A DRL-Based Satellite Service Allocation Method in LEO Satellite Networks
Abstract
:1. Introduction
- In accordance with the actual computational resource conditions of LEO satellites, we have modeled the computational resources of LEO satellites. Additionally, we have formulated the SSA problem as a Markov decision process (MDP).
- We designed an adaptive reinforcement learning model capable of adjusting service allocation for varying numbers of users. This model outputs optimal service allocation schemes based on the specific user demands.
- Based on the proposed model, we generated several datasets and conducted model evaluation experiments as well as algorithm assessment experiments. These evaluations were aimed at assessing the performance of our proposed model and algorithm. The results indicate that our approach outperforms baseline methods.
2. System Model
2.1. Network Model
2.2. Resource Model
3. Problem Statement
4. Proposed Method
4.1. DRL-Based Method
4.2. MCF-Based Method
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LEO | low Earth orbit |
SSA | satellite service allocation |
DRL | deep reinforcement learning |
MDP | Markov decision process |
SATCOM | satellite communication |
BPP | binomial point process |
PPP | Poisson point process |
CDF | Cumulative distribution function |
BW | bandwidth |
EUA | edge user allocation |
ISTN | integrated satellite–terrestrial network |
References
- Mahmood, N.H.; Alves, H.; López, O.A.; Shehab, M.; Moya Osorio, D.P.; Latva-Aho, M. Six Key Features of Machine Type Communication in 6G. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Tang, J.; Bian, D.; Li, G.; Hu, J.; Cheng, J. Resource Allocation for LEO Beam-Hopping Satellites in a Spectrum Sharing Scenario. IEEE Access 2021, 9, 56468–56478. [Google Scholar] [CrossRef]
- Xiong, X.; Zheng, K.; Lei, L.; Hou, L. Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing. IEEE J. Sel. Areas Commun. 2020, 38, 1133–1146. [Google Scholar] [CrossRef]
- Kodheli, O.; Maturo, N.; Chatzinotas, S.; Andrenacci, S.; Zimmer, F. NB-IoT via LEO Satellites: An Efficient Resource Allocation Strategy for Uplink Data Transmission. IEEE Int. Things J. 2022, 9, 5094–5107. [Google Scholar] [CrossRef]
- Ivanov, A.; Stoliarenko, M.; Kruglik, S.; Novichkov, S.; Savinov, A. Dynamic Resource Allocation in LEO Satellite. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 930–935. [Google Scholar]
- Zhou, J.; Sun, Z.; Zhang, R.; Lin, G.; Zhang, S.; Zhao, Y. A Cloud-Edge Collaboration CNN-Based Routing Method for ISAC in LEO Satellite Networks. In Proceedings of the 2nd Workshop on Integrated Sensing and Communications for Metaverse, ISACom ’23, Helsinki, Finland, 18 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 25–29. [Google Scholar]
- Huang, L.; Feng, X.; Zhang, C.; Qian, L.; Wu, Y. Deep Reinforcement Learning-Based Joint Task Offloading and Bandwidth Allocation for Multi-User Mobile Edge Computing. Digit. Commun. Netw. 2019, 5, 10–17. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Peng, M. Joint Beam Direction Control and Radio Resource Allocation in Dynamic Multi-beam LEO Satellite Networks. IEEE Trans. Veh. Technol. 2024, 1–15. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, S.; Wang, Z.; Mao, S. A Joint Learning and Game-Theoretic Approach to Multi-Dimensional Resource Management in Fog Radio Access Networks. IEEE Trans. Veh. Technol. 2023, 72, 2550–2563. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Y.; Peng, M. Timing Advance Estimation in Low Earth Orbit Satellite Networks. IEEE Trans. Veh. Technol. 2024, 73, 4366–4382. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Peng, M. Joint Network Function Placement and Routing Optimization in Dynamic Software-defined Satellite-Terrestrial Integrated Networks. IEEE Trans. Wirel. Commun. 2024, 23, 5172–5186. [Google Scholar] [CrossRef]
- Xv, H.; Sun, Y.; Zhao, Y.; Peng, M.; Zhang, S. Joint Beam Scheduling and Beamforming Design for Cooperative Positioning in Multi-beam LEO Satellite Networks. IEEE Trans. Veh. Technol. 2023, 73, 5276–5287. [Google Scholar] [CrossRef]
- Leng, T.; Li, X.; Hu, D.; Cui, G.; Wang, W.; Wen, M. Collaborative Computing and Resource Allocation for LEO Satellite-Assisted Internet of Things. Wirel. Commun. Mob. Comput. 2021, 2021, 4212548. [Google Scholar]
