The Stationary Concentrated Vortex Model
Abstract
:1. Introduction
2. Vortex Models
2.1. Rankine Vortex
2.2. Burgers Vortex
2.3. The Sullivan Vortex
3. Vortex Model for an Incompressible and Inviscid Fluid
- (a)
- in the vortex centre, for, and p are finite values;
- (b)
- at the bottom boundary, for, and p are finite values; and
- (c)
- at the vortex periphery, when and , where and L are characteristic vortex scales in the radial and vertical directions, respectively,and .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxworthy, T. A Vorticity Source for Large-Scale Dust Devils and Other Comments on Naturally Occurring Columnar Vortices. J. Atmos. Sci. 1973, 30, 1717–1722. [Google Scholar] [CrossRef] [Green Version]
- Mullen, J.B.; Maxworthy, T. A laboratory model of dust devil vortices. Dyn. Atmos. Ocean. 1977, 1, 181–214. [Google Scholar] [CrossRef]
- Trapp, R.J.; Fiedler, B.H. Tornado-like Vortexgenesis in a Simplified Numerical Model. J. Atmos. Sci. 1995, 52, 3757–3778. [Google Scholar] [CrossRef] [Green Version]
- Kanak, K.M.; Lilly, D.K.; Snow, J.T. The formation of vertical Vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 2000, 126, 2789–2810. [Google Scholar] [CrossRef]
- Kanak, K.M. Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 2005, 131, 1271–1292. [Google Scholar] [CrossRef]
- Balme, M.; Greeley, R. Dust devils on Earth and Mars. Rev. Geophys. 2006, 44, RG3003. [Google Scholar] [CrossRef]
- Gu, Z.; Qiu, J.; Zhao, Y.; Li, Y. Simulation of terrestrial dust devil patterns. Adv. Atmos. Sci. 2008, 25, 31–42. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Gu, Z.L.; Yu, Y.Z.; Ge, Y.; Li, Y.; Feng, X. Mechanism and large eddy simulation of dust devils. Atmos. Ocean 2010, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Raasch, S.; Franke, T. Structure and formation of dust devil-like vortices in the atmospheric boundary layer: A high-resolution numerical study. J. Geophys. Res. Atmos. 2011, 116, D16120. [Google Scholar] [CrossRef]
- Davies-Jones, R. A review of supercell and tornado dynamics. Atmos. Res. 2015, 158, 274–291. [Google Scholar] [CrossRef]
- Horton, W.; Miura, H.; Onishchenko, O.; Couedel, L.; Arnas, C.; Escarguel, A.; Benkadda, S.; Fedun, V. Dust devil dynamics. J. Geophys. Res. Atmos. 2016, 121, 7197–7214. [Google Scholar] [CrossRef] [Green Version]
- Neves, T.; Fisch, G.; Raasch, S. Local Convection and Turbulence in the Amazonia Using Large Eddy Simulation Model. Atmosphere 2018, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Farrell, W.M.; Delory, G.T.; Cummer, S.A.; Marshall, J.R. A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 2003, 30, 2050. [Google Scholar] [CrossRef] [Green Version]
- Farrell, W.M.; Smith, P.H.; Delory, G.T.; Hillard, G.B.; Marshall, J.R.; Catling, D.; Hecht, M.; Tratt, D.M.; Renno, N.; Desch, M.D.; et al. Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. Planets 2004, 109, E03004. [Google Scholar] [CrossRef]
- Farrell, W.M.; Renno, N.; Delory, G.T.; Cummer, S.A.; Marshall, J.R. Integration of electrostatic and fluid dynamics within a dust devil. J. Geophys. Res. Planets 2006, 111, E01006. [Google Scholar] [CrossRef] [Green Version]
- Melnik, O.; Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. 1998, 103, 29107–29118. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Guo, X.; Zheng, X.J. Experimental measurement of wind-sand flux and sand transport for naturally mixed sands. Phys. Rev. E 2002, 66, 021305. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.J.; Huang, N.; Zhou, Y.H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J. Geophys. Res. Atmos. 2003, 108, 4322. [Google Scholar] [CrossRef]
- Xie, L.; Ling, Y.; Zheng, X. Laboratory measurement of saltating sand particles’ angular velocities and simulation of its effect on saltation trajectory. J. Geophys. Res. Atmos. 2007, 112, D12116. [Google Scholar] [CrossRef]
