Using Energy Particle Detection Technology on the Tiangong’s Space Station’s Wentian Laboratory Cabin Module
Abstract
:1. Introduction
2. Scientific Objectives
2.1. Radiation Environment of Orbital Particles
2.1.1. Radiation Belts
2.1.2. Galactic Cosmic Rays
2.1.3. Solar Energetic Particle Events
2.2. Particle Radiation Effect
2.3. Main Scientific Objectives
- Firstly, to achieve real-time monitoring and data accumulation of the orbital particle radiation energy spectrum, high-precision particle composition, fine LET spectrum, and high-sensitivity dose rate of the manned space station.
- Secondly, to provide the measured data of the orbital particle radiation environment of the space station during disaster events such as solar proton events and high-energy electron storms, and to provide support for the analysis and evaluation of the particle radiation hazards encountered by the space station and astronauts.
- Thirdly, to provide monitoring data of space environment elements for space station operation, as well as application and test (experimental) tasks, which can be used for basic research on the space environment.
- Finally, to provide measured data to further improve the special radiation environment model of the orbit of the space station, enhance radiation risk assessment capabilities, and support radiation risk management abilities during the long-term operation of the space station.
3. Main Technical Indicators
4. System Design
4.1. Comprehensive Measurement Unit
4.2. Neutron Detection Unit
4.3. Medium-Energy Proton Detection Unit
4.4. Medium-Energy Electron Detection Unit
4.5. Shared Data Management Unit
5. Ground Calibration Verification
5.1. Calibration Contents
- Calibration of energy resolution and measurement precision
- Energy range calibration
- Flux precision calibration
- Calibration of charged particle identification ability
- Calibration of dose rate and LET spectrum range
- Calibration of neutron identification ability
5.2. Calibration Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Zhang, Q.; Wang, W. System characteristics and prospect of china space station. Spacecr. Eng. 2022, 31, 26–39. [Google Scholar]
- Cheng, P.C.; Min, R. An overview of near-earth space radiation and its protection. Radiat. Prot. Bull. 2017, 37, 14–21. [Google Scholar]
- Zhou, D.Z.; Wang, S.J.; Zhang, B.Q.; Zhou, P. Space radiation in near earth orbit and radiation risk for astronauts. Manned Spacefl. 2013, 19, 81–89. [Google Scholar]
- Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space. Ann. ICRP 2013, 42, 1–339. [Google Scholar] [CrossRef]
- Wu, D.W.; Liu, C.X.; Dong, W.J.; Guan, C.L. Design and Management of Space Experimental Research in Aerospace Medicine; Aerospace China: Beijing, China, 2023; pp. 17–20. [Google Scholar]
- Sihver, L.; Ploc, O.; Puchalska, M.; Ambrožová, I.; Kubančák, J.; Kyselová, D.; Shurshakov, V. Radiation environment at aviation altitudes and in space. Radiat. Prot. Dosim. 2015, 164, 477–483. [Google Scholar] [CrossRef]
- Ukhorskiy, A.Y.; Sitnov, M.I.; Mitchell, D.G.; Takahashi, K.; Lanzerotti, L.J.; Mauk, B.H. Rotationally driven ‘zebra stripes’ in Earth’s inner radiation belt. Nature 2014, 507, 338–340. [Google Scholar] [CrossRef]
- Berger, T. Radiation dosimetry onboard the International Space Station ISS. Z. Med. Phys. 2008, 18, 265–275. [Google Scholar] [CrossRef]
- Van Allen, J.A. Radiation Belts Around the Earth. Sci. Am. 1959, 200, 39–47. [Google Scholar] [CrossRef]
