Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation
Abstract
:1. Introduction
2. Related Work
2.1. Mutual Information
2.2. Attention Mechanism
2.3. Deep BiLSTM Model
3. Proposed Method
3.1. Problem Statement
- (1)
- Feature representation is difficult because there are thousands of satellite telemetry data variables, and owing to the coupling and correlation of satellite systems, no single parameter can be used to comprehensively describe performance; moreover, determining which parameters can accurately define particular aspects of performance is challenging.
- (2)
- It is difficult to predict trends because satellite systems are complex, the telemetry signal is non-stationary and non-linear, and the telemetry parameters have three different variation patterns: stationary, abrupt, and periodic.
3.2. Telemetry Correlation Analysis Based on the HKNN-MI Dataset
- (1)
- Determine a strongly correlated feature X0 according to the satellite subsystem or payload to be predicted and set the k value and number of irrelevant features.
- (2)
- Calculate the high-dimensional MI of all input features X and X0 and save it in an array.
- (3)
- Sort the array according to the MI value; the feature corresponding to the maximum MI is considered the first correlation feature X1, followed by the second correlation feature X2.
- (4)
- The weak correlation features are eliminated according to the pre-set number of irrelevant features, and the strong correlation feature subset is obtained.
- (5)
- Calculate the MI between two pairs in the correlation feature set, determine the feature group corresponding to the maximum MI, and obtain the optimal strongly correlated feature subset.
3.3. Combining Attention and BiLSTM for Satellite Operation Prediction
4. Results and Discussion
4.1. Datasets
4.2. Evaluation Metrics
4.3. Experimental Analysis
4.3.1. Telemetry Correlation Analysis
4.3.2. Analysis of Parameters
4.4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, M.; De Brabanter, K.; De Moor, B. New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems. BMC Bioinform. 2014, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.C.; Wu, J.L. A critical feature extraction by kernel PCA in stock trading model. Soft Comput. 2015, 19, 1393–1408. [Google Scholar] [CrossRef]
- Hemavathi, D.; Srimathi, H. Effective feature selection technique in an integrated environment using enhanced principal component analysis. J. Ambient. Intell. Hum. Comput. 2020, 12, 3679–3688. [Google Scholar] [CrossRef]
- Song, Q.; Shepperd, M. Predicting software project effort: A grey relational analysis based method. Expert. Syst. Appl. 2011, 38, 7302–7316. [Google Scholar] [CrossRef]
- Bennasar, M.; Hicks, Y.; Setchi, R. Feature selection using joint mutual information maximisation. Expert. Syst. Appl. 2015, 42, 8520–8532. [Google Scholar] [CrossRef]
- Hoque, N.; Singh, M.; Bhattacharyya, D.K. EFS-MI: An ensemble feature selection method for classification. Complex. Intell. Syst. 2018, 4, 105–118. [Google Scholar] [CrossRef]
- Bostani, H.; Sheikhan, M. Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems. Soft Comput. 2017, 21, 2307–2324. [Google Scholar] [CrossRef]
- Kottath, R.; Poddar, S.; Sardana, R.; Bhondekar, A.P.; Karar, V. Mutual information based feature selection for stereo visual odometry. J. Intell. Robot. Syst. 2020, 100, 1559–1568. [Google Scholar] [CrossRef]
