Pilot Fatigue Coefficient Based on Biomathematical Fatigue Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Problem
2.2. Establishment of BFM
2.2.1. Model Conception
- Individuals store alertness resources.
- The alertness resources of an individual have an upper limit that depends on their capacity for alertness resources.
- During mental work, the consumption of alert resources dominates, whereas during the rest period, the recovery of alert resources plays a dominant role.
- At a certain moment, the consumption rate of alert resources is divided into endogenous and actual consumption rates. The endogenous consumption rate represents the inherent consumption or recovery rate of alert resources in an individual and is a function of the alert resource reserve, the alert resource capacity, homeostatic processes, and circadian processes. The actual consumption rate is influenced by external factors, such as workload, in addition to the endogenous consumption rate.
- The recovery rate of alert resources is likewise split into endogenous and real recovery rates at a certain point in time. In addition to the endogenous recovery rate, the actual recovery rate is also influenced by outside variables, such as the quality of rest.
- The alertness level of a pilot during a duty period at a certain moment is positively correlated with the endogenous consumption rate of alert resources.
- The pilot’s alertness level and weariness level are inversely connected during duty. The pilot’s level of weariness during the time off duty was denoted as 0.
2.2.2. Mathematical Representation of the Model
2.3. Cumulative Fatigue Quantification Model
3. Results of Fatigue Simulation
3.1. Assigning Parameter Values of BFM
3.2. Verification of the Alertness Simulation Effect of BFM
3.2.1. Participants
3.2.2. Actual Fatigue Data Collection
3.2.3. Overview of Actual Fatigue Data
3.2.4. Comparison of Actual Observations with Model Simulations
3.3. Simulation of Cumulative Fatigue
3.3.1. Data Acquisition
3.3.2. Simulation Results of the Weekly Cumulative Fatigue
3.3.3. Simulation Results of the Monthly Cumulative Fatigue
4. Discussion
4.1. Principal Findings
4.2. Limitations
5. Conclusions
5.1. Summary of Existing Research
5.2. Research Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wingelaar-Jagt, Y.Q.; Wingelaar, T.T.; Riedel, W.J.; Ramaekers, J.G. Fatigue in Aviation: Safety Risks, Preventive Strategies and Pharmacological Interventions. Front. Physiol. 2021, 12, 712628. [Google Scholar] [CrossRef] [PubMed]
- Nick, C.; Captain, R.M. IATA Safety Report 2021; International Air Transport Association: Geneva, Switzerland; Montreal, QC, Canada, 2022; Available online: https://www.iata.org/contentassets/4d18cb077c5e419b8a888d387a50c638/iata-safety-report-2021.pdf (accessed on 1 December 2023).
- International Civil Aviation Organization. Manual for the Oversight of Fatigue Management Approaches, 2nd ed.; ICAO eLibrary: Montreal, QC, Canada, 2020; Available online: https://elibrary.icao.int/explore;searchText=9966;mainSearch=1 (accessed on 1 December 2023).
- EASA. Notice of Proposed Amendment (NPA); Directorate-General for Communication: Cologne, Germany, 2009; p. NO200902C. Available online: http://hub.easa.europa.eu/crt/ (accessed on 4 December 2023).
- US Department of Transportation. Flightcrew Member Duty and Rest Requirements; Washington Federal Aviation Administration: Washington, DC, USA, 2012. Available online: https://www.federalregister.gov/d/2011-33078 (accessed on 4 December 2023).
- Transport Canada. Canadian Aviation Regulations; Part 7, Division 3; Civil Aviation, Standards: Ottawa, ON, Canada, 2018. Available online: https://laws.justice.gc.ca/eng/regulations/sor-96-433/page-84.html (accessed on 4 December 2023).
- CAAC. Fatigue Management Requirements for CCAR121 Certificate Holders: Advisory Circular (AC). GOV.cn; CAAC: Beijing, China, 2021; No. AC-121-FS-014. Available online: http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/202106/t20210602_207792.html (accessed on 5 December 2023).
