Measurement and Uncertainty Analysis of Lunar Soil Water Content via Heating Flux Method
Abstract
:1. Introduction
2. Principle of Water Content Analysis
2.1. Volatile Analysis Process
2.2. Water Analysis Process
2.3. Variation Process of Water Vapor and Content in Furnace
- n is the number of moles of water;
- P0 is the air pressure of the added water in the furnace and pipe;
- V is the furnace and pipe volume;
- R is a constant;
- T is the temperature of the furnace and pipe.
- α is the adsorption ratio;
- is the pressure in the adsorbed stabilized breech and line.
- The ω stands for water content;
- m is the mass of the sample being analyzed;
- M is the mass number of water.
- prime is the mass of excluded water;
- is partial pressure of water vapor after being excluded.
2.4. Relationship between Mass Spectrometer Measurement and Water Content
3. Key Points of Design
3.1. Sample Weight
3.2. Pressure Range for Mass Spectrometer Analysis
- is the specific pressure;
- n is the number of moles;
- R is the gas constant;
- T is the gas temperature;
- Vms is the volume of the mass spectrometer cavity; the current value is about 1.2 L.
3.3. Exhaust Flow
- is the flow conductance;
- α is the correlation coefficient;
- d is the pipe diameter;
- L is the pipe length.
3.4. Inlet Flow
3.5. Water Content Range
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.T. Key issues of the formation and evolution of the moon. Geochimica 2010, 39, 1–10. [Google Scholar]
- Colaprete, A.; Schultz, P.; Heldmann, J. Detection of Water in the LCROSS Ejecta Plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussey, D.B.J.; Fristad, K.E.; Schenk, P.M.; Robinson, M.S.; Spudis, P.D. Planetary science: Constant illumination at the lunar north pole. Nature 2005, 434, 842. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.A. Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science 2000, 290, 1754–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crider, D.H.; Vondrak, R.R. Hydrogen migration to the lunar poles by solar wind bombardment of the moon. Adv. Space Res. 2002, 30, 1869–1874. [Google Scholar] [CrossRef]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef] [PubMed]
- Getty, S.A.; ten Kate, I.L.; Feng, S.H.; Brinckerhoff, W.B.; Cardiff, E.H.; Holmes, V.E.; King, T.T.; Li, M.J.; Mumm, E.; Mahaffy, P.R.; et al. Development of an evolved gas-time-of-flight mass spectrometer for the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument. Int. J. Mass. Spectrom. 2010, 295, 124–132. [Google Scholar] [CrossRef]
- Morse, A.D.; Barber, S.J.; Dewar, K.R.; Pillinger, J.M.; Sheridan, S.; Wright, I.P.; Gibson, E.K.; Merrifield, J.A.; Howe, C.J.; Waugh, L.J.; et al. Lunar Volatiles and Their Characterisation by L-VRAP (the Lunar Volatile Resources Analysis Package); European Planetary Science Congress (EPSC): Madrid, Spain, 2012. [Google Scholar]
- Wright, I.P.; Sheridan, S.; Morse, A.D.; Barber, S.J.; Merrifield, J.A.; Waugh, L.J.; Howe, C.J.; Gibson, E.K.; Pillinger, C.T. L-VRAP—A lunar volatile resources analysis package for lunar exploration. Planet Space Sci. 2012, 74, 254–263. [Google Scholar] [CrossRef]
- Johnson, J.V.; Yost, R.A. Tandem mass spectrometry for trace analysis. Anal. Chem. 1985, 57, 758A–768A. [Google Scholar] [CrossRef]
- Yost, R.A. Why tandem mass spectrometry for trace analysis: Concepts of tandem analytical techniques. Rapid Commun. Mass Spectrom. 2022, 36, e9310. [Google Scholar] [CrossRef]
- Gibson, E.K.; Johnson, S.M. Thermal analysis—inorganic gas release studies of lunar samples. In Proceedings of the Second Lunar Science Conference, Houston, TX, USA, 11–14 January 1971; Volume 2, pp. 1351–1366. [Google Scholar]
- Gibson, E.K., Jr.; Moore, G.W. Volatile-rich lunar soil: Evidence of possible cometary impact. Science 1973, 179, 69–71. [Google Scholar] [CrossRef]
