Experimental Firing Test Campaign and Nozzle Heat Transfer Reconstruction in a 200 N Hybrid Rocket Engine with Different Paraffin-Based Fuel Grain Lengths
Abstract
:1. Introduction
2. Experimental Setup
2.1. Description of 200 N Rocket Engine
2.2. Test Facility Description
2.3. Test Campaign Conception and Test Matrix
3. Experimental Results
3.1. Experimental Acquisitions and Measurements
- Chamber pressure (±7∙103 Pa);
- Engine thrust (;
- Oxidizer mass flow rate ( g;
- Nozzle temperature (.
3.2. Preliminary Engine Performance Assessment
4. Nozzle Wall Heat Transfer Reconstruction
4.1. Numerical Setup and Procedure
4.1.1. Procedure for Nozzle Wall Heat Transfer Reconstruction
4.1.2. Numerical Setup
4.2. Results of the Reconstruction
4.3. Empirical Correlations and Comparison
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | regression rate pre-exponential factor, m3/kg |
Ae | nozzle exit area, m2 |
At | nozzle throat area, m2 |
cp | specific heat, J/kg·K |
characteristic velocity, m/s | |
thrust coefficient | |
D | fuel grain port diameter, m |
D1 | initial fuel grain port diameter, m |
final space-averaged fuel grain port diameter, m | |
hydraulic diameter, m | |
critical diameter, m | |
F | thrust, N |
G | mass flux, kg/m2·s |
gravitational acceleration, m/s2 | |
specific impulse, s | |
L | fuel grain length, m |
mass flow rate, kg/s | |
ΔMf | measured solid mass fuel loss, g |
n | regression rate law exponent |
OF | mixture ratio |
p | pressure, Pa |
Prandtl number | |
curvature radius, m | |
fuel regression rate, mm/s | |
R | ideal gas constant, J/mol·K |
Reynolds number | |
T | temperature, K |
tb | burning time, s |
tr | residence time, s |
PT | pressure transducer |
TC | thermocouple |
Greek Symbols | |
numerical error | |
thermal conductivity, W/m2·K | |
μ | dynamic viscosity, kg/m·s |
ρ | density, kg/m3 |
η | characteristic velocity efficiency |
Superscripts | |
time average | |
density-weighted average | |
Subscripts | |
c | combustion chamber |
e | nozzle exit |
f | fuel |
g | grain, gas |
inj | injection |
ox | oxidizer |
References
- Davydenko, N.; Gollender, R.; Gubertov, A.; Mironov, V.; Volkov, N. Hybrid rocket engines: The benefits and prospects. Aerosp. Sci. Technol. 2007, 11, 55–60. [Google Scholar] [CrossRef]
- Schmierer, C.; Kobald, M.; Fischer, U.; Tomilin, K.; Petrarolo, A.; Hertel, F. Advancing Europe’s Hybrid Rocket Engine Technology with Paraffin and LOX. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Bianchi, D.; Nasuti, F. Numerical Analysis of Nozzle Material Thermochemical Erosion in Hybrid Rocket Engines. In Proceedings of the 48th AIAA/ASME/SAE/ASEE JPC, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar] [CrossRef]
- Bianchi, D.; Turchi, A.; Nasuti, F. Numerical Analysis of Nozzle Flows with Finite-Rate Surface Ablation and Pyrolysis-Gas Injection. In Proceedings of the 47th AIAA/ASME/SAE/ASEE JPC, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar] [CrossRef]
- Kamps, L.; Saito, Y.; Kawabata, R.; Takahashi, Y.; Nagata, H. Method for Determining Nozzle Throat Erosion History in Hybrid Rockets. In Proceedings of the Propulsion and Energy Forum, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Tian, H.; He, L.; Yu, R.; Zhao, S.; Wang, P.; Cai, G.; Zhang, Y. Transient investigation of nozzle erosion in a long-time working hybrid rocket motor. Aerosp. Sci. Technol. 2021, 118, 106978. [Google Scholar] [CrossRef]
