Large Eddy Simulation and Dynamic Mode Decomposition of Supersonic Combustion Instability in a Strut-Based Scramjet Combustor
Abstract
:1. Introduction
2. Numerical Method
2.1. LES Equations and Chemical Kinetics
2.2. Dynamic Mode Decomposition
2.3. Computational Configuration and Flow Conditions
2.3.1. Geometry Details and Computational Domain
2.3.2. Computational Mesh
2.3.3. Boundary Conditions
2.3.4. Numerical Methods
2.4. Numerical Validation
3. Results and Discussion
3.1. Pressure Oscillation and Flow Characteristics in Supersonic Combustion Instability
3.2. Effect of Air and Fuel Conditions on Supersonic Combustion Instability
4. Conclusions
- (1)
- The pressure in the strut-based scramjet combustor shows significant oscillation characteristics when the air parameters at the combustor inlet and the fuel parameters at the injector outlet are under certain conditions, and these pressure oscillation situations correspond to supersonic combustion instability.
- (2)
- The pressure oscillations of the sampling points analyzed using FFT have broadband and two dominant frequency ranges. One dominant frequency range is below 20,000 Hz while the other is around 50,000 Hz.
- (3)
- The pressure oscillations of the whole combustor analyzed using DMD have multiple dominant frequencies, including relatively low frequency of 2984 Hz, high frequency of 62,180 Hz, and very high frequency of 110,562 Hz.
- (4)
- Large pressure oscillations in the strut-based scramjet combustor supersonic combustion instability are closely related to wake instability, shear layer instability, shear layer and wave interactions, and combustion.
- (5)
- Reducing the air total temperature at the combustor inlet can attenuate the pressure oscillations in supersonic combustion instability, and reducing the fuel flow rate at the injector outlet can also attenuate the pressure oscillations in supersonic combustion instability.
Author Contributions
Funding
Conflicts of Interest
References
- Urzay, J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 2018, 50, 593–627. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, B.; Xiang, G.; Zhao, D.; Zheng, L. Supersonic spray combustion subject to scramjets: Progress and challenges. Prog. Aerosp. Sci. 2019, 105, 40–59. [Google Scholar] [CrossRef]
- Do, H.; Cappelli, M.A.; Mungal, M.G. Plasma assisted cavity flame ignition in supersonic flows. Combust. Flame 2010, 157, 1783–1794. [Google Scholar] [CrossRef]
- Wang, H.B.; Wang, Z.G.; Sun, M.B.; Wu, H. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor. Int. J. Hydrogen Energy 2013, 38, 12078–12089. [Google Scholar] [CrossRef]
- Cai, Z.; Zhu, J.J.; Sun, M.B.; Wang, Z.G.; Bai, X.S. Laser-induced plasma ignition in a cavity-based scramjet combustor. AIAA J. 2018, 56, 4884–4892. [Google Scholar] [CrossRef]
- Dou, S.Y.; Yang, Q.C.; Jin, Y.S.; Xu, X. Study on fuel equivalence ratio range for supersonic premixed combustion mode to establish in a scramjet. Acta Astronaut. 2022, 199, 37–48. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, E.S.; Han, H.S.; Kim, M.S.; Choi, J.Y. A study on a vitiated air heater for a direct-connect scram-jet combustor and preliminary test on the scramjet combustor ignition. Aerospace 2023, 10, 415. [Google Scholar] [CrossRef]
- Guo, S.Z.; Zhang, X.; Liu, Q.L.; Yue, L.J. Numerical study of periodic flame flashback in a cavity-based scramjet combustor. Phys. Fluids 2023, 35, 045108. [Google Scholar] [CrossRef]
- Shi, L.; Tian, Z.Y.; Dai, C.W.; Zhang, W.; Wei, Z.; Zhao, G.J.; Ran, R. Rocket-augmented flame stabilization and combustion in a cavity-based scramjet. Aerosp. Sci. Technol. 2023, 139, 108375. [Google Scholar] [CrossRef]