- Selesnick, R.S.; Baker, D.N.; Jaynes, A.N.; Li, X.; Kanekal, S.G.; Hudson, M.K.; Kress, B.T. Inward diffusion and loss of radiation belt protons. J. Geophys. Res. Space Phys. 2016, 121, 1969–1978. [Google Scholar] [CrossRef] [Green Version]
- Lazutin, L.L.; Kuznetsov, S.N.; Podorol’skii, A.N. Dynamics of the radiation belt formed by solar protons during magnetic storms. Geomagn. Aeron. 2007, 47, 175–184. [Google Scholar] [CrossRef]
- Bühler, P.; Desorgher, L.; Zehnder, A.; Daly, E.; Adams, L. Observations of the low earth orbit radiation environment from MIR. Radiat. Meas. 1996, 26, 917–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, W.X.; Pu, Z.Y.; Fang, X.H.; Fu, S.Y. Radiation environment in the geomagnetic anomaly area of the South Atlantic and the calculation of particle radiation flux of low-orbit satellites. Chin. J. Geophys. 1999, 2, 163–168. [Google Scholar]
- Cucinotta, F.A. Space radiation risks for astronauts on multiple International Space Station missions. PLoS ONE 2017, 9, e96099. [Google Scholar] [CrossRef] [Green Version]
- Philipp, M.; Stefan, F. Solution to the cosmic ray anisotropy problem. Phys. Rev. Lett. 2015, 114, 021101. [Google Scholar]
- Simpson, J.A. Elemental and Isotopic Composition of the Galactic Cosmic Rays. Annu. Rev. Nucl. Part. Sci. 1983, 33, 323–382. [Google Scholar] [CrossRef]
- Cary, Z.; Chiara, L.T. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection. Front. Oncol. 2016, 6, 65. [Google Scholar]
- Cranmer, S.R.; Asgari-Targhi, M.; Miralles, M.P.; Raymond, J.C.; Strachan, L.; Tian, H.; Woolsey, L.N. The role of turbulence in coronal heating and solar wind expansion. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2015, 373, 20140148. [Google Scholar] [CrossRef]
- Luhmann, J.G.; Petrie, G.; Riley, P. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24. J. Adv. Res. 2013, 4, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Poletto, G. Sources of solar wind over the solar activity cycle. J. Adv. Res. 2013, 4, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.X.; Yang, S.S.; Ba, D.S.; An, H.; Liu, Q.; Shi, H.; Cao, Z. Analyze of spacecraft system failures and anomalies attributed to the natural space radiation environment. Vac. Cryog. 2012, 18, 63–70. [Google Scholar]
- Wang, T.Q.; Shen, Y.P.; Wang, S.W.; Zhang, S.F. Radiation effects in space radiation environment. J. Natl. Univ. Def. Technol. 1999, 21, 36–39. [Google Scholar]
- Pu, J.; Ye, Z.H. Effects of space particle radiation on integrated chips in satellites. Chin. J. Space Sci. 1993, 13, 292–298. [Google Scholar]
- Gussenhoven, M.; Mullen, E.; Violet, M. Solar particle events as seen on CRRES. Adv. Space Res. 1994, 14, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.C.; Wang, S.J.; Wang, Y.; Zhang, W. Detection and research of radiation dose of space particles in solar synchronous orbit. J. Astronaut. 2008, 29, 357–361. [Google Scholar]
- Feng, Y.J.; Hua, G.X.; Liu, S.F. Review of research on radiation resistance of aerospace electronics. J. Astronaut. 2007, 5, 1071–1080. [Google Scholar]
- Townsend, L.; Fry, R. Radiation protection guidance for activities in low-earth orbit. Adv. Space Res. 2002, 30, 957–963. [Google Scholar] [CrossRef]
- Chen, S.G.; Chen, J.D.; Jiang, G.H.; Liu, W.B.; Li, Y.H. Achievements of manned space program and construction of space station in China. Space Med. Med. Eng. 2012, 25, 391–396. [Google Scholar]
- Gao, M.; Zhao, G.H.; Gu, Y.D. Space science and application mission in China’s space station. Bull. Chin. Acad. Sci. 2015, 30, 721–732. [Google Scholar]
