Coupling of Fluid and Particle-in-Cell Simulations of Ambipolar Plasma Thrusters
Abstract
:1. Introduction
2. Methodology
2.1. Models
2.2. Coupling
Coupling Interface Boundary Conditions
2.3. MUPETS
- Preprocessing simulation cases:
- For fluid, : Setting up the initial case with starting values.
- For fluid, : Updating case with BC values from kinetic simulation.
- For kinetic, h: Constructing PDFs and VDFS for macroparticles.
- Running simulations with relevant solvers and parameters.
- Postprocessing the converged solutions into a common data structure.
- Adjusting conditions for the next simulation based on the current solutions.
- Loop control until the convergence criteria are met.
- Handling numerical domain division.
2.4. Propulsive Performance
3. Experiment
3.1. Experimental Thruster
3.2. Numerical Simulations
4. Results and Discussion
4.1. Plasma Profiles
4.2. Thrust Predictions
4.3. Convergence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Definition |
APT | Ambipolar Plasma Thruster |
BC | Boundary Condition |
DD | Drift Diffusion |
ECRT | Electron Cyclotron Resonance Thruster |
EP | Electric Propulsion |
HPT | Helicon Plasma Thruster |
MUPETS | MUlti-regime Plasma Equilibrium Transport Solver |
Particle Distribution Function | |
RF | Radio Frequency |
VDF | Velocity Distribution Function |
Symbol | Definition | Unit |
B | Magnetic field | [T] |
C | Ion drift-to-Bohm velocity ratio, capacitance | [-] |
D | Diffusion coefficient | [] |
E | Electric field | [] |
F | Force | [N] |
f | Mass factor | [-] |
h | Model iteration | [-] |
Gravitational standard at Earth | [] | |
Specific impulse | [s] | |
J | Current | [] |
Boltzmann constant | [] | |
m | Mass | [] |
Mass flow rate | [] | |
n | Number density | [] |
p | Pressure | [] |
P | Power | [W] |
q | Particle charge | [C] |
Source chamber radius | [m] | |
r | Radial direction | [m] |
T | Thrust, Temperature | [N], [K] |
v | Velocity | [] |
V | Volume | [] |
z | Axial direction | [m] |
k | Normal direction to a surface | [-] |
Particle flux | [] | |
Scaling factor | [-] | |
Permittivity of free space | [] | |
Thrust efficiency | [−] | |
Debye length | [m] | |
Mobility coefficient | [] | |
Pi | [−] | |
Plasma potential | [V] | |
Plasma frequency | [] |
Subscript | Definition |
I | General species |
0 | Neutral ground state |
ex | Neutral excited state |
e | Electron |
i | Ion |
k | Normal to surface |
r | Radial direction |
Azimuthal direction | |
* | At throat |
∞ | At free space |
inlet | At inlet boundary |
wall | At wall boundary |
ext | External boundary |
fluid | Of fluid model or code |
kinetic, PIC | Of kinetic model or PIC code |
h | Coupled model iteration |
n | Kinetic model iteration |
I | General species |
Appendix A. Physical Models
Appendix A.1. Fluid Model
Appendix A.2. Kinetic Model
Appendix B. Numerical Models
Appendix B.1. Fluid Code: OpenFOAM
Time and Mesh | |
dt | |
min cell length | 50 |
max cell length | 500 |
Numerical Schemes | |
time derivatives | backward 2nd order, implicit |
gradients | Face limited, 2nd order, Gaussian integration + linear interpolation |
divergence | Gauss interpolation with MUSCL interpolation |
interpolation | linear |
surface normal gradient | Explicit non-orthogonal correction |
distance to wall | meshWave calculation |
Matrix Solver | |
phi | GAMG |
pressures | GAMG |
transonic pressures | PBiCGStab |
electron densities | PBICGStab |
neutral densities | PCG |
ion density | PBiCGStab |
velocities | PBiCGStab |
algorithm | SIMPLE, 3 correctors, 1 outer corrector |
Appendix B.2. Kinetic Code: Starfish
References
- Charles, C.; Boswell, R. Current-free double-layer formation in a high-density helicon discharge. Appl. Phys. Lett. 2003, 82, 1356–1358. [Google Scholar] [CrossRef]
- Chen, F.F. Helicon discharges and sources: A review. Plasma Sources Sci. Technol. 2015, 24, 014001. [Google Scholar] [CrossRef]
- Bellomo, N.; Manente, M.; Trezzolani, F.; Gloder, A.; Selmo, A.; Mantellato, R.; Toson, E.; Cappellini, L.; Duzzi, M.; Magarotto, M.; et al. Enhancement of microsatellites’ mission capabilities: Integration of REGULUS electric propulsion module into UniSat-7. In Proceedings of the 70th International Astronautical Congress (IAC), Washington, DC, USA, 21–25 October 2019. [Google Scholar]