- Cao, D.G.; Brod, H.E.; Yokev, N.; Michaels, D. Vortex dynamics in different combustion regions of a cavity-based scramjet. Proc. Combust. Inst. 2023, 39, 3147–3156. [Google Scholar] [CrossRef]
- Hu, J.; Bao, W.; Chang, J. Flame transition in dual-mode scramjet combustor with oxygen piloted ignition. J. Propuls. Power 2014, 30, 1103–1107. [Google Scholar] [CrossRef]
- Yang, Q.C.; Bao, W.; Zong, Y.H.; Chang, J.; Hu, J.C.; Wu, M. Combustion characteristics of a dual-mode scramjet injecting liquid kerosene by multiple struts. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2015, 229, 983–992. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M. Investigation on the effects of operating variables on the performance of two-strut scramjet combustor. Int. J. Hydrogen Energy 2016, 41, 20753–20770. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M. Effect of parametric variation of strut layout and position on the performance of a typical two-strut based scramjet combustor. Int. J. Hydrogen Energy 2017, 42, 10485–10500. [Google Scholar] [CrossRef]
- Huang, Z.; He, G.; Wang, S.; Qin, F.; Wei, X.G.; Shi, L. Simulations of combustion oscillation and flame dynamics in a strut-based supersonic combustor. Int. J. Hydrogen Energy 2017, 42, 8278–8287. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M. Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor. Acta Astronaut. 2018, 145, 93–104. [Google Scholar] [CrossRef]
- Choubey, G.; Yuvarajan, D.; Huang, W.; Shafee, A.; Pandey, K.M. Recent research progress on transverse injection technique for scramjet applications-a brief review. Int. J. Hydrogen Energy 2020, 45, 27806–27827. [Google Scholar] [CrossRef]
- Choubey, G.; Gaud, P.; Fatah, A.M.; Devarajan, Y. Numerical investigation on geometric sensitivity and flame stabilisation mechanism in H2 fueled two-strut based scramjet combustor. Fuel 2022, 312, 122847. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, B. The spatial growth of supersonic reacting mixing layers: Effects of combustion mode. Aerosp. Sci. Technol. 2021, 116, 106888. [Google Scholar] [CrossRef]
- Zhang, D.D.; Tan, J.G.; Yao, X. Vortex evolution and flame propagation driven by oblique shock wave in supersonic reactive mixing layer. Aerosp. Sci. Technol. 2021, 118, 106993. [Google Scholar] [CrossRef]
- Sun, M.B.; Cai, Z.; Wang, Y.N.; Zhao, G.Y.; Sun, Y.C.; Li, P.B.; Wan, M.G.; Li, L. Overview on the research progress of unsteady supersonic combustion. Acta Aerodyn. Sin. 2020, 38, 532–551. [Google Scholar]
- Chen, Q.; Zhang, H.Q.; Zhou, H.J.; Bai, P.; Yang, Y.J. Progress of research on supersonic combustion instability. J. Astronaut. 2018, 29, 1–8. [Google Scholar]
- Ben-Yakar, A.; Hanson, R.K. Cavity flame-holders for ignition and flame stabilization in scramjets: An overview. J. Propuls. Power 2001, 17, 869–877. [Google Scholar] [CrossRef]
- Abdulrahman, G.A.Q.; Qasem, N.A.A.; Imteyaz, B.; Abdallah, A.M.; Habib, M.A. A review of aircraft subsonic and supersonic combustors. Aerosp. Sci. Technology. 2022, 132, 108067. [Google Scholar] [CrossRef]
- Stamp, G.; Ghosh, A.; Zang, A.; Yu, K. Experimental characterization of acoustic wave propagation in a supersonic duct. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tuscon, AZ, USA, 11–13 July 2005; p. 4144. [Google Scholar]
- Choi, J.Y.; Ma, F.; Yang, V. Combustion oscillations in a scramjet engine combustor with transverse fuel injection. Proc. Combust. Inst. 2005, 30, 2851–2858. [Google Scholar] [CrossRef]
- Choi, J.Y.; Ma, F.; Yang, V. Dynamic combustion characteristics in scramjet combustors with transverse fuel injection. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tuscon, AZ, USA, 11–13 July 2005; p. 4428. [Google Scholar]
