The Influence of Socioeconomic Factors on Households’ Vulnerability to Climate Change in Semiarid Towns of Mopani, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methods
3. Results
3.1. Climate Change in Mopani District (1958–2017)
3.2. Households’ Socioeconomic Characteristics
3.3. Household Vulnerability Levels
3.4. The Nexus between Socioeconomic and Households’ Vulnerability Index
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Nhuan, M.T.; Tue, N.T.; Hue, N.T.H.; Quy, T.D.; Lieu, T.M. An indicator-based approach to quantifying the adaptive capacity of urban households: The case of Da Nang city, Central Vietnam. Urban Clim. 2016, 15, 60–69. [Google Scholar] [CrossRef]
- Hulme, M.; Barrow, E.M.; Arnell, N.W.; Harrison, P.A.; Johns, T.C.; Downing, T.E. Relative impacts of human-induced climate change and natural climate variability. Nature 1999, 397, 688–691. [Google Scholar] [CrossRef]
- Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.M.; Nilsson, C. Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim. Res. 2006, 31, 75–84. [Google Scholar] [CrossRef]
- Frumkin, H.; Fried, L.; Moody, R. Aging, climate change, and legacy thinking. Am. J. Pub. Health 2012, 102, 1434–1438. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Raper, S.C.B.; Wigley, T.M.L.; Warrick, R.A. Global sea-level rise: Past and future. In Sea-Level Rise and Coastal Subsidence; Springer: Dordrecht, The Netherland, 1996; pp. 11–45. [Google Scholar]
- Huq, S.; Reid, H.; Konate, M.; Rahman, A.; Sokona, Y.; Crick, F. Mainstreaming adaptation to climate change in least developed countries (LDCs). Clim. Poli. 2004, 4, 25–43. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; Van Der Linden, P.J.; Hanson, C.E. Climate change 2007: Impacts, adaptation and vulnerability; IPCC 2007; Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Watts, M.J. Silent violence: Food, famine, and peasantry in northern Nigeria; University of Georgia Press.: Athens, GA, USA, 2013; Volume 15. [Google Scholar]
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Tom, M.; Emily, P.; Bruce, G. Urban Governance for Adaptation: Assessing Climate Change Resilience in Ten Asian Cities. Institute of Development Studies at the University of Sussex: Brighton, UK, 2009. Available online: https://www.ids.ac.uk/files/dmfile/Wp315.pdf (accessed on 20 May 2019).
- Thompson, A.A.; Matamale, L.; Kharidza, S.D. Impact of climate change on children’s health in Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2012, 9, 831–854. [Google Scholar] [CrossRef]
- Adeniji, G.; Ogundiji, B. Climate adaptation in Nigerian cities; Regularising informal and illegal settlements in Ibadan. Proceedings of World Bank Fifth Urban Research Symposium, Marseille, France, 28–30 June 2009; pp. 1–21. [Google Scholar]
- Tomlinson, R. Urbanization in post-apartheid South Africa. Routledge: Abingdon, UK, 2017. [Google Scholar]
- Ziervogel, G.; New, M.; van Garderen, E.A.; Midgley, G.; Taylor, A.; Hamann, R.; Stuart-Hill, S.; Myers, J.; Warburton, M. Climate change impacts and adaptation in South Africa. WIREs Clim. Chang. 2014, 5, 605–620. [Google Scholar] [CrossRef]
- Plecher, H. Total population of South Africa 2024. Available online: https://www.statista.com/statistics/578867/total-population-of-south-africa/2019 (accessed on 18 April 2020).
- WBT. World Bank Open Data. 2018. Available online: https://data.worldbank.org/country/ZA (accessed on 18 May 2020).
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climat. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- DEA. Response Measures for South African Biomes; Department of Environmental Affairs: Pretoria, South Africa, 2011.
