude with regard to the observed precipitation.
- In the future (2021–2050), annual precipitation is projected to increase by 7.4% under RCP4.5 and by 12.5% under RCP8.5 in the inland valley. The increase in annual precipitation as projected by the ensemble mean will trigger an increase in selected catchment-averaged water balance components such as annual water yield, surface runoff, and deep aquifer recharge, as the water balance components are strongly determined by precipitation.
- Wetter conditions are expected in the short rains (SON) than in the long rains (MAM) for the two RCP scenarios. However, individual climate models project a much more complex intra-annual precipitation and temperature change, which creates considerable uncertainty about how the catchment total water yield/discharge will behave by 2050. Therefore, potential increase and decrease in future total water yield/discharge have to be considered in climate change adaptation approaches in the catchment.
- Flooding intensity is likely to increase during the rainy seasons, while the likelihood of increasing low flows is more pronounced during the dry season. Therefore, proper management options are recommended to reduce the impacts of flooding and drought in the inland valley. A detailed understanding of the possible impact of climate change on flooding extent and depth in the inland valley and downstream using a hydraulic model should be implemented for proper wetland and catchment management planning. Thus, simulation of the impact of flash floods utilizing a hydraulic model would provide a more detailed view of the future extent and depth of flash floods in these inland valleys and even the whole of Kyoga basin under the changing climate.
- LULC management and climate change individually will cause changes in the selected water balance components. More pronounced changes are expected if the drivers are combined, although future LULC management will have a significant influence on the catchment hydrological processes. Adoption of the functional landscape approach described by [10], such as conservation, slope conservation and protection of the headwater catchment management options, will reduce the impact of climate change on the water balance components such as total water yield and surface runoff. This will increase water availability and improve other ecosystem services and functions of these inland valleys undergoing a paradigm shift from their pristine state into mainly croplands in the region.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Christy, R.J.; Norris, B.W.; Mcnider, T.R. Surface Temperature Variations in East Africa and Possible Causes. J. Clim. 2008, 3342–3356. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Mcdowell, G.; Ford, J.; Jones, J. Community-level climate change vulnerability research: Trends, progress, and future directions Community-level climate change vulnerability research: Trends, progress, and future directions. Environ. Res. Lett. 2016, 11, 033001. [Google Scholar] [CrossRef]
- Souverijns, N.; Thiery, W.; Demuzere, M.; Van Lipzig, N.P.M. Drivers of future changes in East African precipitation Drivers of future changes in East African precipitation. Environ. Res. Lett. 2016, 11, 114011. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Regional climate projections for impact assessment studies in East Africa Regional climate projections for impact assessment studies in East Africa. Environ. Res. Lett. 2019, 14, 044031. [Google Scholar] [CrossRef]
- Hepworth, N.; Goulden, M. Climate Change in Uganda: Understanding the Implications and Appraising the Response; LTS Internation Ltd.: Edinburg, Scotland, 2008. [Google Scholar] [CrossRef] [Green Version]
- Waithaka, N.; Nelson, G.C.; Thomas, T.S.; Kyotalimye, M. East African Agriculture and Climate Change. A Comprehensive Analysis; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Government of Uganda. Uganda Wetlands Atlas Volume Two. United Nations Report 2016. Available online: https://www.mwe.go.ug/sites/default/files/Uganda (accessed on 25 May 2017).