- Jiménez, P.; Zhou, J.; Navarro-Cavallé, J.; Fajardo, P.; Merino, M.; Ahedo, E. Analysis of a cusped helicon plasma thruster discharge Analysis of a cusped helicon plasma thruster discharge. Plasma Sources Sci. Technol. 2023, 32, 18. [Google Scholar] [CrossRef]
- Coppola, G.; Panelli, M.; Battista, F. Preliminary design of helicon plasma thruster by means of particle swarm optimization. AIP Adv. 2023, 13, 055209. [Google Scholar] [CrossRef]
- Shumeiko, A.I.; Telekh, V.D. Direct thrust measurements of 2U-sized bi-directional wave plasma thruster. AIP Adv. 2023, 13, 085312. [Google Scholar] [CrossRef]
- Wachs, B.N.; Jorns, B.A. Optimization of an ECR Thruster using Single, Two Frequency, and Pulsed Waveforms; American Institute of Aeronautics and Astronautics Inc., AIAA: Starbase, TX, USA, 2021. [Google Scholar] [CrossRef]
- Désangles, V.; Packan, D.; Jarrige, J.; Peterschmitt, S.; Dietz, P.; Scharmann, S.; Holste, K.; Klar, P.J. ECRA thruster advances: 30W and 200W prototypes latest performances. J. Electr. Propuls. 2023, 2, 10. [Google Scholar] [CrossRef]
- Magarotto, M.; Melazzi, D.; Pavarin, D. Study on the influence of the magnetic field geometry on the power deposition in a helicon plasma source. J. Plasma Phys 2019, 85, 905850404. [Google Scholar] [CrossRef]
- Fruchtman, A. Electric Field in a Double Layer and the Imparted Momentum. Phys. Rev. Lett. 2006, 96, 065002. [Google Scholar] [CrossRef]
- Fruchtman, A.; Takahashi, K.; Charles, C.; Boswell, R.W. A magnetic nozzle calculation of the force on a plasma. Phys. Plasmas 2012, 19, 033507. [Google Scholar] [CrossRef]
- Manente, M.; Trezzolani, F.; Mantellato, R.; Scalzi, D.; Schiavon, A.; Souhair, N.; Duzzi, M.; Cappellini, L.; Barbato, A.; Paulon, D.; et al. REGULUS: Iodine Fed Plasma Propulsion System for Small Satellites. In Proceedings of the The 36th International Electric Propulsion Conference IEPC-2019-417, Vienna, Austria, 15–20 September 2019. [Google Scholar]
- Bellomo, N.; Magarotto, M.; Manente, M.; Trezzolani, F.; Mantellato, R.; Cappellini, L.; Paulon, D.; Selmo, A.; Scalzi, D.; Minute, M.; et al. Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system. CEAS Space J. 2022, 14, 79–90. [Google Scholar] [CrossRef]
- Souhair, N.; Magarotto, M.; Andriulli, R.; Ponti, F. Prediction of the Propulsive Performance of an Atmosphere-Breathing Electric Propulsion System on Cathode-Less Plasma Thruster. Aerospace 2023, 10, 100. [Google Scholar] [CrossRef]
- Dalle Fabbriche, S.; Souhair, N.; Magarotto, M.; Andriulli, R.; Corti, E.; Ponti, F. Development of a Global Model for the Analysis of Plasma in an Atmosphere-Breathing Cathode-Less Thruster. Aerospace 2023, 10, 389. [Google Scholar] [CrossRef]
- Takahashi, K. Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency. Sci. Rep. 2021, 11, 2768. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Magarotto, M.; Manente, M.; Pavarin, D.; Lavagna, M. Semi-Analytical Model of a Helicon Plasma Thruster. IEEE Trans. Plasma Sci. 2022, 50, 425–438. [Google Scholar] [CrossRef]
- Winglee, R.; Ziemba, T.; Giersch, L.; Prager, J.; Carscadden, J.; Roberson, B. Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster. Phys. Plasmas 2007, 14, 063501. [Google Scholar] [CrossRef]
- Lafleur, T. Helicon plasma thruster discharge model. Phys. Plasmas 2014, 21, 043507. [Google Scholar] [CrossRef]
- Magarotto, M.; Melazzi, D.; Pavarin, D. 3D-VIRTUS: Equilibrium condition solver of radio-frequency magnetized plasma discharges for space applications. Comput. Phys. Commun. 2020, 247, 106953. [Google Scholar] [CrossRef]
- Souhair, N.; Magarotto, M.; Majorana, E.; Ponti, F.; Pavarin, D. Development of a lumping methodology for the analysis of the excited states in plasma discharges operated with argon, neon, krypton, and xenon. Phys. Plasmas 2021, 28, 093504. [Google Scholar] [CrossRef]
- Ahedo, E.; Navarro-Cavallé, J. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances. Phys. Plasmas 2013, 20, 043512. [Google Scholar] [CrossRef]