- Sánchez-Rodríguez, R.; Seto, K.C.; Solecki, W.D.; Kraas, F.; Laumann, G. Science Plan: Urbanization and Global Environmental Change; International Human Dimensions Programme, Annual Report; Köllen Druck + Verlag GmbH: Bonn-Buschdorf, Germany, 2005. [Google Scholar]
- Satterthwaite, D. The implications of population growth and urbanization for climate change. Environ. Urbaniz. 2009. [Google Scholar] [CrossRef] [Green Version]
- Jörn, B.; Matthias, G.; Frauke, K.; Nguyen, Q. Adaptive urban governance: New challenges for the second generation of urban adaptation strategies to climate change. Sustain. Sci. 2010, 5, 185–206. [Google Scholar]
- Bigio, A. Adapting to climate change and preparing for natural disasters in the coastal cities of North Africa. Proceedings of Urban Research Symposium, Cities and Climate Change: Responding to an Urgent Agenda, Marseille, France, 28–30 June 2009. [Google Scholar]
- Hallegatte, S. A cost effective solution to reduce disaster losses in developing countries: Hydro-meteorological services, early warning, and evacuation. The World Bank: Geneva, Switzerland, 2012. [Google Scholar]
- Chikoore, H. Drought in southern Africa. PhD Thesis, University of Zululand, South Africa, Durban, 2016. [Google Scholar]
- Munyai, R.B. An assessment of community flood vulnerability and adaptation: A case study of Greater Tzaneen Local Municipality. Ph.D. Thesis, University of Venda, Thohoyandou, South Africa, 2017. [Google Scholar]
- Mopani District Municipality Integrated Development Plan. Available online: http://www.mopani.gov.za/documents/idp.php2018/19 (accessed on 10 May 2020).
- LDEDET; Limpopo Provincial Government. Environmental Implementation Plan 2016-2020, 2nd ed.; Limpopo Department of Economic Development, environment and Tourism: Polokwane, South Africa, 2016. [Google Scholar]
- Khwashaba, M.E. Vulnerability and resilience in the Mopani district municipality in a changing climate. Ph.D. Dissertation, North-West University, Vanderbijlpark, South Africa, 2018. [Google Scholar]
- Ndamulelo, N. Vulnerability and Adaptation to Drought Hazards in Mopani District Municipality, South Africa: Towards Disaster Risk Reduction. Ph.D. Dissertation, University of Venda, Thohoyandou, South Africa, 2019. [Google Scholar]
- Manyika, J. Bigdata: The next frontier for innovation, competition, and productivity. Available online: http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation2011 (accessed on 12 June 2020).
- Tanner, T.; Mitchell, T.; Polack, E.; Guenther, B. Urban governance for adaptation: Assessing climate change resilience in ten Asian cities. IDS Work. Paper. 2009, 2009, 1–47. [Google Scholar] [CrossRef]
- Carter, T.R.; Fronzek, S.; Inkinen, A.; Lahtinen, I.; Lahtinen, M.; Mela, H.; O’Brien, K.L.; Rosentrater, L.D.; Ruuhela, R.; Simonsson, L.; et al. Characterising vulnerability of the elderly to climate change in the Nordic region. Region. Environ. Chang. 2016, 16, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Waiyaki, E.; Angwenyi, H.O.R.; Muriuki, T. An assessment of the percieved socioeconomic impacts of climate change on the community of Faza Island, Lamu East Distrcit, Kenya. 2012, pp. 83–118. Available online: https://www.oceandocs.org/bitstream/handle/1834/6959/ktf0331.pdf?sequence=2 (accessed on 3 May 2020).
- DEA. Environmental Management Framework for the Olifants and Letaba river catchment areas; Report (OLEMF); Environmental Management Framework Report; Department of Environmental Affairs: Republic of South Africa, 2009; Volume 1.
- MD. MOPANI DISTRICT. Available online: https://municipalities.co.za/districts/view/28/Mopani-District-Municipality#demographic)2016 (accessed on 12 April 2019).