- Zhao, J.; Chen, S.; Jin, C. Data scheduling and resource allocation in LEO satellite networks for IoT task offloading. Wirel. Netw. 2023. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Qiu, C.; Lin, Q.; Li, J.; Ming, Z. Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach. IEEE Int. Things J. 2021, 8, 2226–2237. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, G.; Zhou, J.; Zhao, Y. Research on Satellite Routing Method Based on Q-Learning in Failure Scenarios. In Proceedings of the 2023 Chinese Intelligent Systems Conference, Ningbo, China, 14–15 October 2023; Lecture Notes in Electrical Engineering. Jia, Y., Zhang, W., Fu, Y., Wang, J., Eds.; Springer Nature: Singapore, 2023; pp. 433–445. [Google Scholar]
- Huang, J.; Yang, Y.; Lee, J.; He, D.; Li, Y. Deep Reinforcement Learning Based Resource Allocation for RSMA in LEO Satellite-Terrestrial Networks. IEEE Trans. Commun. 2023, 72, 1341–1354. [Google Scholar] [CrossRef]
- Baeza, V.M.; Ortiz, F.; Lagunas, E.; Abdu, T.S.; Chatzinotas, S. Gateway Station Geographical Planning for Emerging Non-Geostationary Satellites Constellations. IEEE Netw. 2023, 1–1. [Google Scholar] [CrossRef]
- Cheng, L.; Feng, G.; Sun, Y.; Liu, M.; Qin, S. Dynamic Computation Offloading in Satellite Edge Computing. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 4721–4726. [Google Scholar]
- Dai, C.-Q.; Luo, J.; Fu, S.; Wu, J.; Chen, Q. Dynamic User Association for Resilient Backhauling in Satellite–Terrestrial Integrated Networks. IEEE Syst. J. 2020, 14, 5025–5036. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Wu, L.; Zhang, Z.; Dang, J. A Satellite Handover Strategy Based on MIMO Technology in LEO Satellite Networks. IEEE Commun. Lett. 2020, 24, 1505–1509. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, L.; Wu, J.; Guo, Q.; Gu, X. Joint computing and communication resource allocation for edge computing towards Huge LEO networks. China Commun. 2022, 19, 73–84. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Zhou, H.; Wang, N.; Long, K.; Al-Rubaye, S.; Karagiannidis, G.K. Multi-Agent DRL for Resource Allocation and Cache Design in Terrestrial-Satellite Networks. IEEE Trans. Wirel. Commun. 2023, 22, 5031–5042. [Google Scholar] [CrossRef]
- Nguyen-Kha, H.; Ha, V.N.; Lagunas, E.; Chatzinotas, S.; Grotz, J. Two-Tier User Association and Resource Allocation Design for Integrated Satellite-Terrestrial Networks. In Proceedings of the 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 28 May–1 June 2023; pp. 1234–1239. [Google Scholar]
- Qiu, J.; Zhang, H.; Zhou, L.; Hu, P.; Wang, J. A Reinforcement Learning Based Resource Access Strategy for Satellite-Terrestrial Integrated Networks. In Machine Learning and Intelligent Communication; Jiang, X., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 97–107. [Google Scholar]
- Song, Y.; Li, X.; Ji, H.; Zhang, H. Energy-Aware Task Offloading and Resource Allocation in the Intelligent LEO Satellite Network. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022; pp. 481–486. [Google Scholar]
- Sun, W.; Cao, B. Efficient Transmission of Multi Satellites-Multi Terrestrial Nodes Under Large-Scale Deployment of LEO. In Wireless Sensor Networks; Hao, Z., Dang, X., Chen, H., Li, F., Eds.; Springer: Singapore, 2020; pp. 140–154. [Google Scholar]
- Wang, B.; Feng, T.; Huang, D. A Joint Computation Offloading and Resource Allocation Strategy for LEO Satellite Edge Computing System. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; pp. 649–655. [Google Scholar]
- Wang, B.; Xie, J.; Huang, D.; Xie, X. A Computation Offloading Strategy for LEO Satellite Mobile Edge Computing System. In Proceedings of the 2022 14th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 10–12 June 2022; pp. 75–80. [Google Scholar]
- Wang, R.; Zhu, W.; Liu, G.; Ma, R.; Zhang, D.; Mumtaz, S.; Cherkaoui, S. Collaborative Computation Offloading and Resource Allocation in Satellite Edge Computing. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5625–5630. [Google Scholar]