- Harrison, R.G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K.L.; Borlina, C.; Berthelier, J.J.; Déprez, G.; Farrell, W.M.; et al. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity. Space Sci. Rev. 2016, 203, 299–345. [Google Scholar] [CrossRef] [Green Version]
- Izvekova, Y.N.; Popel, S.I. Charged Dust Motion in Dust Devils on Earth and Mars. Contrib. Plasma Phys. 2016, 56, 263–269. [Google Scholar] [CrossRef]
- Izvekova, Y.N.; Popel, S.I. Plasma Effects in Dust Devils near the Martian Surface. Plasma Phys. Rep. 2017, 43, 1172–1178. [Google Scholar] [CrossRef]
- Izvekova, Y.N.; Popel, S.I.; Izvekov, O.Y. On the Possibility of Excitation of Oscillations in a Schumann Resonator on Mars. Plasma Phys. Rep. 2020, 46, 65–70. [Google Scholar] [CrossRef]
- Izvekova, Y.N.; Reznichenko, Y.S.; Popel, S.I. On the Possibility of Dust Acoustic Perturbations in Martian Ionosphere. Plasma Phys. Rep. 2020, 46, 1205–1209. [Google Scholar] [CrossRef]
- Stenflo, L. Nonlinear equations for acoustic gravity waves. Phys. Lett. A 1996, 222, 378–380. [Google Scholar] [CrossRef]
- Shukla, P.K.; Stenflo, L. Acoustic gravity tornadoes in the atmosphere. Phys. Scr. 2012, 86, 065403. [Google Scholar] [CrossRef]
- Sinclair, P.C. General Characteristics of Dust Devils. J. Appl. Meteorol. 1969, 8, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Onishchenko, O.; Pokhotelov, O.; Fedun, V. Convective cells of internal gravity waves in the earth’s atmosphere with finite temperature gradient. Ann. Geophys. 2013, 31, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Onishchenko, O.; Pokhotelov, O.; Horton, W.; Fedun, V. Dust devil vortex generation from convective cells. Ann. Geophys. 2015, 33, 1343–1347. [Google Scholar] [CrossRef] [Green Version]
- Onishchenko, O.G.; Horton, W.; Pokhotelov, O.A.; Fedun, V. “Explosively growing” vortices of unstably stratified atmosphere. J. Geophys. Res. Atmos. 2016, 121, 11. [Google Scholar] [CrossRef]
- Rafkin, S.; Jemmett-Smith, B.; Fenton, L.; Lorenz, R.; Takemi, T.; Ito, J.; Tyler, D. Dust Devil Formation. Space Sci. Rev. 2016, 203, 183–207. [Google Scholar] [CrossRef]
- Rennó, N.O.; Burkett, M.L.; Larkin, M.P. A Simple Thermodynamical Theory for Dust Devils. J. Atmos. Sci. 1998, 55, 3244–3252. [Google Scholar] [CrossRef]
- Smith, R.K.; Leslie, L.M. Thermally driven vortices: A numerical study with application to dust-devil dynamics. Q. J. R. Meteorol. Soc. 1976, 102, 791–804. [Google Scholar] [CrossRef]
- Hicks, W.M. Researches in Vortex Motion. Part III: On Spiral or Gyrostatic Vortex Aggregates. Philos. Trans. R. Soc. Lond. Ser. A 1899, 192, 33–99. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117–129. [Google Scholar] [CrossRef]
- Wu, J.Z.; Ma, H.Y.; Zhou, M.D. Vorticity and Vortex Dynamics. 2006. Available online: https://www.springer.com/gp/book/9783540290278 (accessed on 5 January 2021).
- Onishchenko, O.G.; Pokhotelov, O.A.; Astafieva, N.M. A Novel Model of Quasi-Stationary Vortices in the Earth’s Atmosphere. Izv. Atmos. Ocean. Phys. 2018, 54, 906–910. [Google Scholar] [CrossRef]
- Onishchenko, O.; Pokhotelov, O.; Horton, W.; Smolyakov, A.; Kaladze, T.; Fedun, V. Rolls of the internal gravity waves in the Earth’s atmosphere. Ann. Geophys. 2014, 32, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Onishchenko, O.G.; Fedun, V.; Horton, W.; Pokhotelov, O.; Verth, G. Dust devils: Structural features, dynamics and climate impact. Climate 2019, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Onishchenko, O.G.; Pokhotelov, O.; Astafieva, N.M.; Horton, W.; Fedun, V. Structure and dynamics of concentrated mesoscale vortices in the atmospheres of planets. Phys. Usp. 2020. [Google Scholar] [CrossRef]
- Rankine, W.J.M. A Manual of Applied Mechanics; Charles Griffin and Company Limited: London, UK, 1901. [Google Scholar]
- Battan, L.J. Energy of a Dust Devil. J. Atmos. Sci. 1958, 15, 235–236. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, P.C. on the rotation of dust devils. Bull. Am. Meteorol. Soc. 1965, 46, 388–391. [Google Scholar] [CrossRef]
- Sinclair, P.C. The Lower Structure of Dust Devils. J. Atmos. Sci. 1973, 30, 1599–1619. [Google Scholar] [CrossRef]