- Nkondze, M.S.; Masuku, M.B.; Manyatsi, A. Factors affecting households’ vulnerability to climate change in Swaziland: A case of Mpolonjeni area development programme (ADP). J. Agricult. Sci. 2013, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.; de Voil, P.; Nidumolu, U. The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Polic. 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Vincent, K. Creating an index of social vulnerability to climate change for Africa; Tyndall Centre Working Paper No. 56; University of East Anglia: Norwich, UK, 2004; pp. 1–50. [Google Scholar]
- Adger, W.N. Social vulnerability to climate change and extremes in coastal Vietnam. World Develop. 1999, 27, 249–269. [Google Scholar] [CrossRef]
- Gbetibouo, G.A.; Ringler, C. Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment; International Food Policy Research Institute (IFPRI); Center for Environmental Economics and Policy in Africa (CEEPA): Washington, DC, USA, 2009. [Google Scholar]
- Cutter, S.L. Vulnerability to environmental hazards. Progr. Human Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Gallopín, G.C. A systems approach to sustainability and sustainable development; Economic Commission of Latin America and the Caribbean: Santiago, Chile, 2003. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Quart. 2003, 84, 242–261. [Google Scholar]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115–132. [Google Scholar]
- McCullagh, P. Regression models for ordinal data. J. Royal Statist. Soc. Ser. B (Method.) 1980, 42, 109–127. [Google Scholar] [CrossRef]
- Dragos, C.; Veres, V. Romanian Farmers’ Market-A Multinomial Logit Model Approach. Zbornik radova Ekonomskog fakulteta u Rijeci, casopiš za ekonomsku teoriju i praksu-Proceedings of Rijeka Faculty of Economics. J. Econom. Bus. 2007, 25, 291–308. [Google Scholar]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climat. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climat. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Kuo, Y.L.; Xiao, D.J.; Lin, Y.L.; Hsieh, H.W.; Chang, M.C. Review of Vulnerability of Natural Disasters and Factors of Social Vulnerability; National Science and Technology Center for Disaster Reduction: New Taipei, Taiwan, 2009. (In Chinese) [Google Scholar]
- Chen, L.Y. The Assessment of Typhoon and Flood Vulnerabilities in Ta-Chia River Basin: The Application of Analytic Network Process; Department of Real Estate & Built Environment, College of Public Affairs, National Taipei University: New Taipei, Taiwan, 2009. (In Chinese) [Google Scholar]
- Chen, Y.C.; Li, C.H.; Su, W.R.; Tsai, Y.F. Using AHP to map flood vulnerability of the Ping-Tung coastal area. J. Taiwan Water Conserv. 2011, 59, 30–46 (In Chinese). (In Chinese) [Google Scholar]
- Dwyer, A.; Zoppou, C.; Mielsen, O.; Day, S.; Roberts, S. Quantifying Social Vulnerability: A Methodology for Identifying Those at Risk to natural Hazards; Geoscience Australia Record; Australia Government: Canberra, Australia, 2004. [Google Scholar]
- Marshall, K.E.; Sinclair, B.J. Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster. Proc. Royal Soc. London B: Biolog. Sci. 2009. [Google Scholar] [CrossRef] [Green Version]
- Daze, A.; Ambrose, K.; Ehrhart, C. Climate vulnerability and capacity analysis handbook; Care International: Atlanta, GA, USA, 2009. [Google Scholar]