- Liu, J.; Shi, Y.; Cui, Y.T.; Hou, J.; Zhang, K.; Huang, A.J. Research progress and prospect of on-orbit additive manufacturing technology. Chin. Space Sci. Technol. 2022, 42, 23–34. [Google Scholar]
- Heynderickx, D. Review on modeling of the radiation belts. Int. J. Mod. Phys. A 2002, 17, 1675–1684. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, Y.M.; Tian, T.; Zhang, X.G. Modeling technology of radiation belt in LEO based on data gridding methods. J. Beijing Univ. Aeronaut. Astronaut. 2015, 41, 2288–2295. [Google Scholar]
- Wang, G.S.; Zhu, Y.T.; Wang, X.M.; Li, S.L.; Wang, Q. CsI (TI) scintillation detector for particle identification. Chin. Phys. C 1989, 5, 440–444. [Google Scholar]
- Jiao, L.; Jin, S.L.; Li, J.X.; Yang, Y.Y.; Ma, P.; Ma, J.B.; Bai, Z.; Liu, X.Q.; Zhou, J.R.; Duan, F.F.; et al. Performance test of CsI (TI) scintillation detector for particle identification CsI (Tl)+Si-APD detector. Nucl. Phys. Rev. 2017, 34, 190–194. [Google Scholar]
- Ye, Z.H. Space Particle Radiation Detection Technology; Beijing Science Press: Beijing, China, 1986; pp. 77–78. [Google Scholar]
- An, H.; Wen, X.; Li, D.T.; Wang, Y.; Li, C.H.; Yang, S.S.; Qin, X.G.; Wang, J.; Zhang, C.G.; Cao, Z. Detection technology and design analysis of LET spectrum of space radiation particles. Nucl. Tech. 2020, 43, 43–51. [Google Scholar]
- Hou, Y.Y.; Gui, Q.; Zhang, C.S.; Yang, L.; Yuan, H.P.; Liu, S.; Ren, G.H.; Zhang, M.R. Scintillation Properties of Cs2LiYCl6:Ce Crystal for Neutron and Gamma Dual Detection. J. Synth. Cryst. 2021, 50, 1933–1939. [Google Scholar]
- Huang, G.W.; Zhou, C.Z.; Xiao, W.Y.; Zhang, Y.Z.; Fan, H.J.; Chen, Y. CLYC detector n/γ Comparison of screening methods. Nucl. Electron. Detect. Technol. 2018, 38, 335–340. [Google Scholar]
- Hou, D.H.; Zhang, S.Y.; Yang, Y.G.; Wang, Q.B.; Zhang, B.Q.; Yu, Q.L. Neutron spectrum measurement and inversion method based on CLYC scintillator. J. Beijing Univ. Aeronaut. Astronaut. 2021, 47, 106–114. [Google Scholar]
- Wilken, B.; Axford, W.I.; Daglis, I.; Daly, P.; Güttler, W.; Ip, W.H.; Korth, A.; Kremser, G.; Livi, S.; Vasyliunas, V.M.; et al. RAPID: The imaging energetic particle spectrometer on cluster. Space Sci. Rev. 1997, 79, 399–473. [Google Scholar] [CrossRef]
- Evans, D.S.; Greer, M.S. Polar Orbiting Environmental Satellite Space Experiment Monitor-2: Instrument Descriptions and Archive Data Documentation; Tech Memo Version 1.3.; Natl Oceanic and Atmos Admin Space Environ Cent: Boulder, CL, USA, 2004. [Google Scholar]
- Hou, D.H.; Zhang, S.Y.; Zhang, X.X.; Zong, W.G. Design and research of collimator for space high-energy electron detector. J. Vac. Sci. Technol. 2020, 40, 965–970. [Google Scholar]
- Zhang, S.Y.; Wang, S.J. Design and research of deflection magnet in spaceborne particle detector. Chin. J. Geophys. 2007, 50, 684–690. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, X.G.; Wang, C.Q.; Shen, G.H.; Jing, T.; Zhang, B.Q.; Sun, Y.Q.; Zhu, G.W.; Liang, J.B.; Zhang, X.X. Calculation of geometric factors of space high-energy proton detector of FY-3 satellite. Sci. Sin. 2014, 44, 2479–2486. [Google Scholar]
Item | Energy Range | Detection Direction |
---|---|---|
Protons | 20 keV~300 MeV | Nine for medium energy and five for high energy |
Electrons | 20 keV~10 MeV | Nine for medium energy and five for high energy |
Heavy ions | 8 MeV/nucleon~400 MeV/nucleon | Five |
Neutrons | 0.025 eV~100 MeV | One |