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Åkerstedt, T.; Folkard, S.; Portin, C. Predictions from the three-process model of alertness. Aviat. Space Environ. Med. 2004, 75, A75–A83. [Google Scholar] [PubMed]
- Rajdev, P.; Thorsley, D.; Rajaraman, S.; Rupp, T.L.; Wesensten, N.J.; Balkin, T.J.; Reifman, J. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation. J. Theor. Biol. 2013, 331, 66–77. [Google Scholar] [CrossRef]
- Sun, J.; Sun, R. Development of a biomathematical model for human alertness and fatigue risk assessment based on the concept of energy. Ergonomics 2023, 66, 1829–1844. [Google Scholar] [CrossRef]
- Wilson, M.K.; Strickland, L.; Ballard, T.; Griffin, M.A. The next generation of fatigue prediction models: Evaluating current trends in biomathematical modelling. Theor. Issues Ergon. Sci. 2024, 25, 21–43. [Google Scholar] [CrossRef]
- Agorastos, A.; Nicolaides, N.C.; Bozikas, V.P.; Chrousos, G.P.; Pervanidou, P. Multilevel interactions of stress and circadian system: Implications for traumatic stress. Front. Psychiatry 2019, 10, 1003. [Google Scholar] [CrossRef]
- Elmenhorst, E.M.; Rooney, D.; Benderoth, S.; Wittkowski, M.; Wenzel, J.; Aeschbach, D. Sleep-induced hypoxia under flight conditions: Implications and countermeasures for long-haul flight crews and passengers. Nat. Sci. Sleep 2022, 14, 193–205. [Google Scholar] [CrossRef]
- Jun-Ya, S.; Rui-Shan, S. Pilot fatigue survey: A study of the mutual influence among fatigue factors in the “work” dimension. Front. Public Health 2023, 11, 1014503. [Google Scholar] [CrossRef]
- Hastings, M.H.; Maywood, E.S.; Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 2018, 19, 453–469. [Google Scholar] [CrossRef]
- Takeuchi, S.; Shimizu, K.; Fukada, Y.; Emoto, K. The circadian clock in the piriform cortex intrinsically tunes daily changes of odor-evoked neural activity. Commun. Biol. 2023, 6, 332. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, X.; Zhao, Q.; Li, J.; Wu, Z.G. Adaptive neural dynamic surface control with prespecified tracking accuracy of uncertain stochastic nonstrict-feedback systems. IEEE Trans. Cybern. 2022, 52, 3408–3421. [Google Scholar] [CrossRef] [PubMed]
- Hursh, S.R. System and Method for Evaluating Task Effectiveness Based on Sleep Pattern. US Patent 6,579,233, 17 June 2003. [Google Scholar]
- Roach, G.D.; Fletcher, A.; Dawson, D. A model to predict work-related fatigue based on hours of work. Aviat. Space Environ. Med. 2004, 75, A61–A69. [Google Scholar] [PubMed]
- Borbély, A.A.; Achermann, P. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 1999, 14, 557–568. [Google Scholar] [CrossRef]
- Ingre, M.; Van Leeuwen, W.; Klemets, T.; Ullvetter, C.; Hough, S.; Kecklund, G.; Karlsson, D.; Åkerstedt, T. Validating and extending the three process model of alertness in airline operations. PLoS ONE 2014, 9, e108679. [Google Scholar] [CrossRef]
- Peng, H.T.; Bouak, F.; Wang, W.; Chow, R.; Vartanian, O. An improved model to predict performance under mental fatigue. Ergonomics 2018, 61, 988–1003. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Zhang, L.; Zhang, X.; Zhou, Y.; Zhang, H. Study on homeostasis and circadian rhythm of attention performance of different chronotypes in sleep deprivation. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2022, 39, 248–256. [Google Scholar] [CrossRef]
- Samel, A.; Wegmann, H.M.; Vejvoda, M.; Drescher, J.; Gundel, A.; Manzey, D.; Wenzel, J. Two-crew operations: Stress and fatigue during long-haul night flights. Aviat. Space Environ. Med. 1997, 68, 679–687. [Google Scholar]
- Gander, P.H.; Mangie, J.; Van Den Berg, M.J.; Smith, A.A.T.; Mulrine, H.M.; Signal, T.L. Crew fatigue safety performance indicators for fatigue risk management systems. Aviat. Space Environ. Med. 2014, 85, 139–147. [Google Scholar] [CrossRef]
- Epstein, J.N.; Erkanli, A.; Conners, C.K.; Klaric, J.; Costello, J.E.; Angold, A. Relations between continuous performance test performance measures and ADHD behaviors. J. Abnorm. Child Psychol. 2003, 31, 543–554. [Google Scholar] [CrossRef]
- Pagen, L.H.G.; Smeets, T.; Schmiedek, L.; Yassa, M.A.; Verhey, F.R.J.; Jacobs, H.I.L. Elevated activity of the sympathetic nervous system is related to diminished practice effects in memory: A pilot study. J. Alzheimer’s Dis. 2021, 80, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.M.C.; Spencer, M.B.; Petrie, K.J. Comparison of in-flight measures with predictions of a bio-mathematical fatigue model. Aviat. Space Environ. Med. 2014, 85, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Transport Canada. Fatigue Risk Management System Requirements: Advisory Circular (AC) No. 700-046; Civil Aviation, Standards: Ottawa, ON, Canada, 2020. Available online: https://tc.canada.ca/en/aviation/reference-centre/advisory-circulars/advisory-circular-ac-no-700-046 (accessed on 4 December 2023).