- Fekete, A.; Damm, M.; Birkmann, J. Scales as a challenge for vulnerability assessment. Nat. Hazards 2009, 55, 729–747. [Google Scholar] [CrossRef]
- Yap, K.H. Assessment of Social Vulnerability of Environmental Disasters in Taiwan; Taiwanese Sociological Association: Taipei, Taiwan, 2010. (In Chinese) [Google Scholar]
- Chen, L.C. A Study on the Vulnerability and Resilience Assessment of Spatial Planning and Management in Community-Level Area; National Science Council: Taipei, Taiwan, 2009. (In Chinese) [Google Scholar]
- Slovic, P. Perception of Risk; Earthscan: London, UK, 2000. [Google Scholar]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Füssel, H.M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Chang. 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.; Kanevskiy, M.; Marchenko, S. Resilience and vulnerability of permafrost to climate change. Canad. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef] [Green Version]
- Strauss, B.H.; Ziemlinski, R.; Weiss, J.L.; Overpeck, J.T. Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environ. Res. Lett. 2012, 14, 014033. [Google Scholar] [CrossRef]
- Woodroffe, C.D. Reef-island topography and the vulnerability of atolls to sea-level rise. Glob. Planet. Chang. 2008, 62, 77–96. [Google Scholar] [CrossRef]
- Sallawu, H.; Tanko, L.; Coker, A.; Sadiq, M. Livelihood and income diversification strategies among rural farm households in Niger State, Nigeria. Asian J. Agricult. Extens.Econom. Soc. 2016. [Google Scholar] [CrossRef]
- Awotide, O.D.; Kehinde, A.L.; Agbola, P.O. Poverty and rural livelihood diversification among farming households in southwest Nigeria. J. Food Agricult. Environ. 2010, 8, 367–371. [Google Scholar]
- Apata, T.; Apata, O.; Igbalajobi, O.; Awoniyi, S. Determinants of rural poverty in Nigeria: Evidence from small holder farmers in South-western, Nigeria. Int. J. Sci. Tech. Edu. Res. 2010, 1, 85–91. [Google Scholar]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Livelihood strategies of indigenous nationalities in Nepal: A case of Chepangs. CiNii 2011, 17, 99–113. [Google Scholar]
- Yamba, S.; Appiah, D.O.; Pokuaa-Siaw, L.; Asante, F. Smallholder farmers’ livelihood security options amidst climate variability and change in rural Ghana. Scientifica 2017. [Google Scholar] [CrossRef] [Green Version]
- Cannon, T. Gender and climate hazards in Bangladesh. Gend. Develop. 2002, 10, 45–50. [Google Scholar] [CrossRef]
- Skutsch, M.M. Protocols, treaties, and action: The climate change processes viewed through gender spectacles. Gend. Develop. 2002, 10, 30–39. [Google Scholar] [CrossRef]
- UNDP. Gender and Climate Change: Impact and Adaptation. Available online: http://asia-pacific.undp.org/practices/gender/publications/Gender_and_Climate_Change-Impact_and_Adaptation-5.pdf2009 (accessed on 23 July 2020).
- Nelson, V.; Meadows, K.; Cannon, T.; Morton, J.; Martin, A. Uncertain predictions, invisible impacts, and the need to mainstream gender in climate change adaptations. Gend. Develop. 2002, 10, 51–59. [Google Scholar] [CrossRef]
- Rao, N.; Lawson, E.T.; Raditioaneng, W.N.; Solomon, D.; Angula, M.N. Gendered vulnerabilities to climate change insights from the semi-arid regions of Africa and Asia Information brief. 2016. Available online: www.idl.bnc-dspacedirect.org/handle/10625/57375 (accessed on 23 November 2019).