- Li, S.Q.; Harner, E.J.; Adjeroh, D.A. Random KNN feature selection—A fast and stable alternative to Random Forests. BMC Bioinform. 2011, 12, 450. [Google Scholar] [CrossRef]
- Al-Smadi, A. The estimation of the order of an ARMA process using third-order statistics. Int. J. Syst. Sci. 2005, 36, 975–982. [Google Scholar] [CrossRef]
- Kizilkaya, A.; Kayran, A.H. ARMA model parameter estimation based on the equivalent MA approach. Digit. Signal Process. 2006, 16, 670–681. [Google Scholar] [CrossRef]
- Yuan, F.; Kumar, U.; Galar, D. Reliability prediction using support vector regression. Int. J. Syst. Assur. Eng. Manag. 2010, 1, 263–268. [Google Scholar]
- Gilan, S.S.; Jovein, H.B.; Ramezanianpour, A.A. Hybrid support vector regression—Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin. Constr. Build. Mater. 2012, 34, 321–329. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koom, C.H. Coupling fuzzy-SVR and boosting-SVR models with wavelet decomposition for meteorological drought prediction. Environ. Earth Sci. 2019, 78, 693. [Google Scholar] [CrossRef]
- Gao, W.F.; Han, J. Prediction of destroyed floor depth based on principal component analysis (PCA)-genetic algorithm (GA)-Support Vector Regression (SVR). Geotech. Geol. Eng. 2020, 38, 3481–3491. [Google Scholar] [CrossRef]
- Hao, G. Study on prediction of urbanization level based on ga-bp neural network. In Proceedings of the 21st International Conference on Industrial Engineering and Engineering Management, Macao, China, 15–18 December 2019; pp. 521–522. [Google Scholar]
- Watson, J.D.; Crick, F.H.C. BP neural network-based product quality risk prediction. In Proceedings of the International Conference on Big Data Analytics for Cyber-Physical-Systems, Shengyang, China, 28–29 December 2019; pp. 1021–1026. [Google Scholar]
- He, F.; Zhang, L.Y. Mold breakout prediction in slab continuous casting based on combined method of GA-BP neural network and logic rules. Int. J. Adv. Manuf. Technol. 2018, 95, 4081–4089. [Google Scholar] [CrossRef]
- Yuan, C.H.; Niu, D.X.; Li, C.Z.; Sun, L.; Xu, L. Electricity consumption prediction model based on Bayesian regularized bp neural network. In Proceedings of the International Conference on Cyber Security Intelligence and Analytic, Shenyang, China, 21–22 February 2019; pp. 528–535. [Google Scholar]
- Metu, N.R.; Sasikala, T. Prediction analysis on web traffic data using time series modeling, RNN and ensembling techniques. In Proceedings of the International Conference on Intelligent Data Communication Technologies and Internet of Things; Springer: Cham, Switzerland, 2018; pp. 611–618. [Google Scholar]
- Lin, C.; Chi, M. A comparisons of BKT, RNN and LSTM for learning gain prediction. In Proceedings of the International Conference on Artificial Intelligence in Education, Wuhan, China, 28 June–1 July 2017; pp. 536–539. [Google Scholar]
- Wu, Q.H.; Ding, K.Q.; Huang, B.Q. Approach for fault prognosis using recurrent neural network. J. Intell. Manuf. 2020, 31, 1621–1633. [Google Scholar] [CrossRef]
- Manaswi, N.K. RNN and LSTM. In Deep Learning with Applications Using Python; Apress: New York, NY, USA, 2018. [Google Scholar]
- Poornima, S.; Pushpalatha, M. Drought prediction based on SPI and SPEI with varying timescales using LSTM recurrent neural network. Soft Comput. 2019, 23, 8399–8412. [Google Scholar] [CrossRef]
