Precision Manufacturing in China of Replication Mandrels for Ni-Based Monolithic Wolter-I X-ray Mirror Mandrels
Abstract
:1. Introduction
2. The Replication Process Route Adopted in the Study
2.1. Overall Technical Route
2.2. Chemical Plating with Nickel–Phosphorus Alloy
2.3. Ultra-Precision Turning Equipment and Process
2.4. Mandrels’ Profile Accuracy Metrology
2.5. The Bonnet Polishing and Full Aperture Pitch Polishing
2.6. Mandrels’ Surface Microroughness Metrology
2.7. Mandrel Gold Deposition and Ni or NiCo Electroforming
2.8. Demolding to Separate Mirror from Mandrel
2.9. Offline Generatrix Measurement of Mirror
2.10. The Integration and Calibration of the Shells with Visible Light
3. Results
3.1. Mirrors and Engineering Model Integration
3.2. Visible Light Testing Results
3.3. X-ray Optical Testing Results
4. Conclusions
- (1)
- Optimizations in the design and unique fabrication method for mandrels have been achieved, demonstrating the potential to attain form accuracy with a PV < 0.2 μm and surface roughness at a sub-nanometer scale.
- (2)
- A dedicated production base for X-ray focusing mirrors had been implemented in China, and the first focusing mirror prototype had been successfully developed. The preliminary results are promising for achieving the basic performance requirements as a demo-parallel solution.
- (3)
- X-ray focusing mirrors are made of 54 layers of nickel-plated gold that are precision-aligned by coaxial co-focusing with a visible-light mounting system. The mirror angular resolution for entire mirror shells may be as good as 48 arcsec HPD, 134 arcsec W90 in a visible-light test system with a parallel laser light source at 473 nm.
- (4)
- The angular resolution of single shell #24 is 17.3 “±0.2” HPD, 197.8 “±26.1” W90 @1.49 keV (Al-K line), which illustrates that the domestically produced focusing mirrors have met the basic requirements of the project. Further hardware platforms are necessary to advance the technology, ensuring enhanced stability, processing capacity, and substrate dimensions in the subsequent stages.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, W.M.; Zhang, C.; Ling, Z.X.; Zhao, D.; Wang, W.; Chen, Y.; Lu, F.; Zhang, S.-N.; Cui, W. Einstein Probe: A lobster-eye telescope for monitoring the X-ray sky. In Proceedings of the Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Austin, TX, USA, 10–15 June 2018; p. 10699. [Google Scholar]
- Yuan, W.M.; Zhang, C.; Chen, Y.; Sun, S.; Zhang, Y.; Cui, W.; Ling, Z.; Huang, M.; Zhao, D.; Wang, W.; et al. Einstein Probe: Exploring the ever-changing X-ray Universe. Sci. Sin. Phys. Mech. Astron. 2018, 48, 039502. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Cui, W.; Han, D.; Wang, J.; Yang, Y.; Wang, Y.; Li, W.; Ma, J.; Xu, Y.; Lu, F.; et al. Status of the follow-up x-ray telescope onboard the Einstein Probe satellite. In Proceedings of the Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, Online, 14–18 December 2020; p. 11444. [Google Scholar]
- Friedrich, P.; Stieglitz, V.; Burwitz, V.; Eder, J.; Dennerl, K.; Hartner, G.; Langmeier, A.; Müller, T.; Rukdee, S.; Schmidt, T.; et al. X-ray optics test and calibration of the Einstein Probe Follow-up telescope. Acta Astronaut. 2024, 221, 255–265. [Google Scholar] [CrossRef]
- Vernani, D.; Bianucci, G.; Grisoni, G.; Marioni, F.; Valsecchi, G.; Keereman, A.; Chen, Y.; Cong, M.; Yang, Y.; Wang, J.; et al. Follow-up x-ray telescope (FXT) mirror module for the Einstein probe mission. In Proceedings of the Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma ray, Montreal, QC, Canada, 17–22 July 2022. [Google Scholar] [CrossRef]