LET spectrum | 0.233~17,475 keV/μm, >17,475 keV/μm | One |
Dose rate | 0.1~1000 mGy/day | One |
Detection Unit | Calibration Condition |
---|---|
MEEDU | Beijing Huairou Electron Accelerator, Chinese Academy of Sciences Beam range: 20 keV–1.6 MeV |
MEPDU | For ≤500 keV: Beijing Huairou Electron Accelerator, Chinese Academy of Sciences For >500 keV: linear extrapolation |
CDU | (1) Linearity: Electron and proton (<1.6 MeV): Beijing Huairou Electron Accelerator Proton (15 to 20 MeV): Proton and Heavy Ion Accelerator (401) of China Atomic Energy Academy For other gains: Equivalent signal calibration (2) Energy measurement range, LET spectrum, and dose rate: Electron accelerator, Equivalent signals, and Simulation analysis (3) Particle composition identification: Accelerator calibration combined with Simulation calculation |
NDU | (1) Particle type identification: 252Cf (2) Neutron energy range: China Dongguan hash source (neutron) (3) Linearity calibration: 137Cs/60Co/252Cf |
Technical Indicators | Actual Product Indicators | Test Verification |
---|---|---|
Protons: 20 keV–300 MeV; Nine directions for medium energy; Five directions for high energy | 19.58 keV–300.3 MeV; Nine directions for medium energy; Five directions for high energy | Combination of Beijing Huairou accelerator, proton and heavy ion (401) accelerator, and equivalent signal calibration |
Heavy ions: 8 MeV/n–400 MeV/n; Five directions | 7.5 MeV/n–401.7 MeV/n; Five directions | Combination of Beijing Huairou accelerator, 401 accelerator, and equivalent signal calibration |
Electrons: 20 keV–10 MeV; Five directions for medium energy; Five directions for high energy | 19.47 keV–15 MeV; Nine directions of medium energy; Five directions of high energy | Combination of Beijing Huairou accelerator, 401 accelerator, and equivalent signal calibration |
Neutrons: 0.025 eV–100 MeV | 0.025 eV–110 MeV | China Dongguan hash source (<110 MeV) |
LET spectral range: 0.233~17,475 keV/μm; >17,475 keV/μm | 0.233~17,575 keV/μm; >17,575 keV/μm | Beijing Huairou accelerator test, 401 accelerator combined with equivalent signal test |
Dose rate: 0.1~1000 mGy/day | 0.09~1000.98 mGy/day | Beijing Huairou accelerator test, 401 accelerator combined with equivalent signal test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.; Zhang, S.; Zhang, X.; Zhang, H.; Yuan, B.; Hou, D.; Wang, C.; Quan, Z.; Yang, Z.; Sun, Y. Using Energy Particle Detection Technology on the Tiangong’s Space Station’s Wentian Laboratory Cabin Module. Aerospace 2023, 10, 373. https://doi.org/10.3390/aerospace10040373
Shen G, Zhang S, Zhang X, Zhang H, Yuan B, Hou D, Wang C, Quan Z, Yang Z, Sun Y. Using Energy Particle Detection Technology on the Tiangong’s Space Station’s Wentian Laboratory Cabin Module. Aerospace. 2023; 10(4):373. https://doi.org/10.3390/aerospace10040373
Chicago/Turabian StyleShen, Guohong, Shenyi Zhang, Xianguo Zhang, Huanxin Zhang, Bin Yuan, Donghui Hou, Chunqin Wang, Zida Quan, Zhe Yang, and Yueqiang Sun. 2023. "Using Energy Particle Detection Technology on the Tiangong’s Space Station’s Wentian Laboratory Cabin Module" Aerospace 10, no. 4: 373. https://doi.org/10.3390/aerospace10040373
APA StyleShen, G., Zhang, S., Zhang, X., Zhang, H., Yuan, B., Hou, D., Wang, C., Quan, Z., Yang, Z., & Sun, Y. (2023). Using Energy Particle Detection Technology on the Tiangong’s Space Station’s Wentian Laboratory Cabin Module. Aerospace, 10(4), 373. https://doi.org/10.3390/aerospace10040373