- Mtibaa, F.; Nguyen, K.K.; Azam, M.; Papachristou, A.; Venne, J.; Cheriet, M. LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings. Neural Comput. Appl. 2020, 32, 17569–17585. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.J.; Guo, X.W.; Han, J.; Yang, K.; Wang, H. Prediction of radar sea clutter based on LSTM. J. Ambient. Intell. Hum. Comput. 2019, 14, 15419–15426. [Google Scholar] [CrossRef]
- Gundu, V.; Simon, S.P. PSO-LSTM for short term forecast of heterogeneous time series electricity price signals. J. Ambient. Intell. Hum. Comput. 2021, 12, 2375–2385. [Google Scholar] [CrossRef]
- Zeng, Z.; Jin, G.; Xu, C.; Chen, S.; Zeng, Z.; Zhang, L. Satellite telemetry data anomaly detection using causal network and feature-attention-based LSTM. IEEE Trans. Instrum. Meas. 2022, 71, 3507221. [Google Scholar] [CrossRef]
- Napoli, C.; De Magistris, G.; Ciancarelli, C.; Corallo, F.; Russo, F.; Nardi, D. Exploiting wavelet recurrent neural networks for satellite telemetry data modeling, prediction and control. Expert. Syst. Appl. 2022, 206, 117831. [Google Scholar] [CrossRef]
- Chen, J.; Pi, D.; Wu, Z.; Zhao, X.; Pan, Y.; Zhang, Q. Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM. Acta Astronaut. 2021, 180, 232–242. [Google Scholar] [CrossRef]
- Yang, L.; Ma, Y.; Zeng, F.; Peng, X.; Liu, D. Improved deep learning based telemetry data anomaly detection to enhance spacecraft operation reliability. Microelectron. Reliab. 2021, 126, 114311. [Google Scholar] [CrossRef]
- Sima, S.N.; Neda, T.; Akbar, S.N. The Performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019. [Google Scholar]
- Herman, G.; Zhang, B.; Wang, Y.; Ye, G.; Chen, F. Mutual information-based method for selecting informative feature sets. Pattern Recognit. 2013, 46, 3315–3327. [Google Scholar] [CrossRef]
- Vinh, N.X.; Zhou, S.; Chan, J.; Bailey, J. Can high-order dependencies improve mutual information based feature selection? Pattern Recognit. 2016, 53, 46–58. [Google Scholar] [CrossRef]
- Bi, N.; Tan, J.; Lai, J.H.; Suen, C.Y. High-dimensional supervised feature selection via optimized kernel mutual information. Expert. Syst. Appl. 2018, 108, 81–95. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Zhu, R. Feature selection based on mutual information with correlation coefficient. Appl. Intell. 2021, 52, 5457–5474. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Liu, Y.; Cao, Y.; Li, J. Degradation feature selection method of AC conductor based on mutual Information. Lect. Notes Electr. Eng. 2021, 743, 501–509. [Google Scholar]
- Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the (IEEE Publications, 2018)/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Chu, X.; Jin, H.; Li, Y.; Feng, J.; Mu, W. CDA-LSTM: An evolutionary convolution-based dual-attention LSTM for univariate time series prediction. Neural Comput. Appl. 2021, 33, 16113–16137. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Zhao, S.; Qian, F.; Zhang, Y. Deep attention user-based collaborative filtering for recommendation. Neurocomputing 2020, 383, 57–68. [Google Scholar] [CrossRef]
- Sangeetha, K.; Prabha, D. RETRACTED ARTICLE: Sentiment analysis of student feedback using multi-head attention fusion model of word and context embedding for LSTM. J. Ambient. Intell. Hum. Comput. 2021, 12, 4117–4126. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, R.; Zhao, L. DNN-based speech enhancement with self-attention on feature dimension. Multimed. Tool. Appl. 2020, 79, 32449–32470. [Google Scholar] [CrossRef]