- Caldwell, J.A.; Caldwell, J.L.; Thompson, L.A.; Lieberman, H.R. Fatigue and its management in the workplace. Neurosci. Biobehav. Rev. 2019, 96, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.E.; Fischer, F.M.; Helene, O.; Antunes, E.; Furlan, E.; Morteo, E.; Menquini, A.; Lisboa, J.; Frank, A.; Simões, A.; et al. Modelling the root causes of fatigue and associated risk factors in the Brazilian regular aviation industry. Saf. Sci. 2023, 157, 105905. [Google Scholar] [CrossRef]
- Sammito, S.; Cyrol, D.; Post, J. Fatigue and ability to concentrate in flight attendants during ultra-long-range flights. High Alt. Med. Biol. 2022, 23, 159–164. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Zhou, Y. The sustained attention characteristics of flight crews on exempt and non-exempt flights. Chronobiol. Int. 2023, 40, 926–937. [Google Scholar] [CrossRef]
- Valdez, P.; Ramírez, C.; García, A.; Talamantes, J.; Cortez, J. Circadian and homeostatic variation in sustained attention. Chronobiol. Int. 2010, 27, 393–416. [Google Scholar] [CrossRef]
- Völker, I.; Kirchner, C.; Bock, O.L. On the relationship between subjective and objective measures of fatigue. Ergonomics 2016, 59, 1259–1263. [Google Scholar] [CrossRef]
- Bellew, D.; Davenport, L.; Monaghan, R.; Cogley, C.; Gaughan, M.; Yap, S.M.; Tubridy, N.; Bramham, J.; McGuigan, C.; O’Keeffe, F.; et al. Interpreting the clinical importance of the relationship between subjective fatigue and cognitive impairment in multiple sclerosis (MS): How BICAMS performance is affected by MS-related fatigue. Mult. Scler. Relat. Disord. 2022, 67, 104161. [Google Scholar] [CrossRef]
- Brown, L.S.; St Hilaire, M.A.; McHill, A.W.; Phillips, A.J.K.; Barger, L.K.; Sano, A.; Czeisler, C.A.; Doyle, F.J.; Klerman, E.B.; Doyle, F.J.; et al. A classification approach to estimating human circadian phase under circadian alignment from actigraphy and photometry data. J. Pineal Res. 2021, 71, e12745. [Google Scholar] [CrossRef]
- Riedy, S.M.; Fekedulegn, D.; Andrew, M.; Vila, B.; Dawson, D.; Violanti, J. Generalizability of a biomathematical model of fatigue’s sleep predictions. Chronobiol. Int. 2020, 37, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.; Darwent, D.; Roach, G.D. How should a bio-mathematical model be used within a fatigue risk management system to determine whether or not a working time arrangement is safe? Accid. Anal. Prev. 2017, 99, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Pilkington-Cheney, F.; Filtness, A.; Jones, W.; Maynard, S.; Gibb, A.; Haslam, R. Biomathematical modelling for managing worker fatigue in civil engineering. Proc. Inst. Civ. Eng. Civ. Eng. 2020, 173, 187–192. [Google Scholar] [CrossRef]
Period | Type of Operation | Assign a Value to α |
---|---|---|
Alertness resource consumption (duty) | Short-haul flight | 1 |
Long-haul overnight flight | 0.8 | |
Long-haul non-overnight flight | 0.6 | |
Reaching the critical state of monthly cumulative fatigue | 1.5 | |
Alertness resource recovery (off duty) | Short-haul flight | 1 |
Long-haul overnight flight | 0.8 | |
Long-haul non-overnight flight | 1 | |
Reaching the critical state of monthly cumulative fatigue | 0.6 |
Parameters | Definition | Assignment |
---|---|---|
τd | Time constant of the homeostatic function for the duty period | 18.2 |
τr | Time constant of the homeostatic function for the off-duty period | 4.2 |
φ1 | Phase of the circadian process 24 h rhythm | 18 |