- Striessnig, E.; Lutz, W.; Patt, A.G. Effects of educational attainment on climate risk vulnerability. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Moser, C.; Satterthwaite, D. Toward pro-poor adaptation to climate change in the urban centers of low-and middle-income countries. In Social dimensions of climate change: Equity and vulnerability in a warming world; World Bank Group: Geneva, Switzerland, 2010; pp. 231–258. [Google Scholar]
- Van Aelst, K.; Holvoet, N. Climate change adaptation in the Morogoro Region of Tanzania: Women’s decision-making participation in small-scale farm households. Climat. Develop. 2018. [Google Scholar] [CrossRef]
- Piya, L.; Joshi, N.P.; Maharjan, K.L. Vulnerability of Chepang households to climate change and extremes in the Mid-Hills of Nepal. Climat. Chang. 2016, 135, 521–537. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
Indicator | Component | Factor | Function/Relationship with Vulnerability | References | |
---|---|---|---|---|---|
1 | Sex | Socioeconomic | Exposure | Higher number of female populations, higher vulnerability | [1,50,51,52,53,54] |
2 | Age | Higher proportion of aged (old) and adolescents and children, higher vulnerability | |||
3 | Education | Lower number of educated members of the household, higher vulnerability | |||
4 | Disabilities | Higher number of members of the household with disability, higher vulnerability | |||
5 | Marital status | Higher number of married members of the household, higher vulnerability | |||
6 | Employment status | Adaptive capacity | Lower number of employed members of household, higher vulnerability | ||
7 | Income | Lower number of members of household with stable income, higher vulnerability | |||
8 | Livelihood activities | Physical | Higher total number of livelihood activities of household, lower vulnerability | ||
9 | Personal Possession Index | Exposure | Higher Personal Possession, lower vulnerability | [55,56] | |
10 | Housing condition | Sensitivity | Better condition of dwellings, lower vulnerability | ||
11 | Death of family members due to climate-related disasters | Higher number of deaths of household members, higher vulnerability | |||
12 | Number of occurrences of the five-climate change (CC)-related diseases | Higher occurrence and severity of the climate-related diseases among households, higher vulnerability | |||
13 | Total land, houses, and other properties damaged by flood/landslides | Higher total loss of properties due to damage climate disaster by household, higher vulnerability | |||
14 | Total damage to household source of income due to flood/landslides/drought/fire | Higher total loss of income due to damage climate disaster by household, higher vulnerability | |||
15 | Share of natural resource-based income to total income | Higher total share of natural resource-based income to total income of household, higher vulnerability | |||
16 | Share of non-natural based to total income | Lower total share of remunerative income to total income of household, higher vulnerability | [51,52,54,57,58] | ||
17 | Number of insurance coverage | Availability of insurance cover, lower vulnerability | |||
18 | People graduated above secondary level | Higher number of household members graduated above Matric level, lower vulnerability | |||