- McCartney, M.; Morardet, S.; Rebelo, L.-M.; Finlayson, C.M.; Masiyandima, M. A study of wetland hydrology and ecosystem service provision: GaMampa wetland, South Africa. Hydrol. Sci. J. 2011, 56, 1452–1466. [Google Scholar] [CrossRef]
- Dixon, A.; Thawe, T.; Sampa, J. Striking a balance. Maintaining seasonal wetlands & their livelihood contributions in central Southern Africa Wetland. Dent. Today 2012, 31, 12. [Google Scholar]
- Junk, W.J.; An, S. Current state of knowledge regarding the world’ s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2013, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E.; Mitsch, W.J.; Bernal, B.; Ecosystem, M.E.H. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.; Finlayson, C. Global Wetland Outlook: State of the World’s Wetlands and their Services to People; The Ramsar Convention Secretariat: Gland, Switzerland, 2018. [Google Scholar]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar] [CrossRef]
- Von Der Heyden, C.J.; New, M.G. The role of a dambo in the hydrology of a catchment and the river network downstream. Hydrol. Earth Syst. Sci. 2003, 7, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.; Gosselink, J.G. Wetlands of the World; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-119-01979-4. [Google Scholar]
- Wood, A.; McCartney, M. Wetland Management and Sustainable Livelihoods in Africa; Routledge: Abingdon, UK, 2013; ISBN 13 978-1-84971-411-2. [Google Scholar]
- Dixon, A.B.; Wood, A.P. Wetland cultivation and hydrological management in eastern Africa: Matching community and hydrological needs through sustainable wetland use. Nat. Resour. Forum 2003, 27, 117–129. [Google Scholar] [CrossRef]
- Windmeijer, P.N.; Andriesse, W. Inland Valleys in West Africa: An Agro-Ecological Characterization of Rice-Growing Environments; ILRI: Wageningen, The Netherlands, 1993; p. 160. [Google Scholar]
- Rodenburg, J.; Zwart, S.J.; Kiepe, P.; Narteh, L.T.; Dogbe, W.; Wopereis, M.C.S. Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches. Agric. Syst. 2014, 123, 1–11. [Google Scholar] [CrossRef]
- Giertz, S.; Steup, G.; Schönbrodt, S. Use and constraints on the use of inland valley ecosystems in central Benin: Results from an inland valley survey. Erdkunde 2012, 66, 239–253. [Google Scholar] [CrossRef]
- Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.; van Aalst, M. Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. [Google Scholar] [CrossRef] [Green Version]
- Akurut, M.; Willems, P.; Niwagaba, C. Potential Impacts of Climate Change on Precipitation over Lake Victoria, East Africa, in the 21st Century. Water 2014, 6, 2634–2659. [Google Scholar] [CrossRef] [Green Version]
- Ongoma, V. Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. Int. J. Climatol. 2017, 38, 1375–1392. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Artan, G.A. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 2019, 52, 2029–2053. [Google Scholar] [CrossRef] [Green Version]
- Rowell, D.P.; Booth, B.B.; Nicholson, S.E.; Good, P. Reconciling past and future rainfall trends over east Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Tierney, J.E.; Ummenhofer, C.C.; DeMenocal, P.B. Past and future rainfall in the horn of Africa. Sci. Adv. 2015, 1, e1500682. [Google Scholar] [CrossRef] [Green Version]