- Battista, F.; Cardillo, D.; Fragiacomo, M.; Di Martino, G.D.; Mungiguerra, S.; Savino, R. Design and Testing of a Paraffin-Based 1000 N HRE Breadboard. Aerospace 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Battista, F.; Cardillo, D.; Ricci, D.; Natale, P.; Fragiacomo, M.; Ferraiuolo, M.; Salvatore, V. Technological advancements in the HYPROB Project—Demonstrators development line. In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Di Martino, G.D.; Mungiguerra, S.; Carmicino, C.; Savino, R.; Cardillo, D.; Battista, F.; Invigorito, M.; Elia, G. Two-Hundred-Newton Laboratory-Scale Hybrid Rocket Testing for Paraffin Fuel-Performance Characterization. J. Propuls. Power 2019, 35, 224–235. [Google Scholar] [CrossRef]
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA Reference Publication 1311: Cleveland, OH, USA, 1996. [Google Scholar]
- Ponomarenko, A. RPA Tool for Rocket Propulsion Analysis. In Proceedings of the Space Propulsion Conference, Cologne, Germany, 19–22 May 2014. [Google Scholar]
- McEligot, D.M.; Swank, W.D.; Cottle, D.L.; Valentin, F.I. Thermal Properties of G-348 Graphite; INL/EXT-16-38241; Idaho National Lab.(INL): Idaho Falls, ID, USA, 2016. [Google Scholar]
- Iqbal, M.J.; Sheikh, N.A.; Ali, H.; Khushnood, S.; Arif, M. Comparison of empirical correlations for the estimation of conjugate heat transfer in a thrust chamber. Life Sci. J. 2012, 9, 708–716. [Google Scholar]
- Bartz, D.R. A simple equation for rapid estimation of rocket nozzle convective heat transfer coefficients. Jet Propul. 1957, 27, 49–51. [Google Scholar]
- Ciniaref, G.D.; Dobrovoliski, M.B. Theory of Liquid-Propellant Rockets; Oborongiz: Moscow, Russia, 1957. [Google Scholar]
- Pavli, A.J.; Curley, J.K.; Masters, P.A.; Schwartz, R.M. Design and Cooling Performance of a Dump Cooled Rocket Engine; Technical Note TN D-3532; NASA: Washington, DC, USA, 1966.
Test | 1S | 2S | 3S | 4S | 5S | 6S | 1MU | 2MU | 3MU | 4M | 5M | 6M | 7M | 8MU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxygen mfr, g/s | 30 | 40 | 50 | 60 | 60 | 25 | 30 | 40 | 50 | 30 | 40 | 15 | 60 | 60 |
Burning time, s | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Test | Effective Oxygen Mass Flow Rate, g/s | Burning Time, s | Initial Nozzle Throat Diameter, mm | Final Nozzle Throat Diameter, mm | Average Oxidizer Mass Flux, kg/m2s | Average Regression Rate, mm/s | Average Overall Mixture Ratio | Average Chamber Pressure, Bar | Average Thrust, N |
---|---|---|---|---|---|---|---|---|---|
1S | 31.2 ± 0.29 | 4.2 | 9.8 | 9.8 | 72.37 ± 2.69 | 2.02 ± 0.05 | 3.36 ± 0.09 | 6.60 | 53.48 |
2S | 42.5 ± 0.37 | 4.2 | 9.8 | 9.8 | 86.70 ± 2.85 | 2.38 ± 0.05 | 3.51 ± 0.08 | 9.12 | 83.67 |
3S | 50.6 ± 0.44 | 4.2 | 9.8 | 9.8 | 98.86 ± 3.12 | 2.51 ± 0.05 | 3.94 ± 0.08 | 10.86 | 99.83 |
4S | 60.4 ± 0.52 | 4.2 | 9.8 | 10.2 | 119.01 ± 3.78 | 2.48 ± 0.05 | 4.79 ± 0.10 | 12.10 | 119.53 |
5S | 60.0 ± 0.51 | 4.2 | 10.2 | 10.45 | 120.52 ± 3.90 | 2.49 ± 0.05 | 4.94 ± 0.10 | 11.39 | 113.65 |
6S | 25.9 ± 0.25 | 4.2 | 10.45 | 10.45 | 64.41 ± 2.56 | 1.80 ± 0.05 | 3.11 ± 0.09 | - | 42.06 |