φ2 | Phase of the circadian process 12 h rhythm | 21 |
C1 | Amplitude of 24 h rhythm of circadian process | 0.97 |
C2 | Amplitude of 12 h rhythm of circadian process | 0.23 |
Rm | Alertness resource capacity | 100 |
R0 | Reserve of alert resources for initial moments of duty | 53.05 |
β | Adjustment coefficient for fatigue value | 10 |
Operation Area | Overnight or Not | Air Route (IATA Three-Letter Designator) | No. of Crew Members | No. of Outbound Results | No. of Returning Results | Total | KSS | SP | MRT |
---|---|---|---|---|---|---|---|---|---|
North America | Yes | PVG-LAX-PVG | 4 | 64 | 78 | 142 | 3.51 ± 1.65 | 2.44 ± 0.96 | 1433.20 ± 493.20 |
PKX-YVR-PKX | |||||||||
PVG-YYZ-PVG | |||||||||
No | PVG-LAX-PVG | 6 | 41 | 2 | 43 | 3.12 ± 1.16 | 2.21 ± 0.71 | 1267.95 ± 275.36 | |
Oceania | No | PKX-AKL-PKX | 6 | 65 | 12 | 77 | 3.29 ± 1.37 | 2.44 ± 0.83 | 1292.92 ± 302.74 |
PVG-MEL-PVG | |||||||||
PKX-SYD-PKX | |||||||||
Europe | Yes | PKX-AMS-PKX | 4 | 26 | 15 | 41 | 3.88 ± 1.29 | 2.68 ± 0.76 | 1530.42 ± 471.64 |
PVG-FRA-PVG | |||||||||
PVG-STN-PVG | |||||||||
No | PKX-AMS-PKX | 6 | 74 | 5 | 79 | 3.38 ± 1.39 | 2.38 ± 0.76 | 1368.23 ± 396.12 | |
PVG-FRA-PVG | |||||||||
PVG-LHR-PVG | |||||||||
PVG-STN-PVG |
Type of Operation | KSS | SP | MRT | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Operation Area | 1.708 | 0.183 | 2.450 | 0.088 | 4.947 | 0.008 |
Overnight or Not | 1.976 | 0.161 | 1.332 | 0.249 | 1.254 | 0.264 |
Outbound-Return Trip | 15.907 | 0.000 | 11.989 | 0.001 | 6.129 | 0.014 |
Overnight or Not and Outbound-Return Trip | 13.308 | 0.000 | 7.482 | 0.007 | 12.323 | 0.001 |
Operation Area and Overnight or Not | 0.015 | 0.904 | 0.019 | 0.890 | 0.190 | 0.663 |
Operation Area and Outbound-Return Trip | 0.459 | 0.633 | 1.431 | 0.240 | 2.822 | 0.061 |
No. of Cases | Correlation (r) | Significance (p) | Type of Correlation | |
---|---|---|---|---|
Objective observations—model simulation values | 146 | 0.491 | <0.001 | medium positive correlation |
Subjective observations—model simulation values | 146 | 0.736 | <0.001 | strong positive correlation |
Subjective observations—objective observations | 146 | 0.661 | <0.001 | strong positive correlation |
Fatigue Factor | Risk Score | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 4 | 8 | |
Total duty hours in 7 days | ≤36 | 36.1–43.9 | 44–47.9 | 48–54.9 | ≥55 |
Maximum duration of a single duty period (h) | ≤8 | 8.1–9.9 | 10–11.9 | 12–13.9 | ≥14 |
Minimum duration of a short break (h) | ≤16 | 15.9–3 | 12.9–10 | 9.9–8 | <8 |
Total hours of night work in 7 days (21:00–09:00) | 0 | 0.1–8 | 8.1–16 | 16.1–24 | >24 |
Frequency of long breaks (two-night sleeps with a non-working day) | >1 in 7 days | ≤1 in 7 days | ≤1 in 14 days | ≤1 in 21 days | ≤1 in 28 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhu, H.; Liu, A. Pilot Fatigue Coefficient Based on Biomathematical Fatigue Model. Aerospace 2024, 11, 950. https://doi.org/10.3390/aerospace11110950
Li J, Zhu H, Liu A. Pilot Fatigue Coefficient Based on Biomathematical Fatigue Model. Aerospace. 2024; 11(11):950. https://doi.org/10.3390/aerospace11110950
Chicago/Turabian StyleLi, Jingqiang, Hongyu Zhu, and Annan Liu. 2024. "Pilot Fatigue Coefficient Based on Biomathematical Fatigue Model" Aerospace 11, no. 11: 950. https://doi.org/10.3390/aerospace11110950
APA StyleLi, J., Zhu, H., & Liu, A. (2024). Pilot Fatigue Coefficient Based on Biomathematical Fatigue Model. Aerospace, 11(11), 950. https://doi.org/10.3390/aerospace11110950