- Choi, J.Y.; Ma, F.; Yang, V.; Won, S.H.; Jeung, I.S. Detached eddy simulation of combustion dynamics in scramjet combustors. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007; p. 5027. [Google Scholar]
- Tian, X.; Chen, L.; Gu, H.; Liu, C.; Cheng, L.; Chang, X. Experimental study of combustion oscillations in a dual-mode scramjet. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 6–9 July 2015; p. 3587. [Google Scholar]
- Gao, T.; Liang, J.; Sun, M.; Zhong, Z. Dynamic combustion characteristics in a rectangular supersonic combustor with single-side expansion. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 1862–1872. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Sun, M.; Wang, H. Combustion stabilization modes in a hydrogen-fueled scramjet combustor at high stagnation temperature. Acta Astronaut. 2018, 152, 112–122. [Google Scholar] [CrossRef]
- Peng, J.; Cao, Z.; Yu, X.; Yang, S.; Yu, Y.; Ren, H.; Ma, Y.; Zhang, S.; Chen, S.; Zhao, Y. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition. Int. J. Hydrogen Energy 2020, 45, 13108–13118. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, W.; Sun, M. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor. Acta Astronaut. 2017, 137, 52–59. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Sun, M.B.; Song, X.L.; Li, X.P.; Wang, H.B. Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow. Acta Astronaut. 2019, 155, 255–263. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Yang, V.; Lin, K.C.; Jackson, T. Thermoacoustic flow instability in a scramjet combustor. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tuscon, AZ, USA, 11–13 July 2005; p. 3824. [Google Scholar]
- Lin, K.C.; Jackson, K.; Behdadnia, R.; Jackson, T.A.; Ma, F.; Yang, V. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder. J. Propuls. Power 2010, 26, 1161–1170. [Google Scholar] [CrossRef]
- Allison, P.M.; Frederickson, K.; Kirik, J.W.; Rockwell, R.D.; Lempert, W.R.; Sutton, J.A. Investigation of supersonic combustion dynamics via 50 kHz CH* chemiluminescence imaging. Proc. Combust. Inst. 2017, 36, 2849–2856. [Google Scholar] [CrossRef]
- Nakaya, S.; Yamana, H.; Tsue, M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods. Proc. Combust. Inst. 2021, 38, 3869–3880. [Google Scholar] [CrossRef]
- Qin, F.; Huang, Z.; He, G.; Wang, S.; Wei, X.G.; Liu, B. Flame stabilization mechanism study in a hydrogen-fueled model supersonic combustor under different air inflow conditions. Int. J. Hydrogen Energy 2017, 42, 21360–21370. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z. Dynamic mode decomposition of turbulent combustion process in DLR scramjet combustor. J. Aerosp. Eng. 2017, 30, 04017034. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, P.; Zhang, Y.; Ferrante, A. Large eddy simulation of flame and thermal-acoustic characteristics in a strut-based scramjet with dynamic thickened flame model. Case Stud. Therm. Eng. 2023, 41, 102560. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, J.; Kong, C.; Qiu, H.; Bao, W. Flame oscillation characteristics in a kerosene fueled dual mode combustor equipped with thin strut flameholder. Acta Astronaut. 2019, 161, 222–233. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Sun, M.; Qin, N. Large-Eddy/Reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor. Int. J. Hydrogen Energy 2013, 38, 5918–5927. [Google Scholar] [CrossRef]
- Saghafian, A.; Shunn, L.; Philips, D.A.; Ham, F. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst. 2015, 35, 2163–2172. [Google Scholar] [CrossRef]