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Steinbach, S.; Seregina, L.; Thonfeld, F.; van der Linden, R. Hydrological Modeling in Data-Scarce Catchments: The Kilombero Floodplain in Tanzania. Water 2018, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Hyandye, C.B.; Worqul, A.; Martz, L.W.; Muzuka, A.N.N. The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environ. Syst. Res. 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Näschen, K.; Diekkrüger, B.; Evers, M.; Höllermann, B.; Steinbach, S.; Thonfeld, F. The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under different Climate Change Scenarios. Sustainability 2019, 11, 7083. [Google Scholar] [CrossRef] [Green Version]
- Gabiri, G.; Leemhuis, C.; Diekkrüger, B.; Näschen, K.; Steinbach, S.; Thonfeld, F. Modelling the impact of land use management on water resources in a tropical inland valley catchment of central Uganda, East Africa. Sci. Total Environ. 2019, 653, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Seregina, L.S. Impact of Climate Change on Water Resources in the Kilombero Catchment in Tanzania. Water 2019, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, K.; Maruyama, A.; Haneishi, Y.; Matsumoto, S.; Tsuboi, T.; Asea, G.; Okello, S.; Takagaki, M.; Kikuchi, M. NERICA Cultivation and its Yield Determinants: The Case of Upland Rice Farmers in Namulonge, Central Uganda. J. Agric. Sci. 2012, 4, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Gabiri, G.; Diekkrüger, B.; Leemhuis, C.; Burghof, S.; Näschen, K.; Asiimwe, I.; Bamutaze, Y. Determining hydrological regimes in an agriculturally used tropical inland valley wetland in Central Uganda using soil moisture, groundwater, and digital elevation data. Hydrol. Process. 2018, 32. [Google Scholar] [CrossRef]
- Nsubuga, F.N.W. Climatic Trends at Namulonge in Uganda: 1947–2009. Geogr. Geol. 2000, 3, 119–131. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Technical Report No.406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. Swat: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/output Documentation. Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2013; p. 650. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assesment Part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Abbaspour, K. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual. Neprashtechnology 2015. [Google Scholar] [CrossRef]
- Fenton, J.D.; Keller, R.J. The Calculation of Streamflow from Measurements of Stage; Technical Report 01/6 2001. Available online: http://johndfenton.com/Papers/Calculation-of-streamflow-from-measurements-of-stage.pdf (accessed on 15 January 2015).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Rathjens, H.; Oppelt, N. SWAT model calibration of a grid-based setup. Adv. Geosci. 2012, 32, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Gutowski, J.W.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. 2016, 9, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Waliser, D.E.; Mattmann, C.A.; Goodale, C.E.; Hart, A.F.; Zimdars, P.A.; Crichton, D.J.; Jones, C.; Nikulin, G.; Hewitson, B.; et al. Evaluation of the CORDEX-Africa multi-RCM hindcast: Systematic model errors. Clim. Dyn. 2014, 42, 1189–1202. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations; A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Gilleland, E.; Katz, R.W. extRemes 2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 2016, 72. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Bond, N. Hydrostats: Hydrologic Indices for Daily Time Series Data; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Okeyo-Owuor, J.B.; Raburu, P.O. Wetlands of Lake Victoria basin, Kenya: Distribution, Current Status and Conservation Challenges. Community Based Approach to Management of Nyando Wetland, Lake Victoria Basin, Kenya. 2016, pp. 2–3. Available online: https://www.oceandocs.org/bitstream/handle/1834/7721/ktf0424.pdf?sequence=1 (accessed on 27 May 2018).