19 | Tools for disaster mitigation and CC mitigation | Economic | Higher available mitigation and adaptation tool, lower vulnerability | ||
20 | Skills and experience of CC adaptation and disaster management | Higher household members with adaptation skills and experience, lower vulnerability | [1,59,60] | ||
21 | Participation in propagation, rehearsal and training for climate change disaster mitigation and adaptation, and information sharing | Higher participation in adaptation and information sharing, lower vulnerability | |||
22 | Participation in social organization | Higher household member’s participation in social organization, lower vulnerability | |||
23 | Participation in community funds | Higher household members participation in community funding, lower vulnerability | |||
24 | Supports from communities and relatives | Higher supports from community and relatives to household during disaster, lower vulnerability | |||
25 | Topography/terrain; Temperature/rainfall | Human/social | Adaptive capacity | Flatter/lower elevation, higher vulnerability; Higher temperature, higher vulnerability | |
26 | |||||
27 | Water availability; Water contaminated | Lower water availability, higher vulnerability; Higher contaminated water, higher vulnerability | |||
28 | |||||
29 | Availability/level of urban green spaces | Higher urban green space, lower vulnerability | [61,62,63,64,65] | ||
30 | Level of Imperviousness | Higher level of imperviousness, higher vulnerability | |||
31 | Plot coverage/soft landscape | Higher plot coverage, higher vulnerability | |||
32 | Household waste collection and disposal | Poor household waste collection and disposal system, higher vulnerability | |||
33 | Availability and location of basic community infrastructures and services | Higher availability and closer basic community infrastructure and services, lower vulnerability | [53,54] |
Variable | Values | Percentage |
---|---|---|
Age | 13–19 | 2.2 |
20–35 | 37.7 | |
36–50 | 44.4 | |
51–65 | 12.5 | |
66 and above | 2.2 | |
Marital status | Married | 56.7 |
Single | 29.8 | |
Divorced | 4.6 | |
Widow | 5.2 | |
Widower | 0.6 | |
Separated | 2.8 | |
Others | 0.2 | |
Duration of stay | 1–3 years | 10.1 |
4–6 | 11.1 | |
7–10 years | 5.8 | |
Above 10 years | 51.0 | |
Since birth | 22.0 | |
No. of male children | 0 | 3.6 |
1 | 42.5 | |
2 | 31.0 | |
3 | 12.3 | |
NR | 10.5 | |
No. of female children | 0 | 14.7 |
1 | 45.0 | |
2 | 28.6 | |
3 | 4.6 | |
NR | 7.1 | |
Monthly income | No income | 24.0 |
R500 | 5.0 | |
R501–5000 | 2.0 | |
R5,001–10,000 | 3.0 | |
R10,001–15,000 | 3.0 | |
R15,001–20,000 | 6.0 | |
R20,001–25,000 | 11.0 | |
R25,001–30,000 | 16.0 | |
R30,001–35,000 | 17.0 | |
R35,001–40,000 | 11.0 | |
>R40,000 | 1.0 | |
Qualification | No formal education | 3.2 |
Quranic education | 0.2 | |
Grade 0–7 | 8.5 | |
Grade 8–12 | 11.3 | |
Matric | 32.9 | |
Certificate/diploma | Higher diploma/ | 14.7 |
bachelor/honors | 12.5 | |
masters/PhD | 11.7 | |
Others | 3.2 |
Variable Indices | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Means | Std. Dev | Std. Err. | Lower Bound | Upper Bound | Min | Max | ||||
Exposure | NE | JE | E | |||||||
Tzaneen | 5.0600 | 53.1700 | 41.7700 | 7.9430 | 4.0072 | 0.4508 | 7.0455 | 8.8406 | 2.0000 | 21.0000 |
Nkowankowa | 3.4200 | 54.2900 | 42.2900 | 9.6571 | 3.9946 | 0.3020 | 9.0612 | 10.2531 | 3.0000 | 21.0000 |