- Wang, Y.; Zhang, J.; Zhang, X.; Wang, P.; Liu, L. A Computation Offloading Strategy in Satellite Terrestrial Networks with Double Edge Computing. In Proceedings of the 2018 IEEE International Conference on Communication Systems (ICCS), Chengdu, China, 19–21 December 2018; pp. 450–455. [Google Scholar]
- Wei, K.; Tang, Q.; Guo, J.; Zeng, M.; Fei, Z.; Cui, Q. Resource Scheduling and Offloading Strategy Based on LEO Satellite Edge Computing. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–6. [Google Scholar]
- Wu, Y.; Hu, G.; Jin, F.; Zu, J. A Satellite Handover Strategy Based on the Potential Game in LEO Satellite Networks. IEEE Access 2019, 7, 133641–133652. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, X.; Zhang, Z.; Liu, D.; Yin, F. User Selection and Resource Allocation for Satellite-Based Multi-Task Federated Learning System. In Artificial Intelligence in China; Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z., Eds.; Springer Nature: Singapore, 2023; pp. 375–382. [Google Scholar]
- Wang, R.; Kishk, M.A.; Alouini, M.-S. Evaluating the Accuracy of Stochastic Geometry Based Models for LEO Satellite Networks Analysis. IEEE Commun. Lett. 2022, 26, 2440–2444. [Google Scholar] [CrossRef]
- Nguyen-Kha, H.; Ha, V.N.; Lagunas, E.; Chatzinotas, S.; Grotz, J. LEO-to-User Assignment and Resource Allocation for Uplink Transmit Power Minimization. In Proceedings of the WSA & SCC 2023: 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, Braunschweig, Germany, 27 February 2023; pp. 1–6. [Google Scholar]
- Van Chien, T.; Lagunas, E.; Ta, T.H.; Chatzinotas, S.; Ottersten, B. User Scheduling and Power Allocation for Precoded Multi-Beam High Throughput Satellite Systems with Individual Quality of Service Constraints. arXiv 2021, arXiv:2110.02525. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, S.; Wang, D.; Liu, X.; Peng, M. Multi-Service Oriented Multi-Dimensional Resource Requirement Conflicts Coordination in Radio Access Networks. In Proceedings of the ICC 2023—IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 4810–4815. [Google Scholar]
- Chang, J.; Wang, J.; Li, B.; Zhao, Y.; Li, D. Attention-Based Deep Reinforcement Learning for Edge User Allocation. IEEE Trans. Netw. Serv. Manag. 2023, 21, 590–604. [Google Scholar] [CrossRef]
- Lai, P.; He, Q.; Grundy, J.; Chen, F.; Abdelrazek, M.; Hosking, J.; Yang, Y. Cost-Effective App User Allocation in an Edge Computing Environment. IEEE Trans. Cloud Comput. 2022, 3, 1701–1713. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Set of LEO satellites with available resources | |
Set of users with resource requirements | |
Multi-dimensional resource requirements for user services | |
Remaining available resources on LEO satellites | |
The three-dimensional coordinates of users with service requests | |
The three-dimensional coordinates of LEO satellites | |
d | Orbital altitude of LEO satellites |
The minimum communication elevation angle between and | |
Indicator for the existence of services on the satellite | |
A struct used to describe the state of a single satellite | |
Mathematical model of a UE | |
The satellite assigned to the in timeslot t; if unassigned, it is indicated as 0 |
Variable | Description |
---|---|
LEO satellite bandwidth, | 500 MHz |
LEO satellite altitude, d | 1000 km |
LEO satellite antenna gain, | 40 dBi |
UE antenna gain, | 30 dBi |
Number of UEs, K | 100–1000 |
Number of sats, N | 66 |
Mapping range, | 50 |
Minimum communication elevation angle | 60° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhou, J.; Chen, Z.; Wang, X. A DRL-Based Satellite Service Allocation Method in LEO Satellite Networks. Aerospace 2024, 11, 386. https://doi.org/10.3390/aerospace11050386
Zhao Y, Zhou J, Chen Z, Wang X. A DRL-Based Satellite Service Allocation Method in LEO Satellite Networks. Aerospace. 2024; 11(5):386. https://doi.org/10.3390/aerospace11050386
Chicago/Turabian StyleZhao, Yafei, Jiaen Zhou, Zhenrui Chen, and Xinyang Wang. 2024. "A DRL-Based Satellite Service Allocation Method in LEO Satellite Networks" Aerospace 11, no. 5: 386. https://doi.org/10.3390/aerospace11050386
APA StyleZhao, Y., Zhou, J., Chen, Z., & Wang, X. (2024). A DRL-Based Satellite Service Allocation Method in LEO Satellite Networks. Aerospace, 11(5), 386. https://doi.org/10.3390/aerospace11050386