- Simoneit, B.R.; Christiansen, P.C.; Burlingame, A.L. Volatile element chemistry of selected lunar, meteoritic, and terrestrial samples. In Proceedings of the Fourth Lunar Science Conference, Houston, TX, USA, 5–8 March 1973; Volume 4, pp. 1635–1650. [Google Scholar]
- Saal, A.E.; Hauri, E.H.; Cascio, M.L.; Van Orman, J.A.; Rutherford, M.C.; Cooper, R.F. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 2008, 454, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Swindle, T.D.; Kring, D.A. Implications of small comets for the noble gas inventories of Earth and Mars. Geophys. Res. Lett. 1997, 24, 3113–3116. [Google Scholar] [CrossRef]
- Stubbs, T.; Horanyi, M.; Mahaffy, P.; Wang, Y.; Benna, M.; Elphic, R.; Sarantos, M.; Kempf, S.; Colaprete, A.; Hurley, D.; et al. The effects of meteoroid streams on the lunar environment: Observations from the LADEE mission. In Proceedings of the 40th COSPAR Scientific Assembly, Moscow, Russia, 2–10 August 2014. [Google Scholar]
- Li, S.; Milliken, R.E. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins. Sci. Adv. 2017, 3, e1701471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, L.; Wurz, P.; Buch, A.; Cabane, M.; Coll, P.; Coscia, D.; Gerasimov, M.; Lasi, D.; Sapgir, A.; Szopa, C.; et al. Prototype of the gas chromatograph–mass spectrometer to investigate volatile species in the lunar soil for the Luna-Resurs mission. Planet. Space Sci. 2015, 111, 126–133. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Houston, W.N.; Scott, R.F.; Costes, N.C.; Carrier, W.D., III; Bromwell, L.G. Mechanical properties of lunar soil: Density, porosity, cohesion and angle of internal friction. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 10–13 January 1972; Volume 3, p. 3235. [Google Scholar]
- Carrier, W.D., III; Mitchell, J.K.; Mahmood, A. The relative density of lunar soil. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 5–8 March 1973; Volume 4, p. 2403. [Google Scholar]
- Papike, J.J.; Simon, S.B.; Laul, J.C. The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys. 1982, 20, 761–826. [Google Scholar] [CrossRef]
- Slyuta, E.N. Physical and mechanical properties of the lunar soil (a review). Sol. Syst. Res. 2014, 48, 330–353. [Google Scholar] [CrossRef]
- Beauchamp, J.; Herbig, J.; Dunkl, J.; Singer, W.; Hansel, A. On the performance of proton-transfer-reaction mass spectrometry for breath-relevant gas matrices. Meas. Sci. Technol. 2013, 24, 125003. [Google Scholar] [CrossRef]
- Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H., Jr. Ion mobility–mass spectrometry. J. Mass Spectrom. 2008, 43, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Colson, W.B.; McPherson, J.; King, F.T. High-gain imaging electron multiplier. Rev. Sci. Instrum. 1973, 44, 1694–1696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; He, H.; Li, J.; Hao, J.; Tang, J.; Zhang, Z.; Jiang, S.; Chi, G.; Liu, R.; Wang, L.; et al. Measurement and Uncertainty Analysis of Lunar Soil Water Content via Heating Flux Method. Aerospace 2023, 10, 657. https://doi.org/10.3390/aerospace10070657
Liu Z, He H, Li J, Hao J, Tang J, Zhang Z, Jiang S, Chi G, Liu R, Wang L, et al. Measurement and Uncertainty Analysis of Lunar Soil Water Content via Heating Flux Method. Aerospace. 2023; 10(7):657. https://doi.org/10.3390/aerospace10070657
Chicago/Turabian StyleLiu, Ziheng, Huaiyu He, Jiannan Li, Jialong Hao, Junyue Tang, Zhiheng Zhang, Shengyuan Jiang, Guanxin Chi, Ranran Liu, Lei Wang, and et al. 2023. "Measurement and Uncertainty Analysis of Lunar Soil Water Content via Heating Flux Method" Aerospace 10, no. 7: 657. https://doi.org/10.3390/aerospace10070657
APA StyleLiu, Z., He, H., Li, J., Hao, J., Tang, J., Zhang, Z., Jiang, S., Chi, G., Liu, R., Wang, L., Geng, H., & Xue, C. (2023). Measurement and Uncertainty Analysis of Lunar Soil Water Content via Heating Flux Method. Aerospace, 10(7), 657. https://doi.org/10.3390/aerospace10070657