Hoedspruit | 33.3333 | 16.6700 | 50.000 | 10.9722 | 1.8188 | 0.4287 | 10.0678 | 11.8767 | 7.0000 | 14.0000 |
Modjadjiskloof | 40.000 | 0.0000 | 60.0000 | 10.6000 | 1.9551 | 0.6182 | 9.2014 | 11.9986 | 7.0000 | 14.0000 |
Phalaborwa | 10.7100 | 32.1400 | 57.1400 | 12.4167 | 4.6800 | 0.5106 | 11.4010 | 13.4323 | 4.0000 | 21.5000 |
Giyani | 8.5000 | 55.4000 | 36.1000 | 10.2577 | 4.4186 | 0.3875 | 9.4909 | 11.0244 | 2.4000 | 27.0000 |
Mopani | 8.1000 | 48.2000 | 43.7000 | 10.0756 | 4.3410 | 0.1949 | 9.6926 | 10.4586 | 2.0000 | 27.0000 |
Sensitivity | NS | S | VS | |||||||
Tzaneen | 82.3000 | 17.7000 | 0 | 0.0403 | 0.3734 | 0.0420 | −0.0434 | 0.1239 | −0.2200 | 1.5400 |
Nkowankowa | 82.9000 | 17.1000 | 0.0000 | −0.0741 | 0.2760 | 0.0209 | −0.1153 | −0.0329 | −0.2200 | 0.9200 |
Hoedspruit | 22.2000 | 38.9000 | 38.9000 | 0.3680 | 0.5492 | 0.1295 | 0.0948 | 0.6411 | −0.2200 | 1.4700 |
Modjadjiskloof | 100.0000 | 0.0000 | 0.0000 | −0.1740 | 0.0634 | 0.0201 | −0.2194 | −0.1286 | −0.2200 | −0.1000 |
Phalaborwa | 92.9000 | 6.000 | 1.2000 | −0.0802 | 0.2596 | 0.0283 | −0.1365 | −0.0239 | −0.2200 | 0.9200 |
Giyani | 73.8500 | 21.5400 | 4.6200 | 0.0896 | 0.6084 | 0.0534 | −0.0160 | 0.1951 | −0.7000 | 4.2600 |
Mopani | 80.2400 | 16.9400 | 2.8000 | 0.0000 | 0.4218 | 0.0189 | −0.0372 | 0.0372 | −0.7000 | 4.2600 |
Adaptive Capacity | C | NC | NCA | |||||||
Tzaneen | 86.5000 | 12.7000 | 1.3000 | 17.3291 | 7.9158 | 0.8906 | 15.5561 | 19.1022 | 4.0000 | 38.0000 |
Nkowankowa | 71.4000 | 28.6000 | 0.0000 | 21.8629 | 8.0590 | 0.6092 | 20.6605 | 23.0652 | 5.0000 | 36.0000 |
Hoedspruit | 61.1000 | 27.8000 | 11.1000 | 31.2778 | 2.0809 | 0.4905 | 30.2430 | 32.3126 | 28.0000 | 34.0000 |
Modjadjiskloof | 60.0000 | 40.0000 | 0.0000 | 19.0000 | 12.4450 | 3.9356 | 10.0971 | 27.9029 | 3.0000 | 34.0000 |
Phalaborwa | 78.6000 | 21.4000 | 0.0000 | 20.5119 | 7.1515 | 0.7803 | 18.9599 | 22.0639 | 8.0000 | 37.0000 |
Giyani | 74.6000 | 20.7800 | 4.6000 | 22.2615 | 9.3299 | 0.8183 | 20.6425 | 23.8805 | 5.0000 | 41.0000 |
Mopani | 76.2000 | 22.4000 | 1.4100 | 21.3004 | 8.5810 | 0.3853 | 20.5434 | 22.0574 | 3.0000 | 41.0000 |
Vulnerability | LV | MV | HV | |||||||
Tzaneen | 10.1300 | 11.3900 | 78.4800 | 0.1051 | 1.6343 | 0.1839 | −0.2610 | 0.4712 | −3.4000 | 4.2900 |
Nkowankowa | 12.0000 | 18.4000 | 68.6000 | −0.1562 | 1.6380 | 0.1238 | −0.4006 | 0.0882 | −3.0800 | 4.9900 |
Hoedspruit | 55.6000 | 33.3000 | 11.1000 | −0.1157 | 1.6653 | 0.3925 | −0.9438 | 0.7124 | −2.4500 | 2.9300 |
Modjadjiskloof | 30.0000 | 10.0000 | 60.0000 | 0.6233 | 1.8053 | 0.5709 | −0.6681 | 1.9147 | −1.6900 | 2.4700 |
Phalaborwa | 3.8000 | 22.6000 | 73.8000 | −0.1838 | 1.5443 | 0.1685 | −0.5189 | 0.1513 | −3.3700 | 2.8400 |
Giyani | 16.8000 | 20.7000 | 62.3000 | 0.2333 | 1.9501 | 0.1710 | −0.1051 | .05717 | −3.1100 | 12.0600 |
Mopani | 13.5000 | 19.4000 | 67.1000 | 0.0000 | 1.7170 | 0.0771 | −0.1515 | 0.1515 | −3.4000 | 12.0600 |
Variables | Mopani | Tzaneen | Nkowankowa | Hoedspruit | Modjadjiskloof | Phalaborwa | Giyani |
---|---|---|---|---|---|---|---|
Age | 0.333 ** | 0.2220 | 2.345 *** | −0.0000 | −0.3200 | 0.0417 | 0.0180 |
Pseudo R2 | (0.1430) | (0.3370) | (0.4660) | (0.7120) | (1.3470) | (0.3270) | (0.2290) |
0.0100 | 0.0030 | 0.1970 | 0.0000 | 0.0040 | 0.0000 | 0.0000 | |
