Experimental Evaluation of Lunar Regolith Settlement Caused by Ice Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Apparatus
2.3. Specimen Preparation and Testing Method
3. Results
3.1. Initial Water Content and Overburden Pressure
3.2. Ice Texture
4. Discussion
4.1. Ice Content and Overburden Pressure
4.2. Settlement Caused by Structural Change
4.3. Ice Texture
5. Conclusions
- (1)
- At the same pressure level, an initial water content of approximately 5% appears to be a critical threshold. Beyond this threshold, when the water content reaches approximately 10%, even a relatively small overburden pressure of 4.2 kPa can lead to settlement ratios ranging from 6.68% to 12.75%. For the water contents of lunar regolith (5.6 ± 2.9)%, the settlement ratio may reach around 5%. Therefore, care must be taken when extracting ice from water-rich unsaturated lunar regolith ice layers.
- (2)
- Based on existing research and assumptions, this study reproduced three structures of ice-bearing lunar regolith and examined the amount of settlement due to extraction of the ice. Ice-coated or ice-cemented regolith (case II) showed the greatest settlement. The smallest initial dry unit weight of case II explains this phenomenon. When relatively large ice-regolith agglomerates melt, porosity increases along with void volume, leading to the largest settlement and the largest change in dry unit weight under pressure. However, if lunar ice exists as ice breccia containing ice crystals, the amount of settlement due to its extraction is expected to be insignificant.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meurisse, A.; Carpenter, J. Past, present and future rationale for space resource utilisation. Planet. Space Sci. 2020, 182, 104853. [Google Scholar] [CrossRef]
- Johnson, G.W.S. A report of the working group on extraterrestrial resources. In Astronautics Information: Recommendations for Utilization of Lunar Resources; Jet Propulsion Lab., California Inst. of Tech.: Pasadena, CA, USA, 1963. [Google Scholar]
- Cilliers, J.; Hadler, K.; Rasera, J. Toward the utilisation of resources in space: Knowledge gaps, open questions, and priorities. Npj Microgravity 2023, 9, 22. [Google Scholar] [CrossRef]
- Jayathilake, B.A.C.S.; Ilankoon, I.M.S.K.; Dushyantha, M.N.P. Assessment of significant geotechnical parameters for lunar regolith excavations. Acta Astronaut. 2022, 196, 107–122. [Google Scholar] [CrossRef]
- Anand, M.; Crawford, I.A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R.; Seboldt, W. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet. Space Sci. 2012, 74, 42–48. [Google Scholar] [CrossRef]
- Kaschubek, D.; Killian, M.; Grill, L. System analysis of a Moon base at the south pole: Considering landing sites, ECLSS and ISRU. Acta Astronaut. 2021, 186, 33–49. [Google Scholar] [CrossRef]
- Sanders, G.B.; Larson, W.E. Progress Made in Lunar In Situ Resource Utilization under NASA’s Exploration Technology and Development Program. J. Aerosp. Eng. 2013, 26, 5–17. [Google Scholar] [CrossRef]
- Larson, W.E.; Picard, M.; Colaprete, A.; Sanders, G.B.; Elphic, R.C. RESOLVE: Ground truth for polar volatiles as a resource. In Proceedings of the 62nd International Astronautical Congress Conference/International Astronautical Federation, Cape Town, South Africa, 3–7 October 2011; NASA Kennedy Space Center: Cocoa Beach, FL, USA, 2011. [Google Scholar]
- Radl, A.; Neumann, K.M.; Wotruba, H.; Clausen, E.; Friedrich, B. From lunar regolith to oxygen and structural materials: An integrated conceptual design. CEAS Space J. 2023, 15, 585–595. [Google Scholar] [CrossRef]
- Guerrero-Gonzalez, F.J.; Zabel, P. System analysis of an ISRU production plant: Extraction of metals and oxygen from lunar regolith. Acta Astronaut. 2023, 203, 187–201. [Google Scholar] [CrossRef]
- Stoeser, D.; Rickman, D.; Wilson, S. Design and Specifications for the Highland Regolith Prototype Simulants NU-LHT-1M and-2M. 2010. Available online: https://www.lpi.usra.edu/lunar/samples/2010_216438.pdf (accessed on 16 November 2023).