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Vanderkelen, I.; Van Lipzig, N.P.M.; Thiery, W. Modelling the water balance of Lake Victoria (East Africa)—Part 2: Future projections. J. Hydrol. Earth Syst. Sci. 2018, 22, 5527–5549. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dyn. 2013, 43, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Ogwang, B.A.; Chen, H.; Li, X.; Gao, C. The Influence of Topography on East African October to December Climate: Sensitivity Experiments with RegCM4. Adv. Meteorol. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Camberlin, P.; Okoola, R.E. The onset and cessation of the ‘long rains’ in eastern Africa and their interannual variability. Theor. Appl. Climatol. 2003, 75, 43–54. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Tchalim, G.; Ojara, M.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232, 104705. [Google Scholar] [CrossRef]
- Trinh-Tuan, L.; Matsumoto, J.; Tangang, F.T.; Juneng, L.; Cruz, F.; Narisma, G. Application of Quantile Mapping Bias Correction for Mid-future Precipitation Projections over Vietnam Application of Quantile Mapping Bias Correction for Mid-Future Precipitation Projections over Vietnam. SOLA 2019, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 311–329. [Google Scholar] [CrossRef] [PubMed]
- Nimusiima, A.; Basalirwa, C.P.K.; Majaliwa, J.G.M.; Mbogga, S.M.; Mwavu, E.N.; Namaalwa, J.; Okello-Onen, J. Analysis of Future Climate Scenarios over Central Uganda Cattle Corridor. J. Earth Sci. Clim. Chang. 2014, 5, 10. [Google Scholar]
- Nimusiima, A.; Kisembe, J.; Nakyembe, N. Evaluation of past and future extreme rainfall characteristics over Eastern Uganda. J. Environ. Agric. Sci. 2019, 18, 38–49. [Google Scholar]
- Nicholson, S.E. Climate and climate variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Seregina, L.S.; Fink, A.H.; Van Der Linden, R.; Elagib, N.A.; Pinto, J.G. A new and flexible rainy season definition: Validation for Greater Horn of Africa and application to rainfall trends. Int. J. Climatol. 2018, 39, 989–1012. [Google Scholar] [CrossRef]
- Nsubuga, F.W.; Rautenbach, H. Climate change and variability: A review of what is known and ought to be known for Uganda. Int. J. Clim. Chang. Strat. Manag. 2018, 10, 752–771. [Google Scholar] [CrossRef] [Green Version]
- Kigobe, M.; van Griensven, A. Assessing hydrological response to change in climate: Statistical downscaling and hydrological modelling within the upper Nile. In Proceedings of the Fifth Biennial Meeting on International Congress on Environmental Modelling and Software, Modelling for Environment’s Sake, Ottawa, ON, Canada, 5–8 July 2010; Swayne, D.A., Yang, W., Voinov, A.A., Rizzoli, A., Filatova, T., Eds.; International Environmental Modelling and Software Society: Ottawa, ON, Canada, 2010; pp. 2096–2105. [Google Scholar]
- Tumusiime, M.D.; Ageet, S. Assessment of Impacts of Climate Change on Hydro-meteorological Ecosystem Services and Water Stress in Lake Kyoga Catchment. Int. J. Res. Eng. 2018, 5, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Rowell, D.P.; Chadwick, R. Causes of the Uncertainty in Projections of Tropical Terrestrial Rainfall Change: East Africa. J. Clim. 2018, 31, 5977–5995. [Google Scholar] [CrossRef]
- IPCC. Climate change: Impacts, adaptation, and vulnerability. In Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1133–1820. [Google Scholar]
- Newman, B.D.; Wilcox, B.P.; Archer, S.R.; Breshears, D.D.; Dahm, C.N.; Duffy, C.J.; McDowell, N.G.; Phillips, F.M.; Scanlon, B.R.; Vivoni, E.R. Ecohydrology of water limited environments: A scientific vision. Water Resour. Res. 2006, 42, W06302. [Google Scholar] [CrossRef]