Wald Chi2 | 5.44 ** | 0.4300 | 25.38 *** | 0.0000 | 0.0600 | 0.0200 | 0.0100 |
Genders | −0.2100 | −0.4980 | −0.0827 | 1.6090 | 0.3200 | −0.2120 | −0.0680 |
Pseudo R2 | (0.1930) | (0.5630) | (0.3640) | (1.5360) | (1.3180) | (0.5000) | (0.3890) |
0.0010 | 0.0080 | 0.0000 | 0.0600 | 0.0040 | 0.0010 | 0.0000 | |
Wald Chi2 | 1.1800 | 0.7800 | 0.0500 | 1.1000 | 0.0600 | 0.1800 | 0.0300 |
Marital status | 0.535 *** | 0.7570 | 0.618 * | −0.4560 | 0.3200 | −0.0374 | 0.3520 |
Pseudo R2 | (0.1900) | (0.5560) | (0.3380) | (1.1620) | (1.3470) | (0.5150) | (0.3570) |
0.0090 | 0.0180 | 0.0120 | 0.0060 | 0.0040 | 0.0000 | 0.0040 | |
Wald Chi2 | 7.95 *** | 1.8600 | 3.34 * | 0.1500 | 0.0600 | 0.0100 | 0.9800 |
Education qualification | −0.0706 | 0.384 * | −0.253 *** | 0.0708 | −0.788 * | −0.0793 | 0.299 *** |
Pseudo R2 | (0.0527) | (0.2050) | (0.0835) | (0.4140) | (0.4600) | (0.1540) | (0.1120) |
0.0020 | 0.0520 | 0.0270 | 0.0010 | 0.2280 | 0.0030 | 0.0310 | |
Wald Chi2 | 1.7900 | 3.5000 | 9.2000 | 0.0300 | 2.9300 | 0.2700 | 7.1200 |
Income | −0.147 *** | 0.0389 | −0.244 ** | 0.1010 | 0.3320 | −0.1030 | −0.0428 |
Pseudo R2 | (0.0341) | (0.0833) | (0.1040) | (0.0703) | (0.2130) | (0.0804) | (0.0715) |
0.0230 | 0.0020 | 0.0230 | 0.0140 | 0.2130 | 0.0170 | 0.0010 | |
Wald Chi2 | 18.56 *** | 0.2200 | 5.47 *** | 1.4400 | 2.4400 | 1.6400 | 0.3600 |
Duration of stay | −0.1420 | −0.5280 | 0.244 * | −0.0793 | −1.067 *** | −0.2830 | 0.616 *** |
Pseudo R2 | (0.0870) | (0.3310) | (0.1380) | (0.0870) | (0.3180) | (0.2520) | (0.2280) |
0.0040 | 0.0390 | 0.0160 | 0.0040 | 0.1100 | 0.0130 | 0.0410 | |
Wald Chi2 | 2.680 | 2.5400 | 3.1600 | 8.00 ** | 11.2600 | 1.2600 | 7.2600 |
No. of male child | −0.204 *** | −0.2980 | −0.363 *** | −0.1620 | 0.2510 | 0.0696 | −0.1370 |
Pseudo R2 | (0.0723) | (0.2490) | (0.1120) | (0.3830) | (0.7490) | (0.2360) | (0.1300) |
0.0100 | 0.0140 | 0.0350 | 0.0040 | 0.0060 | 0.0010 | 0.0050 | |
Wald Chi2 | 8.00 *** | 1.4300 | 10.46 *** | 0.1800 | 0.1100 | 0.0900 | 1.1000 |
Female child | −0.0486 | 0.00703 | −0.1220 | 0.5090 | 0.3980 | 0.0974 | −0.2190 |
Pseudo R2 | (0.0801) | (0.2340) | (0.1190) | (0.4560) | (0.7860) | (0.2380) | (0.1780) |
0.0010 | 0.0000 | 0.0040 | 0.0530 | 0.0260 | 0.0020 | 0.0090 | |
Wald Chi2 | 0.3700 | 0.0000 | 1.0400 | 1.2400 | 0.2600 | 0.1700 | 1.5200 |
Livelihood Diversification | −0.729 * | −3.092 * | 0.1030 | – | −9.24 *** | −0.3910 | −1.29 * |
Pseudo R2 | (0.4140) | (1.6790) | (0.8000) | – | (2.7960) | (0.9110) | (0.7680) |
0.0030 | 0.0430 | – | – | 0.2420 | – | 0.0110 | |
Wald Chi2 | 3.10 * | 3.39 * | 0.0200 | – | 10.91 *** | 0.1800 | 2.80 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimoh, M.Y.; Bikam, P.; Chikoore, H. The Influence of Socioeconomic Factors on Households’ Vulnerability to Climate Change in Semiarid Towns of Mopani, South Africa. Climate 2021, 9, 13. https://doi.org/10.3390/cli9010013
Jimoh MY, Bikam P, Chikoore H. The Influence of Socioeconomic Factors on Households’ Vulnerability to Climate Change in Semiarid Towns of Mopani, South Africa. Climate. 2021; 9(1):13. https://doi.org/10.3390/cli9010013
Chicago/Turabian StyleJimoh, Musa Yusuf, Peter Bikam, and Hector Chikoore. 2021. "The Influence of Socioeconomic Factors on Households’ Vulnerability to Climate Change in Semiarid Towns of Mopani, South Africa" Climate 9, no. 1: 13. https://doi.org/10.3390/cli9010013