- Ellery, A. Sustainable in-situ resource utilization on the Moon. Planet. Space Sci. 2020, 184, 104870. [Google Scholar] [CrossRef]
- Taylor, L.A.; Carrier, W.D. Production of Oxygen on the Moon: Which Processes Are Best and Why. AIAA J. 1992, 30, 2858–2863. [Google Scholar] [CrossRef]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of water in the LCROSS ejecta plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T.; Wakabayashi, S.; Ohtake, M.; Karouji, Y.; Hayashi, T.; Morimoto, H.; Shiraishi, H.; Shimada, T.; Hashimoto, T.; Inoue, H.; et al. Lunar polar exploration mission for water prospection—JAXA’s current status of joint study with ISRO. Acta Astronaut. 2020, 176, 52–58. [Google Scholar] [CrossRef]
- Feder, J. NASA Prepares to Drill for the “Oil of Space”. J. Pet. Technol. 2021, 73, 24–28. [Google Scholar] [CrossRef]
- Heinicke, C.; Foing, B. Human habitats: Prospects for infrastructure supporting astronomy from the Moon. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20190568. [Google Scholar] [CrossRef] [PubMed]
- Hayne, P.O.; Hendrix, A.; Sefton-Nash, E.; Siegler, M.A.; Lucey, P.G.; Retherford, K.D.; Williams, J.-P.; Greenhagen, B.T.; Paige, D.A. Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 2015, 255, 58–69. [Google Scholar] [CrossRef]
- Cocks, F. Lunar Ice: Adsorbed Water on Subsurface Polar Dust. Icarus 2002, 160, 386–397. [Google Scholar] [CrossRef]
- Duke, M.B. Lunar polar ice deposits: Scientific and utilization objectives of the Lunar Ice Discovery Mission proposal. Acta Astronaut. 2002, 50, 379–383. [Google Scholar] [CrossRef]
- Hodges, R.R. Ice in the lunar polar regions revisited. J. Geophys. Res. Planets 2002, 107, 6-1–6-7. [Google Scholar] [CrossRef]
- Anand, M. Lunar Water: A Brief Review. Earth Moon Planets 2011, 107, 65–73. [Google Scholar] [CrossRef]
- Cannon, K.M.; Britt, D.T. A geologic model for lunar ice deposits at mining scales. Icarus 2020, 347, 113778. [Google Scholar] [CrossRef]
- Nasa. NASA’s Management of the Orion Multi-Purpose Crew Vehicle Program. 2020. Available online: https://oig.nasa.gov/docs/IG-20-018.pdf (accessed on 16 November 2023).
- ESA Strategy for Science at the Moon. 2019. Available online: https://sci.esa.int/documents/34161/35992/1567260389633-ESA_Strategy_for_Science_at_the_Moon.pdf%20 (accessed on 16 November 2023).
- International Space Exploration Coordination Group (ISECG). Scientific Opportunities Enabled by Human Exploration Beyond Low-Earth Orbit. 2018. Available online: https://www.globalspaceexploration.org/wordpress/wp-content/isecg/ISECG%20SWP_FINAL-web_2017-12.pdf (accessed on 16 November 2023).
- Johnson, D.K.M.; Dreyer, C.B.; Cannon, K.M.; Sowers, G. Pressure Sintered icy lunar regolith Simulant (PSS): A novel icy regolith simulant production method. Icarus 2024, 410, 115885. [Google Scholar] [CrossRef]
- Sowers, G.F.; Dreyer, C.B. Ice Mining in Lunar Permanently Shadowed Regions. New Space 2019, 7, 235–244. [Google Scholar] [CrossRef]
- Cole, J.D.; Lim, S.; Sargeant, H.M.; Sheridan, S.; Anand, M.; Morse, A. Water extraction from icy lunar simulants using low power microwave heating. Acta Astronaut. 2023, 209, 95–103. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, W.; Cui, J.; Ren, Z.; Wang, E.; Li, X.; Wei, G.; Tian, Y.; Ji, J.; Ma, J.; et al. Extreme low-temperature freezing process and characteristic curve of icy lunar regolith simulant. Acta Astronaut. 2023, 202, 485–496. [Google Scholar] [CrossRef]
- Nasa. Lunar Rocks and Soils from Apollo Missions. 2023. Available online: https://curator.jsc.nasa.gov/lunar/ (accessed on 16 November 2023).