- Marhaento, H.; Martijn, J.; Booij, M.J.; Hoekstra, A.Y. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrol. Sci. J. 2018, 63, 1368–1385. [Google Scholar] [CrossRef] [Green Version]
- Olaka, L.A.; Ogutu, J.O.; Said, M.Y.; Oludhe, C. Projected Climatic and Hydrologic Changes to Lake Victoria Basin Rivers under Three RCP Emission Scenarios for 2015–2100 and Impacts on the Water Sector. Water 2019, 11, 1449. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.J.; Cabecinha, E.; Santos, J.A.; Andrade, C.; Lopes, D.; Trindade, H.; Cabral, J.A.; Santos, M.A.; Lourenço, J.; Aranha, J.; et al. A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties. Area 2012, 44, 432–442. [Google Scholar] [CrossRef]
- Beaulieu, E.; Lucas, Y.; Viville, D.; Ackerer, P.; Godde, Y. Hydrological and vegetation response to climate change in a forested mountainous catchment. Model. Earth Syst. Environ. 2016, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, P.; Marsono, D.; Sudira, P.; Suryatmojo, H. Impact of Land-use Changes on Water Balance. Procedia Environ. Sci. 2013, 17, 256–262. [Google Scholar] [CrossRef] [Green Version]
Driving GCM | RCM | Institution | Abbreviation Used in the Study |
---|---|---|---|
CanESM2 | CanRCM4_r2 | Canadian Centre for Climate Modeling and Analysis (CCma) | CanESM-CanRCM |
CanESM2 | RCA4_v1 | Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI) | CanESM-RCA |
CNRM-CM5 | CCLM4-8-17_v1 | Climate Limited-area Modeling Community (CLMcom) | CNRM-CCLM |
EC-EARTH | CCLM4-8-17_v1 | Climate Limited-area Modeling Community (CLMcom) | EC-EARTH-CCLM |
EC-EARTH | RCA4_v1 | Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI) | EC-EARTH-RCA |
MIROC5 | RCA4_v1 | Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI) | MIROC-RCA |
Scenario Combination | Description | Abbreviation Used in this Study |
---|---|---|
RCP4.5+LU1 | Combined climate and exploitation LULC management scenarios | 4.5LU1 |
RCP8.5+LU1 | Combined climate and exploitation LULC management scenarios | 8.5LU1 |
RCP4.5+LU2 | Combined climate and protection of the headwater catchment LULC management scenarios | 4.5LU2 |
RCP8.5+LU2 | Combined climate and protection of the headwater catchment LULC management scenarios | 8.5LU2 |
RCP4.5+LU3 | Combined climate and total conservation LULC management scenarios | 4.5LU3 |
RCP8.5+LU3 | Combined climate and total conservation LULC management scenarios | 8.5LU3 |
RCP4.5+LU4 | Combined climate and slope conservation LULC management scenarios | 4.5LU4 |
RCP8.5+LU4 | Combined climate and slope conservation LULC management scenarios | 8.5LU4 |
Climate Models | Historical Annual Precipitation in mm | RCP Precipitation Changes in mm (%) | RCP ETp Changes in mm (%) | RCP ET0 Changes in mm (%) | RCP Deep Aquifer Recharge Changes in mm (%) | RCP SQ Changes in mm (%) | RCP WYLD Changes in mm (%) |
---|---|---|---|---|---|---|---|
CanESM-CanRCM (RCP4.5) | 1160 | 309.7 (26.7) | 6.7 (0.5) | 65.3 (8.0) | 97.6 (70.8) | 126.4 (94.4) | 146.4 (72.6) |
CanESM -RCA (RCP4.5) | 1160 | 132.2 (11.4) | 5.8 (0.5) | 33.0 (4.2) | 44.8 (27.6) | 49.1 (34.8) | 54.2 (25.3) |
CNRM-CCLM (RCP4.5) | 1160 | −185.6 (−16.0) | 5.2 (0.4) | −54.7 (−6.8) | −68.3 (−44.3) | −46.1 (−34.1) | −62.7 (−31.9) |
EC-EARTH-CCLM (RCP4.5) | 1159 | −347.7 (−30.0) | 3.7 (0.3) | −162.4 (−20.7) | −94.4 (−54.6) | −58.5 (−42.9) | −91.1 (−44.2) |
EC-EARTH-RCA (RCP4.5) | 1161 | 229.9 (19.8) | 5.3 (0.4) | 15.1 (1.9) | 96.7 (56.6) | 92.6 (64.3) | 118.3 (56.8) |