- Peres, C.B.; Fabian, A.C.; Edge, A.C.; Allen, S.W.; Johnstone, R.M.; White, D.A. A ROSAT study of the cores of clusters of galaxies—I. Cooling flows in an X-ray flux-limited sample. Mon. Not. R. Astron. Soc. 1998, 298, 416–432. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Ramsey, B.; O’Dell, S.L.; Tennant, A.; Elsner, R.; Soffita, P.; Bellazzini, R.; Costa, E.; Kolodziejczak, J.; Kaspi, V.; et al. The Imaging X-ray Polarimetry Explorer (IXPE). Results Phys. 2016, 6, 1179–1180. [Google Scholar] [CrossRef]
- Serlemitsos, P.J.; Soong, Y.; Chan, K.W.; Okajima, T.; Lehan, J.P.; Maeda, Y.; Itoh, K.; Mori, H.; Iizuka, R.; Itoh, A.; et al. The X-ray Telescope onboard Suzaku. Publ. Astron. Soc. Jpn. 2007, 59, S9–S21. [Google Scholar] [CrossRef]
- Attina, P.; Alippi, E.; Casoli, P.; Lenti, A.; Monzani, F.; Poulsen, J.M. Overview of the SAX x-ray instruments development. In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 19–21 April 1995. [Google Scholar] [CrossRef]
- de Chambure, D.; Laine, R.; van Katwijk, K.; Kletzkine, P.; Valenzuela, A.; Grisoni, G.; Canali, M.; Hofer, S.; Tock, J.P.; Domken, I.; et al. Lessons learnt from the development of the XMM optics. Int. Soc. Opt. Eng. 1999, 3737, 2–17. [Google Scholar]
- Brinkman, A.C.; Behar, E.; Güdel, M.; Audard, M.; den Boggende, A.J.F.; Branduardi-Raymont, G.; Cottam, J.; Erd, C.; den Herder, J.W.; Jansen, F.; et al. First Light Measurements with the XMM-Newton Reflection Grating Spectrometers: Evidence for an Inverse First Ionisation Potential Effect and Anomalous Ne A bundance in the Coronae of HR 1099. Astron. Astrophys. 2001, 365, 75–76. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-ray telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Citterio, O.; Campana, S.; Conconi, P.; Ghigo, M.; Mazzoleni, F.; Poretti, E.; Conti, G.; Cusumano, G.; Sacco, B.; Braeuninger, H.W.; et al. Characteristics of the flight model optics for the JET-X telescope onboard the Spectrum-X-Gamma satellite. In Proceedings of the Multilayer and Grazing Incidence X-ray/EUV Optics III, Denver, CO, USA, 4–9 August 1996; SPIE: Bellingham, WA, USA, 1996; Volume 2805, pp. 56–66. [Google Scholar]
- Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 2020, 647, A1. [Google Scholar] [CrossRef]
- Dennerl, K.; Burkert, W.; Burwitz, V.; Freyberg, M.; Friedrich, P.; Hartner, G. Determination of the eROSITA mirror half energy width (HEW) with subpixel resolution. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Takahashi, T., Murray, S.S., den Herder, J.-W.A., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8443, p. 844350. [Google Scholar]
- Wu, K.; Ding, F.; Yang, Y.; Li, D.; Qiao, Z.; Qiang, P.; Wang, B. Influence on imaging performance and evaluation of Wolter-I type mandrel fabrication errors. Appl. Opt. 2022, 61, 6617–6626. [Google Scholar] [CrossRef] [PubMed]
- Gubarev, M.; Ramsey, B.; O’Dell, S.L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.; et al. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission. In Proceedings of the Optics for EUV, X-ray, and Gamma-Ray Astronomy, San Diego, CA, USA, 26–29 August 2013. [Google Scholar]
- Xue, J.; Liao, Q.; Liu, Y.; Wu, Y.; Jin, Y.; Wu, K.; Li, D.; Qiao, Z.; Ding, F.; Yang, Y.; et al. Precision polishing of the mandrel for X-ray grazing incidence mirrors in the Einstein probe. In Proceedings of the Advanced Optical Manufacturing Technologies and Applications 2022; and 2nd International Forum of Young Scientists on Advanced Optical Manufacturing (AOMTA and YSAOM 2022), Changchun, China, 29–31 July 2022; Volume 12507. [Google Scholar]
- Gubarev, M.; Ramsey, B.; O’Dell, S.L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I. The Marshall Space Flight Center development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission. In Proceedings of the International Society for Optics and Photonics, San Francisco, CA, USA, 21–26 January 2012. [Google Scholar]