- Edmunson, J.; Betts, W.; Rickman, D.; Mclemore, C.; Fikes, J.; Stoeser, D.; Wilson, S.; Schrader, C. NASA lunar regolith simulant program. In Proceedings of the Lunar and Planetary Science Conference, Marshall Space Flight Center, The Woodlands, TX, USA, 1–5 March 2010. [Google Scholar]
- Ryu, B.-H.; Baek, Y.; Kim, Y.-S.; Chang, I. Basic Study for a Korean Lunar Simulant (KLS-1) Development. J. Korean Geotech. Soc. 2015, 31, 53–63. [Google Scholar] [CrossRef]
- Ryu, B.-H.; Wang, C.-C.; Chang, I. Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant. J. Aerosp. Eng. 2018, 31, 04017083. [Google Scholar] [CrossRef]
- Schnetzler, C.C.; Nava, D.F. Chemical composition of Apollo 14 soils 14163 and 14259. Earth Planet. Sci. Lett. 1971, 11, 345–350. [Google Scholar] [CrossRef]
- Willman, B.M.; Boles, W.W.; Mckay, D.S.; Allen, C.C. Properties of lunar soil simulant JSC-1. J. Aerosp. Eng. 1995, 8, 77–87. [Google Scholar] [CrossRef]
- Kanamori, H.; Udagawa, S.; Yoshida, T.; Matsumoto, S.; Takagi, K. Properties of lunar soil simulant manufactured in Japan. Space 1998, 98, 462–468. [Google Scholar] [CrossRef]
- ASTM D 4643-17; Standard Test Method for Determination of Water Content of Soil and Rock by Microwave Oven Heating. ASTM International: West Conshohocken, PA, USA, 2017.
- Baker, D. Lunar Roving Vehicle: Design Report. Spaceflight 1971, 13, 234–240. [Google Scholar]
- Jin, H.; Lee, J.; Zhung, L.; Ryu, B.H. Laboratory investigation of unconfined compression behavior of ice and frozen soil mixtures. Geomech. Eng. 2022, 22, 219–226. [Google Scholar] [CrossRef]
- Lackner, R.; Amon, A.; Lagger, H. Artificial ground freezing of fully saturated soil. J. Eng. Mech. 2005, 131, 211–220. [Google Scholar] [CrossRef]
lunar Simulant | Cohesion (kPa) | Friction Angle (°) | Specific Gravity (−) | Remarks |
---|---|---|---|---|
JSC-1 | 1.00 | 45.00 | 2.90 | [37] |
1.65 | 45.00 | 2.92 | [35] | |
FJS-1 | 3–8 | 32.5–39.4 | 2.94 | [38] |
8.13 | 39.40 | 2.90 | [35] | |
KLS-1 | 1.85 | 44.90 | 2.94 | [35] |
CASE | Overburden Pressure (kPa) | Specimen Mass (g) | Water Content (%) | Height (mm) | Soil Mass (g) | Water Mass (g) | Dry Unit Mass (kN/m3) | |
---|---|---|---|---|---|---|---|---|
P | Wt | wi | H0 | Hi | Ws | Ww | ɣd | |
I-1-1 | 4.2 | 4927.3 | 11.3 | 120.7 | 119.1 | 4415.1 | 498.9 | 11.6 |
I-1-2 | 5468.0 | 4.9 | 112.3 | 111.3 | 5212.6 | 255.4 | 14.6 | |
I-1-3 | 5585.0 | 1.3 | 106.3 | 106.1 | 5513.3 | 71.67 | 16.2 | |
II-1-1 | 4350.0 | 10.6 | 115.3 | 114.2 | 3933.1 | 416.9 | 10.8 | |
II-1-2 | 4288.3 | 10.6 | 118.7 | 116.1 | 3887.9 | 412.1 | 10.5 | |
III-1 | 4941.5 | 10.0 | 110.7 | 110.9 | 4496.4 | 449.6 | 12.7 | |
I-2-1 | 10.4 | 4936.1 | 11.3 | 119.0 | 116.5 | 4415.1 | 498.9 | 11.9 |
I-2-2 | 5482.2 | 4.9 | 114.0 | 111.9 | 5221.2 | 255.8 | 14.6 | |
I-2-3 | 5751.0 | 1.3 | 109.0 | 106.7 | 5677.2 | 73.8 | 16.6 | |