- Choudhuri, A.R. The Physics of Fluids and Plasmas; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Fede, S.D.; Manente, M.; Comunian, P.J.; Magarotto, M. Magnetic nozzle performance in a cluster of helicon plasma thrusters. Plasma Sources Sci. Technol. 2023, 32, 065013. [Google Scholar] [CrossRef]
- Andrews, S.; Fede, S.D.; Magarotto, M. Fully kinetic model of plasma expansion in a magnetic nozzle. Plasma Sources Sci. Technol. 2022, 31, 035022. [Google Scholar] [CrossRef]
- Sánchez-Villar, Á.; Zhou, J.; Ahedo, E.; Merino, M. Coupled plasma transport and electromagnetic wave simulation of an ECR thruster. Plasma Sources Sci. Technol. 2021, 30, 045005. [Google Scholar] [CrossRef]
- Zhou, J.; Pérez-Grande, D.; Fajardo, P.; Ahedo, E. Numerical treatment of a magnetized electron fluid model within an electromagnetic plasma thruster simulation code. Plasma Sources Sci. Technol. 2019, 28, 115004. [Google Scholar] [CrossRef]
- Magarotto, M.; Di Fede, S.; Souhair, N.; Andrews, S.; Ponti, F. Numerical suite for cathodeless plasma thrusters. Acta Astronaut. 2022, 197, 126–138. [Google Scholar] [CrossRef]
- Andrews, S.; Andriulli, R.; Souhair, N.; Fede, S.D.; Pavarin, D.; Ponti, F.; Magarotto, M. Coupled global and PIC modelling of the REGULUS cathode-less plasma thrusters operating on xenon, iodine and krypton. Acta Astronaut. 2023, 207, 227–239. [Google Scholar] [CrossRef]
- Andriulli, R.; Andrews, S.; Souhair, N.; Magarotto, M.; Ponti, F. Fully kinetic study of facility pressure effects on RF-source magnetic nozzles. Acta Astronaut. 2024, 215, 362–372. [Google Scholar] [CrossRef]
- Souhair, N.; Ponti, F.; Magarotto, M.; Pavarin, D. Analysis of different numerical approaches for the simulation of a Helicon Plasma Thruster. In Proceedings of the 37th International Electric Propulsion Conference (IEPC), Boston, MA, USA, 19 June 2022. [Google Scholar]
- Adamovich, I.; Baalrud, S.; Bogaerts, A.; Bruggeman, P.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.; Canal, C.; et al. The 2022 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2022, 55, 373001. [Google Scholar] [CrossRef]
- Fiala, A.; Pitchford, L.C.; Boeuf, J.P. Two-dimensional, hybrid model of low-pressure glow discharges. Phys. Rev. E 1994, 49, 5607–5622. [Google Scholar] [CrossRef]
- Bose, D.; Govindan, T.R.; Meyyappan, M. Modelling of magnetic field profile effects in a helicon source. Plasma Sources Sci. Technol. 2004, 13, 553–561. [Google Scholar] [CrossRef]
- Chen, G.; Raja, L.L. Fluid modeling of electron heating in low-pressure, high-frequency capacitively coupled plasma discharges. J. Appl. Phys. 2004, 96, 6073–6081. [Google Scholar] [CrossRef]
- Brown, D.L.; Walker, M.L.; Szabo, J.; Huang, W.; Foster, J.E. Recommended practice for use of faraday probes in electric propulsion testing. J. Propuls. Power 2017, 33, 582–613. [Google Scholar] [CrossRef]
- Lobbia, R.B.; Beal, B.E. Recommended practice for use of langmuir probes in electric propulsion testing. J. Propuls. Power 2017, 33, 566–581. [Google Scholar] [CrossRef]
- Bukowski, J.; Graves, D.; Vitello, P. Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles. J. Appl. Phys. 1996, 80, 2614–2623. [Google Scholar] [CrossRef]
- Souhair, N.; Magarotto, M.; Ponti, F.; Pavarin, D. Analysis of the plasma transport in numerical simulations of helicon plasma thrusters. AIP Adv. 2021, 11, 115016. [Google Scholar] [CrossRef]
- Magarotto, M.; Manente, M.; Trezzolani, F.; Pavarin, D. Numerical Model of a Helicon Plasma Thruster. IEEE Trans. Plasma Sci. 2020, 48, 835–844. [Google Scholar] [CrossRef]
- Fede, S.D.; Magarotto, M.; Andrews, S.; Pavarin, D. Simulation of the plume of a magnetically enhanced plasma thruster with SPIS. J. Plasma Phys. 2021, 87, 905870611. [Google Scholar] [CrossRef]
- Souhair, N. Development of Numerical Tools for the Simulation, Design and Optimization of a Helicon Plasma Thruster. Dissertation Thesis, Università di Bologna, Bologna, Italy, 2023. Available online: http://amsdottorato.unibo.it/10704/ (accessed on 21 October 2024).