MIROC-RCA (RCP4.5) | 1159 | 375.5 (32.4) | 7.4 (0.6) | 40.3 (5.2) | 140.8 (82.8) | 149.5 (108.1) | 192.9 (93.5) |
Ensemble mean (RCP4.5) | 1160 | 85.8 (7.4) | 5.7 (0.5) | −10.4 (−1.3) | 36.2 (22.4) | 52.2 (37.6) | 59.7 (29.0) |
CanESM-CanRCM (RCP8.5) | 1160 | 319 (27.5) | 10.0 (0.8) | 72.5 (8.8) | 109.2 (79.2) | 115.6 (86.0) | 136.9 (67.9) |
CanESM - RCA (RCP8.5) | 1160 | 175.2 (15.1) | 9.3 (0.8) | 48.1 (6.1) | 57.2 (35.2) | 62.2 (44.0) | 69.9 (32.6) |
CNRM-CCLM (RCP8.5) | 1160 | −54.5 (−4.6) | 8.8 (0.7) | −33.3 (−4.1) | −21.5 (−13.9) | 5.9 (4.3) | 1.9 (0.9) |
EC-EARTH-CCLM (RCP8.5) | 1159 | −295.5 (−25.5) | 7.4 (0.6) | −158.3 (−20.3) | −69.3 (−40.1) | −42.4 (−30.3) | −67.1 (−32.6) |
EC-EARTH-RCA (RCP8.5) | 1161 | 212.5 (18.3) | 8.8 (0.7) | 4.8 (0.6) | 102.3 (59.6) | 73.8 (51.2) | 104.7 (50.3) |
MIROC-RCA (RCP8.5) | 1159 | 508.8 (43.9) | 10.6 (0.9) | 29.4 (3.8) | 198.4 (116.7) | 216.9 (156.8) | 280.9 (136.2) |
Ensemble mean (RCP8.5) | 1160 | 145 (12.5) | 9.2 (0.8) | −6.2 (−0.8) | 62.7 (38.8) | 72.0 (51.8) | 87.8 (42.7) |
Water Balance Components | Current LULC | Exploitation | Protection of the Headwater Catchment | Conservation | Slope Conservation |
---|---|---|---|---|---|
Precipitation, mm | 1161 | - | - | - | - |
Water yield, mm (%) | 101 | 4 (4.0) | −16 (−15.8) | −25 (−24.8) | −24 (−23.8) |
Surface runoff, mm (%) | 5 | 2 (40.0) | −3 (−60) | −4.9 (−98.0) | −4.7 (−94.0) |
Deep aquifer recharge, mm (%) | 90 | −6 (−6.7) | −28 (−31.1) | −42 (−46.7) | −41 (−45.6) |
Evapotranspiration, mm (%) | 905 | 8 (0.9) | 63 (7.0) | 95 (10.5) | 92 (10.2) |
Potential evapotranspiration, mm | 1216 | - | - | - | - |
Water Balance Component | Current LULC (2015) | Exploitation | Protection of the Headwater Catchment | Total Conservation | Slope Conservation | ||||
---|---|---|---|---|---|---|---|---|---|
Historical Climate (1976–2005) | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
Precipitation [mm a−1] | 1161 | 1246 (85) | 1305 (144) | 1246 (85) | 1305 (144) | 1246 (85) | 1305 (144) | 1246 (85) | 1305 (144) |
Water yield [mm a−1] | 101 | 124 (23) | 137 (36) | 105 (4) | 116 (15) | 97 (−4) | 111(10) | 98 (−3) | 112 (11) |
Surface runoff [mm a−1] | 5 | 12 (7) | 14 (9) | 5 (0) | 5 (0) | 0.4 (−4.6) | 0.5 (−4.5) | 0.7 (−4.3) | 0.8 (−4.2) |
Deep aquifer recharge [mm a−1] | 90 | 114 (24) | 131(41) | 94 (4) | 109 (19) | 81(−9) | 97 (7) | 82 (−8) | 98 (8) |
Evapotranspiration [mm a−1] | 905 | 920 (15) | 931(26) | 975 (70) | 993 (88) | 1005 (100) | 1023 (118) | 1002 (97) | 1020 (115) |
Potential evapotranspiration [mm a−1] | 1216 | 1225(9) | 1221(5) | 1225(9) | 1221(5) | 1225(9) | 1221(5) | 1225(9) | 1221(5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabiri, G.; Diekkrüger, B.; Näschen, K.; Leemhuis, C.; van der Linden, R.; Majaliwa, J.-G.M.; Obando, J.A. Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa. Climate 2020, 8, 83. https://doi.org/10.3390/cli8070083
Gabiri G, Diekkrüger B, Näschen K, Leemhuis C, van der Linden R, Majaliwa J-GM, Obando JA. Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa. Climate. 2020; 8(7):83. https://doi.org/10.3390/cli8070083
Chicago/Turabian StyleGabiri, Geofrey, Bernd Diekkrüger, Kristian Näschen, Constanze Leemhuis, Roderick van der Linden, Jackson-Gilbert Mwanjalolo Majaliwa, and Joy Apiyo Obando. 2020. "Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa" Climate 8, no. 7: 83. https://doi.org/10.3390/cli8070083
APA StyleGabiri, G., Diekkrüger, B., Näschen, K., Leemhuis, C., van der Linden, R., Majaliwa, J.-G. M., & Obando, J. A. (2020). Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa. Climate, 8(7), 83. https://doi.org/10.3390/cli8070083