II-2-1 | 4346.1 | 10.6 | 115.7 | 112.5 | 3933.9 | 416.9 | 10.9 | |
II-2-2 | 4262.4 | 10.6 | 119.7 | 116.7 | 3864.4 | 409.6 | 10.3 | |
III-2 | 5293.9 | 9.9 | 121.0 | 120.8 | 4821.5 | 477.3 | 12.5 |
Case | Overburden Pressure (kPa) | Water Content (%) | Specimen Height (mm) | Measured Settlement (mm) | Settlement Ratio (%) | Dry Unit Weight ɣd (kN/m3) | |||
---|---|---|---|---|---|---|---|---|---|
P | wi | wf | Hi | Hf | s | SR | Initial | Final | |
I-1-1 | 4.2 | 11.3 | 11.6 | 119.1 | 111.2 | 7.95 | 6.68 | 11.6 | 12.4 |
I-1-2 | 4.90 | 4.80 | 111.3 | 110.3 | 1.00 | 0.90 | 14.6 | 14.8 | |
I-1-3 | 1.30 | 1.20 | 106.1 | 106.0 | 0.10 | 0.09 | 16.2 | 16.2 | |
I-2-1 | 10.4 | 11.3 | 11.8 | 116.5 | 104.4 | 12.10 | 10.39 | 11.8 | 13.2 |
I-2-2 | 4.90 | 5.00 | 111.9 | 109.5 | 2.40 | 2.14 | 14.6 | 14.9 | |
I-2-3 | 1.30 | 1.30 | 106.7 | 106.3 | 0.40 | 0.37 | 16.6 | 16.7 |
Case | Overburden Pressure (KPa) | Water Content (%) | Specimen Height (mm) | Measured Settlement (mm) | Settlement Ratio (%) | Calculated Settlement 1 (mm) | Dry Unit Weight ɣd (kN/m3) | |||
---|---|---|---|---|---|---|---|---|---|---|
P | wi | wf | Hi | Hf | s | SR | Initial | Final | ||
I-1-1 | 4.2 | 11.3 | 11.6 | 119.1 | 111.2 | 7.95 | 6.68 | 1.43 | 11.6 | 12.4 |
II-1-1 | 10.6 | 10.6 | 114.2 | 101.6 | 12.60 | 11.03 | 1.19 | 10.8 | 12.1 | |
II-1-2 | 10.6 | 10.3 | 116.1 | 101.3 | 14.80 | 12.75 | 1.18 | 10.5 | 12.0 | |
III-1 | 10.0 | 9.90 | 110.7 | 110.7 | 0.17 | 0.09 | 1.29 | 12.7 | 12.7 | |
I-2-1 | 10.4 | 11.3 | 11.8 | 116.5 | 104.4 | 12.10 | 11.03 | 1.43 | 11.8 | 13.2 |
II-2-2 | 10.6 | 10.5 | 112.5 | 95.5 | 17.00 | 15.11 | 1.19 | 10.9 | 12.9 | |
II-2-2 | 10.6 | 10.3 | 116.7 | 96.4 | 20.30 | 17.40 | 1.17 | 10.3 | 12.5 | |
III-2 | 9.90 | 9.80 | 120.8 | 119.2 | 1.60 | 1.32 | 1.37 | 12.5 | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Barnett, N.; Lee, J.; Jin, H.; Ryu, B.; Ko, T.; Oh, J.; Dempster, A.; Saydam, S. Experimental Evaluation of Lunar Regolith Settlement Caused by Ice Extraction. Aerospace 2024, 11, 207. https://doi.org/10.3390/aerospace11030207
Gong Z, Barnett N, Lee J, Jin H, Ryu B, Ko T, Oh J, Dempster A, Saydam S. Experimental Evaluation of Lunar Regolith Settlement Caused by Ice Extraction. Aerospace. 2024; 11(3):207. https://doi.org/10.3390/aerospace11030207
Chicago/Turabian StyleGong, Zheng, Nicholas Barnett, Jangguen Lee, Hyunwoo Jin, Byunghyun Ryu, Taeyoung Ko, Joung Oh, Andrew Dempster, and Serkan Saydam. 2024. "Experimental Evaluation of Lunar Regolith Settlement Caused by Ice Extraction" Aerospace 11, no. 3: 207. https://doi.org/10.3390/aerospace11030207
APA StyleGong, Z., Barnett, N., Lee, J., Jin, H., Ryu, B., Ko, T., Oh, J., Dempster, A., & Saydam, S. (2024). Experimental Evaluation of Lunar Regolith Settlement Caused by Ice Extraction. Aerospace, 11(3), 207. https://doi.org/10.3390/aerospace11030207