- OpenFOAM. Available online: https://www.openfoam.com/ (accessed on 21 October 2024).
- Brieda, L.; Keidar, M. Development of the starfish plasma simulation code and update on multiscale modeling of hall thrusters. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar] [CrossRef]
- Takahashi, K. Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles. Rev. Mod. Plasma Phys. 2019, 3, 1–61. [Google Scholar] [CrossRef]
- Correyero, S.; Jarrige, J.; Packan, D.; Ahedo, E. Plasma beam characterization along the magnetic nozzle of an ECR thruster. Plasma Sources Sci. Technol. 2019, 28, 095004. [Google Scholar] [CrossRef]
- Bittencourt, J.A. Fundamentals of Plasma Physics; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Ahedo, E.; Merino, M. Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Phys. Plasmas 2010, 17, 73501. [Google Scholar] [CrossRef]
- Ebersohn, F.; Raja, L.; Shebalin, J. Resistive Magnetohydrodynamic Study of Magnetic Field Effects on Plasma Plumes. In Proceedings of the 4th AIAA Plasmadynamics and Lasers Conference, San Diego, CA, USA, 24–27 June 2013. [Google Scholar] [CrossRef]
- van Lynden, W.; Souhair, N.; Andriulli, R.; Magarotto, M.; Cervone, A.; Ponti, F. Novel Coupling Methods for Fluid and Kinetic Solvers in the numerical modeling of Helicon Plasma Thrusters. In Proceedings of the 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2–6 October 2023. [Google Scholar]
- Manente, M.; Trezzolani, F.; Magarotto, M.; Fantino, E.; Selmo, A.; Bellomo, N.; Toson, E.; Pavarin, D. REGULUS: A propulsion platform to boost small satellite missions. Acta Astronaut. 2019, 157, 241–249. [Google Scholar] [CrossRef]
- Trezzolani, F.; Magarotto, M.; Manente, M.; Pavarin, D. Development of a counterbalanced pendulum thrust stand for electric propulsion. Measurement 2018, 122, 494–501. [Google Scholar] [CrossRef]
- Bellomo, N.; Magarotto, M.; Manente, M.; Trezzolani, F.; Mantellato, R.; Cappellini, L.; Paulon, D.; Selmo, A.; Scalzi, D.; Minute, M.; et al. REGULUS: Integration and Testing of an iodine Electric Propulsion System. In Proceedings of the Space Propulsion Conference, Estoril, Portugal, 17–19 March 2020. [Google Scholar]
- Allan, M.; Zatsarinny, O.; Bartschat, K. Near-threshold absolute angle-differential cross sections for electron-impact excitation of argon and xenon. Phys. Rev. A 2006, 74, 030701. [Google Scholar] [CrossRef]
- PHELPS Database. Available online: https://www.lxcat.net/Phelps (accessed on 1 January 2021).
- Sommerer, T.J. Model of a weakly ionized, low-pressure xenon dc positive column discharge plasma. J. Phys. D Appl. Phys. 1996, 29, 769–778. [Google Scholar] [CrossRef]
- BIAGI v7 Database. Available online: https://www.lxcat.net/Biagi-v7.1 (accessed on 1 January 2021).
- Hyman, H.A. Electron-impact ionization cross sections for excited states of the rare gases (Ne, Ar, Kr, Xe), cadmium, and mercury. Phys. Rev. A 1979, 20, 855–859. [Google Scholar] [CrossRef]
- COP Database. Available online: https://www.lxcat.net/COP (accessed on 1 January 2021).