- Liao, Q.; Ding, F.; Chen, Z.; Li, D.; Wang, B. Study on the Fabrication Process of X-ray Focusing Mirrors. Micromachines 2023, 14, 1666. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Bao, X.; Ding, F.; Qiao, Z.; Chen, Z.; Li, D.; Liu, Y.; Xue, J.; Wang, W.; Li, Y.; et al. Diamond turning and full-frequency band error measurement methods for x-ray focusing mirror molds. In Proceedings of the Eighth Asia Pacific Conference on Optics Manufacture and Third International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2023), Shenzhen, China, 29 December 2023; p. 12976. [Google Scholar]
- Arcangeli, L.; Borghi, G.; Bräuninger, H.; Citterio, O.; Ferrario, I.; Friedrich, P.; Grisoni, G.; Marioni, F.; Predehl, P.; Rossi, M.; et al. The eROSITA X-ray mirrors: Technology and qualification aspects of the production of mandrels, shells and mirror modules. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series SPIE, Rhodes Island, Greece, 4–8 October 2010; Volume 10565. [Google Scholar]
- Vernani, D.; Borghi, G.; Calegari, G.; Castelnuovo, M.; Citterio, O.; Ferrario, I.; Grisoni, G.; Moretti, S.; Valsecchi, G.; Brauninger, H. Performance of a mirror shell replicated from a new flight quality mandrel for eROSITA mission. In Proceedings of the Optics for EUV, X-ray, and Gamma-Ray Astronomy V, International Society for Optics and Photonics, San Diego, CA, USA, 21–25 August 2011; p. 814707. [Google Scholar]
- Basso, S.; Citterio, O.; Mazzoleni, F.; Pareschi, G.; Tagliaferri, G.; Valtolina, R.; Conconi, P.; Parodi, G. The problems concerning the integration of very thin mirror shells. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 2–6 August 2009; Volume 7437. [Google Scholar]
- Wang, J.; Eder, J.; Ma, J.; Yang, Y.; Cui, W.; Yang, X.; Duan, X.; Feng, J.; Zhang, X.; Lu, B.; et al. The structural design and thermo-mechanical performance of the FXT for the EP mission. Exp. Astron. 2023, 3, 55. [Google Scholar] [CrossRef]
Parameter | Requirements |
---|---|
Number of modules | 2 |
Number of shells per module | 45 |
Field of View | 1 deg2 |
Effective area | 600 cm2 @ 1.25 keV |
Angular resolution (Half Energy Width, HEW) | ≤30″ (on axis; FXT system level); ≤2′ basic requirement for IHEP group |
Energy resolution | 120 eV @ 1.25 keV |
Energy range | 0.5–8 keV |
Focal length | 1600 ± 10 mm |
Maximum and minimum diameter of the shells | 357.6 mm (outermost shell)–76.7 mm (innermost shell) |
Total mirror length | 300 mm |
Thickness of the shells | 0.55 mm (outermost shell)–0.20 mm (innermost shell) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Wang, B.; Liao, Q.; Wu, K.; Liu, Y.; Wu, Y.; Chen, W.; Qiao, Z.; Jin, Y.; Ding, F.; et al. Precision Manufacturing in China of Replication Mandrels for Ni-Based Monolithic Wolter-I X-ray Mirror Mandrels. Aerospace 2024, 11, 849. https://doi.org/10.3390/aerospace11100849
Xue J, Wang B, Liao Q, Wu K, Liu Y, Wu Y, Chen W, Qiao Z, Jin Y, Ding F, et al. Precision Manufacturing in China of Replication Mandrels for Ni-Based Monolithic Wolter-I X-ray Mirror Mandrels. Aerospace. 2024; 11(10):849. https://doi.org/10.3390/aerospace11100849
Chicago/Turabian StyleXue, Jiadai, Bo Wang, Qiuyan Liao, Kaiji Wu, Yutao Liu, Yangong Wu, Wentao Chen, Zheng Qiao, Yuan Jin, Fei Ding, and et al. 2024. "Precision Manufacturing in China of Replication Mandrels for Ni-Based Monolithic Wolter-I X-ray Mirror Mandrels" Aerospace 11, no. 10: 849. https://doi.org/10.3390/aerospace11100849
APA StyleXue, J., Wang, B., Liao, Q., Wu, K., Liu, Y., Wu, Y., Chen, W., Qiao, Z., Jin, Y., Ding, F., Wang, D., Wang, L., Li, G., Yang, Y., & Chen, Y. (2024). Precision Manufacturing in China of Replication Mandrels for Ni-Based Monolithic Wolter-I X-ray Mirror Mandrels. Aerospace, 11(10), 849. https://doi.org/10.3390/aerospace11100849