- Patton, C.H.; Wignall, T.J.; Edwards, J.R.; Echekki, T. LES model assessment for high speed combustion. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 1937. [Google Scholar]
- Liu, C.; Wang, Z.; Wang, H.; Sun, M.; Li, P. Large eddy simulation of cavity-stabilized hydrogen combustion in a diverging supersonic combustor. Int. J. Hydrogen Energy 2017, 42, 28918–28931. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Horiuti, K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 1985, 54, 2834–2839. [Google Scholar] [CrossRef]
- Menon, S.; Yeung, P.K.; Kim, W.W. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput. Fluids 1996, 25, 165–180. [Google Scholar] [CrossRef]
- Nakayama, A.; Vengadesan, S.N. On the influence of numerical schemes and subgrid–stress models on large eddy simulation of turbulent flow past a square cylinder. Int. J. Numer. Methods Fluids 2002, 38, 227–253. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Schmid, P.J.; Li, L.; Juniper, M.P.; Pust, O. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 2011, 25, 249–259. [Google Scholar] [CrossRef]
- Waidmann, W.; Alff, F.; Böhm, M.; Clauss, W.; Oschwald, M. Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET). Dglr Jahrb. 1994, 4, 629–638. [Google Scholar]
- Waidmann, W.; Alff, F.; Böhm, M.; Clauss, W.; Oschwald, M. Supersonic combustion of hydrogen/air in a scramjet combustion combustor. Space Technol. 1996, 15, 421–429. [Google Scholar] [CrossRef]
- Waidmann, W.; Brummund, U.; Nuding, R. Experimental investigation of supersonic ramjet combustion (SCRAMJET). In Proceedings of the 8th International Symposium on Transport Phenomena (ISTP) in Combustion, San Franciso, CA, USA, 16–20 July 1995; pp. 16–20. [Google Scholar]
- Génin, F.; Menon, S. Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J. 2010, 48, 526–539. [Google Scholar] [CrossRef]
- Oevermann, M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol. 2000, 4, 463–480. [Google Scholar] [CrossRef]
Inlet | Ma | Total Temperature K | Velocity m/s | Static Pressure Pa | Mass Flux kg/(m2/s) | |
---|---|---|---|---|---|---|
1 (baseline case) | air | 2.0 | 568 | 730 | 100,000 | - |
H2 | 1.0 | 300 | 1200 | - | 116 | |
2 | air | 2.0 | 460 | 657 | 90,000 | - |
H2 | 1.0 | 300 | 1200 | - | 116 | |
3 | air | 2.0 | 960 | 949 | 130,000 | - |
H2 | 1.0 | 300 | 1200 | - | 116 | |
4 | air | 2.0 | 568 | 730 | 100,000 | - |
H2 | 1.0 | 300 | 1200 | - | 232 | |
5 | air | 2.0 | 568 | 730 | 100,000 | - |
H2 | 1.0 | 300 | 1200 | - | 58 | |
6 | air | 2.0 | 960 | 949 | 130,000 | - |
H2 | 1.0 | 300 | 1200 | - | 232 | |
7 | air | 2.0 | 960 | 949 | 130,000 | - |
H2 | 1.0 | 300 | 1200 | - | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Chen, Q.; Niu, X.; Cai, S. Large Eddy Simulation and Dynamic Mode Decomposition of Supersonic Combustion Instability in a Strut-Based Scramjet Combustor. Aerospace 2023, 10, 857. https://doi.org/10.3390/aerospace10100857
Cheng Y, Chen Q, Niu X, Cai S. Large Eddy Simulation and Dynamic Mode Decomposition of Supersonic Combustion Instability in a Strut-Based Scramjet Combustor. Aerospace. 2023; 10(10):857. https://doi.org/10.3390/aerospace10100857
Chicago/Turabian StyleCheng, Yuwei, Qian Chen, Xiaofei Niu, and Shufeng Cai. 2023. "Large Eddy Simulation and Dynamic Mode Decomposition of Supersonic Combustion Instability in a Strut-Based Scramjet Combustor" Aerospace 10, no. 10: 857. https://doi.org/10.3390/aerospace10100857
APA StyleCheng, Y., Chen, Q., Niu, X., & Cai, S. (2023). Large Eddy Simulation and Dynamic Mode Decomposition of Supersonic Combustion Instability in a Strut-Based Scramjet Combustor. Aerospace, 10(10), 857. https://doi.org/10.3390/aerospace10100857