- Priti; Gangwar, R.K.; Srivastava, R. Collisional-radiative model of xenon plasma with calculated electron-impact fine-structure excitation cross-sections. Plasma Sources Sci. Technol. 2019, 28, 025003. [Google Scholar] [CrossRef]
- Vinci, A.E.; Mazouffre, S. Direct experimental comparison of krypton and xenon discharge properties in the magnetic nozzle of a helicon plasma source. Phys. Plasmas 2021, 28, 033504. [Google Scholar] [CrossRef]
- Sudit, I.D.; Chen, F.F. Discharge equilibrium of a helicon plasma. Plasma Sources Sci. Technol. 1996, 5, 43. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Cretel, C.; Synowiec, J.; Hsu, A.G.; Young, J.A.; Spektor, R. First performance measurements of the phase four RF thruster. In Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, USA, 8–12 October 2017. [Google Scholar]
- Magarotto, M.; Fede, S.D.; Souhair, N.; Andrews, S.; Manente, M.; Ponti, F.; Pavarin, D. Numerical Suite for Magnetically Enhanced Plasma Thrusters. In Proceedings of the 72 nd International Astronautical Congress, Dubai, United Arab Emirates, 25–29 October 2021. [Google Scholar]
- Kushner, M.J. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges. J. Appl. Phys. 2003, 94, 1436–1447. [Google Scholar] [CrossRef]
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005; pp. 43–82. [Google Scholar]
- Mikellides, I.G.; Katz, I.; Goebel, D.M.; Polk, J.E. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region. J. Appl. Phys. 2005, 98, 113303. [Google Scholar] [CrossRef]
- Hagelaar, G.J.M.; de Hoog, F.J.; Kroesen, G.M.W. Boundary conditions in fluid models of gas discharges. Phys. Rev. E 2000, 62, 1452–1454. [Google Scholar] [CrossRef] [PubMed]
- Gallina, G.; Magarotto, M.; Manente, M.; Pavarin, D. Enhanced biDimensional pIc: An electrostatic/magnetostatic particle-in-cell code for plasma based systems. J. Plasma Phys. 2019, 85, 905850205. [Google Scholar] [CrossRef]
- Szabo, J.; Warner, N.; Martinez-Sanchez, M.; Batishchev, O. Full Particle-In-Cell Simulation Methodology for Axisymmetric Hall Effect Thrusters. J. Propuls. Power 2014, 30, 197–208. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, S.; Xiao, J.; Liu, J.; Sun, Y.; Tang, W.M. Why is Boris algorithm so good? Phys. Plasmas 2013, 20, 084503. [Google Scholar] [CrossRef]
- Szabo, J.J. Fully Kinetic Numerical Modeling of a Plasma Thruster. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- Dalgarno, A.; McDowell, M.C.; Williams, A. The mobilities of ions in unlike gases. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1958, 250, 411–425. [Google Scholar]
- Rapp, D.; Francis, W.E. Charge exchange between gaseous ions and atoms. J. Chem. Phys. 1962, 37, 2631–2645. [Google Scholar] [CrossRef]
- Koura, K.; Matsumoto, H. Variable soft sphere molecular model for air species. Phys. Fluids A Fluid Dyn. 1992, 4, 1083–1085. [Google Scholar] [CrossRef]
Power [W] | Thrust [mN] | Error [%] | [s] | [%] |
---|---|---|---|---|
15 | 0.17 | 20 | 117 | 0.7 |
30 | 0.45 | 0.3 | 308 | 2.3 |
45 | 0.64 | 6 | 436 | 3.1 |
57 | 1.01 | 16 | 689 | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Lynden, W.; Andriulli, R.; Souhair, N.; Ponti, F.; Magarotto, M. Coupling of Fluid and Particle-in-Cell Simulations of Ambipolar Plasma Thrusters. Aerospace 2024, 11, 880. https://doi.org/10.3390/aerospace11110880
van Lynden W, Andriulli R, Souhair N, Ponti F, Magarotto M. Coupling of Fluid and Particle-in-Cell Simulations of Ambipolar Plasma Thrusters. Aerospace. 2024; 11(11):880. https://doi.org/10.3390/aerospace11110880
Chicago/Turabian Stylevan Lynden, Willem, Raoul Andriulli, Nabil Souhair, Fabrizio Ponti, and Mirko Magarotto. 2024. "Coupling of Fluid and Particle-in-Cell Simulations of Ambipolar Plasma Thrusters" Aerospace 11, no. 11: 880. https://doi.org/10.3390/aerospace11110880
APA Stylevan Lynden, W., Andriulli, R., Souhair, N., Ponti, F., & Magarotto, M. (2024). Coupling of Fluid and Particle-in-Cell Simulations of Ambipolar Plasma Thrusters. Aerospace, 11(11), 880. https://doi.org/10.3390/aerospace11110880