1MU | 30.8 ± 0.28 | 4.2 | 10.9 | 10.9 | 64.96 ± 2.11 | 2.28 ± 0.05 | 1.02± 0.05 | 8.55 | 84.2 |
2MU | 41.2 ± 0.36 | 4.2 | 10.9 | 10.9 | 76.49 ± 2.49 | 2.67 ± 0.05 | 1.07± 0.05 | 10.91 | 120.81 |
3MU | 46.0 ± 0.40 | 4.2 | 10.9 | 10.9 | 81.51 ± 2.65 | 2.82 ± 0.05 | 1.23± 0.05 | 11.88 | 139.23 |
4M | 30.4 ± 0.28 | 4.2 | 10.9 | 10.9 | 67.06 ± 2.18 | 2.15 ± 0.05 | 1.15± 0.05 | 8.01 | 83.53 |
5M | 41.0 ± 0.36 | 4.2 | 10.9 | 10.9 | 85.10 ± 2.76 | 2.35 ± 0.05 | 1.76± 0.05 | 10.73 | 117.98 |
6M | 14.6 ± 0.17 | 4.2 | 10.9 | 10.9 | 39.89 ± 1.55 | 1.59 ± 0.05 | 1.61± 0.05 | 3.58 | 28.34 |
7M | 62.7 ± 0.54 | 4.2 | 10.9 | 10.9 | 111.32 ± 3.62 | 2.78 ± 0.05 | 1.67± 0.05 | 16.48 | 161.79 |
8MU | 61.8 ± 0.53 | 4 | 10.9 | 10.9 | 110.13 ± 2.58 | 2.93 ± 0.05 | 1.50± 0.05 | 15.16 | 145.54 |
Test | Effective Oxygen Mass Flow Rate, g/s | Burning Time, s | Average Chamber Pressure, Bar | Average Thrust, N | Characteristic Velocity, m/s | Specific Impulse (s) | Thrust Coefficient (-) |
---|---|---|---|---|---|---|---|
1S | 31.2 ± 0.29 | 4.2 | 6.60 | 53.48 | 1229.66 | 134.65 | 1.07 |
2S | 42.5 ± 0.37 | 4.2 | 9.12 | 83.67 | 1258.94 | 156.09 | 1.22 |
3S | 50.6 ± 0.44 | 4.2 | 10.86 | 99.83 | 1290.90 | 160.37 | 1.22 |
4S | 60.4 ± 0.52 | 4.2 | 12.10 | 119.53 | 1301.48 | 166.87 | 1.26 |
5S | 60.0 ± 0.51 | 4.2 | 11.39 | 113.65 | 1310.87 | 159.25 | 1.19 |
6S | 25.9 ± 0.25 | 4.2 | - | 42.06 | - | 125.27 | - |
1MU | 30.8 ± 0.28 | 4.2 | 8.55 | 84.2 | 1295.13 | 145.03 | 1.10 |
2MU | 41.2 ± 0.36 | 4.2 | 10.91 | 120.81 | 1275.56 | 154.30 | 1.19 |
3MU | 46.0 ± 0.40 | 4.2 | 11.88 | 139.23 | 1329.51 | 170.21 | 1.26 |
4M | 30.4 ± 0.28 | 4.2 | 8.01 | 83.53 | 1315.25 | 149.83 | 1.12 |
5M | 41.0 ± 0.36 | 4.2 | 10.73 | 117.98 | 1555.38 | 186.82 | 1.18 |
6M | 14.6 ± 0.17 | 4.2 | 3.58 | 28.34 | 1413.26 | 122.22 | 0.85 |
7M | 62.7 ± 0.54 | 4.2 | 16.48 | 161.79 | 1532.91 | 164.40 | 1.05 |
8MU | 61.8 ± 0.53 | 4 | 15.16 | 145.54 | 1372.76 | 143.97 | 1.03 |
Number of nodes | 492,915 |
Number of cells | 2,417,696 |
1st cell height at wall (m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardillo, D.; Battista, F.; Gallo, G.; Mungiguerra, S.; Savino, R. Experimental Firing Test Campaign and Nozzle Heat Transfer Reconstruction in a 200 N Hybrid Rocket Engine with Different Paraffin-Based Fuel Grain Lengths. Aerospace 2023, 10, 546. https://doi.org/10.3390/aerospace10060546
Cardillo D, Battista F, Gallo G, Mungiguerra S, Savino R. Experimental Firing Test Campaign and Nozzle Heat Transfer Reconstruction in a 200 N Hybrid Rocket Engine with Different Paraffin-Based Fuel Grain Lengths. Aerospace. 2023; 10(6):546. https://doi.org/10.3390/aerospace10060546
Chicago/Turabian StyleCardillo, Daniele, Francesco Battista, Giuseppe Gallo, Stefano Mungiguerra, and Raffaele Savino. 2023. "Experimental Firing Test Campaign and Nozzle Heat Transfer Reconstruction in a 200 N Hybrid Rocket Engine with Different Paraffin-Based Fuel Grain Lengths" Aerospace 10, no. 6: 546. https://doi.org/10.3390/aerospace10060546
APA StyleCardillo, D., Battista, F., Gallo, G., Mungiguerra, S., & Savino, R. (2023). Experimental Firing Test Campaign and Nozzle Heat Transfer Reconstruction in a 200 N Hybrid Rocket Engine with Different Paraffin-Based Fuel Grain Lengths. Aerospace, 10(6), 546. https://doi.org/10.3390/aerospace10060546