- Williams, N.R. Development of Dust Whirls and Similar Small-Scale Vortices. Bull. Am. Meteorol. Soc. 1948, 29, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Bluestein, H.B.; Weiss, C.C.; Pazmany, A.L. Doppler Radar Observations of Dust Devils in Texas. Mon. Weather Rev. 2004, 132, 209. [Google Scholar] [CrossRef]
- Toigo, A.D.; Richardson, M.I.; Ewald, S.P.; Gierasch, P.J. Numerical simulation of Martian dust devils. J. Geophys. Res. Planets 2003, 108, 5047. [Google Scholar] [CrossRef] [Green Version]
- Kurgansky, M.V. A simple model of dry convective helical vortices (with applications to the atmospheric dust devil). Dyn. Atmos. Ocean. 2005, 40, 151–162. [Google Scholar] [CrossRef]
- Kurgansky, M.V.; Lorenz, R.D.; Renno, N.O.; Takemi, T.; Gu, Z.; Wei, W. Dust Devil Steady-State Structure from a Fluid Dynamics Perspective. Space Sci. Rev. 2016, 203, 209–244. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar] [CrossRef]
- Rott, N. On the viscous core of a line vortex. Z. Angew. Math. Und Phys. 1958, 9, 543–553. [Google Scholar] [CrossRef]
- Sullivan, R.D. A Two-Cell Vortex Solution of the Navier-Stokes Equations. J. Aerosp. Sci. 1959, 26, 767–768. [Google Scholar] [CrossRef]
- Michaels, I.T.; Rafkin Scot, C.R. Large-eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 2004, 130, 1251–1274. [Google Scholar] [CrossRef] [Green Version]
- Morton, B.R. The strength of vortex and swirling core flows. J. Fluid Mech. 1969, 38, 315–333. [Google Scholar] [CrossRef]
- Velikhov, E.P. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. JETP 1959, 36, 1398–1404. [Google Scholar]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Courier Corporation: Chelmsford, MA, USA, 1961. [Google Scholar]
- Clyne, J.; Mininni, P.; Norton, A.; Rast, M. Interactive desktop analysis of high resolution simulations: Application to turbulent plume dynamics and current sheet formation. New J. Phys. 2007, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Clyne, J.; Rast, M. Visualization and Data Analysis 2005. In A Prototype Discovery Environment for Analyzing and Visualizing Terascale Turbulent Fluid Flow Simulations; Erbacher, R.F., Roberts, J.C., Gröhn, M.T., Börner, K., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5669, pp. 284–294. [Google Scholar] [CrossRef]
- Li, S.; Jaroszynski, S.; Pearse, S.; Orf, L.; Clyne, J. VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science. Atmosphere 2019, 10, 488. [Google Scholar] [CrossRef] [Green Version]
- Spiga, A.; Barth, E.; Gu, Z.; Hoffmann, F.; Ito, J.; Jemmett-Smith, B.; Klose, M.; Nishizawa, S.; Raasch, S.; Rafkin, S.; et al. Large-Eddy Simulations of Dust Devils and Convective Vortices. Space Sci. Rev. 2016, 203, 245–275. [Google Scholar] [CrossRef] [Green Version]
- Izvekova, Y.N.; Popel’, S.I.; Izvekov, O.Y. On the Question of Calculating the Parameters of Vortices in the Near-Surface Atmosphere of Mars. Sol. Syst. Res. 2020, 53, 423–430. [Google Scholar] [CrossRef]
- Smith, R.K.; Montgomery, M.T.; Persing, J. On steady-state tropical cyclones. Q. J. R. Meteorol. Soc. 2014, 140, 2638–2649. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onishchenko, O.; Fedun, V.; Horton, W.; Pokhotelov, O.; Astafieva, N.; Skirvin, S.J.; Verth, G. The Stationary Concentrated Vortex Model. Climate 2021, 9, 39. https://doi.org/10.3390/cli9030039
Onishchenko O, Fedun V, Horton W, Pokhotelov O, Astafieva N, Skirvin SJ, Verth G. The Stationary Concentrated Vortex Model. Climate. 2021; 9(3):39. https://doi.org/10.3390/cli9030039
Chicago/Turabian StyleOnishchenko, Oleg, Viktor Fedun, Wendell Horton, Oleg Pokhotelov, Natalia Astafieva, Samuel J. Skirvin, and Gary Verth. 2021. "The Stationary Concentrated Vortex Model" Climate 9, no. 3: 39. https://doi.org/10.3390/cli9030039
APA StyleOnishchenko, O., Fedun, V., Horton, W., Pokhotelov, O., Astafieva, N., Skirvin, S. J., & Verth, G. (2021). The Stationary Concentrated Vortex Model. Climate, 9(3), 39. https://doi.org/10.3390/cli9030039