- Kim, J.; Moon, N. BiLSTM Model based on multivariate time series data in multiple field for forecasting trading area. J. Ambient. Intell. Hum. Comput. 2019. [Google Scholar] [CrossRef]
- Huang, L.; Li, L.; Wei, X.; Zhang, D. Short-term prediction of wind power based on BiLSTM-CNN-WGAN-GP. Soft Comput. 2022, 26, 10607–10621. [Google Scholar] [CrossRef]
- Dileep, P.; Rao, K.N.; Bodapati, P.; Gokuruboyina, S.; Peddi, R.; Grover, A.; Sheetal, A. An automatic heart disease prediction using cluster-based bidirectional LSTM (C-BiLSTM) algorithm. Neural Comput. Appl. 2022, 35, 7253–7266. [Google Scholar] [CrossRef]
- Wei, J.; Liao, J.; Yang, Z.; Wang, S.; Zhao, Q. BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis. Neurocomputing 2020, 383, 165–173. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X. Convolutional Neural Network based on Attention Mechanism and Bi-LSTM for Bearing Remaining Life Prediction. Appl. Intell. 2021, 52, 1076–1091. [Google Scholar] [CrossRef]
- Jain, D.K.; Mahanti, A.; Shamsolmoali, P.; Manikandan, R. Deep neural learning techniques with long short-term memory for gesture recognition. Neural Comput. Appl. 2020, 32, 16073–16089. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Variable Name | Variable Symbol |
---|---|
Bus Current1 | TMC1 |
A-way Charging Array Current | TMC2 |
B-way Charging Array Current | TMC3 |
A7 Current of Solar Cell Powered Array | TMC4 |
B7 Current of Solar Cell Powered Array | TMC5 |
Bus Current2 | TMC6 |
Bus Voltage | TMC7 |
Voltage of Group A Battery | TMC8 |
A-way Charging Control State | TMC9 |
Voltage of Group B Battery | TMC10 |
B-way Charging Control State | TMC11 |
1~9 Voltage of Group A Battery | TMC12 |
10~18 Voltage of Group A Battery | TMC13 |
19~27 Voltage of Group A Battery | TMC14 |
28~36 Voltage of Group A Battery | TMC15 |
Switch State of Group A Battery Discharge | TMC16 |
Discharge Regulation Circuit A1 Voltage | TMC17 |
Discharge Regulation Circuit A2 Voltage | TMC18 |
Discharge Regulation Circuit A3 Voltage | TMC19 |
Discharge Regulation Circuit A4 Voltage | TMC20 |
. | . |
. | . |
. | . |
Temperature of Solar Cell Outer Panel | TMC75 |
Splitter Temperature | TMC76 |
Parameter Name | Value | Parameter Name | Value |
---|---|---|---|
Epoch | 20 | Batch size | 8 |
Optimiser | Adam | Learning rate | 0.0001 |
Dropout | 0.5 | Number of hidden units | 128 |
Telemetries | Evaluation Metric | Model | |||
---|---|---|---|---|---|
RNN | LSTM | BiLSTM | Our Method | ||
TMC1 | RMSE | 0.46669 | 0.14936 | 0.06132 | 0.03030 |
MAE | 0.45680 | 0.11217 | 0.04886 | 0.01596 | |
TMC2 | RMSE | 0.82187 | 0.66640 | 0.03209 | 0.01511 |
MAE | 0.82162 | 0.58720 | 0.02940 | 0.01368 | |
TMC3 | RMSE | 0.77889 | 0.55579 | 0.02928 | 0.01347 |
MAE | 0.77861 | 0.49463 | 0.02668 | 0.01208 | |
TMC4 | RMSE | 0.88306 | 0.56522 | 0.01094 | 0.00627 |
MAE | 0.88289 | 0.53139 | 0.01017 | 0.00507 | |
TMC5 | RMSE | 0.94832 | 0.67078 | 0.01053 | 0.00342 |
MAE | 0.94807 | 0.61076 | 0.01009 | 0.00285 | |
TMC8 | RMSE | 0.74684 | 0.34636 | 0.03135 | 0.01618 |
MAE | 0.74634 | 0.32107 | 0.03921 | 0.01366 | |
TMC12 | RMSE | 0.83101 | 0.40984 | 0.04435 | 0.02430 |
MAE | 0.83075 | 0.36860 | 0.02916 | 0.01878 | |
TMC13 | RMSE | 0.63976 | 0.29317 | 0.03865 | 0.02327 |
MAE | 0.63937 | 0.23051 | 0.03306 | 0.01948 | |
TMC14 | RMSE | 0.87005 | 0.54022 | 0.03228 | 0.02016 |
MAE | 0.86907 | 0.48015 | 0.02840 | 0.01571 | |
TMC15 | RMSE | 0.84486 | 0.53786 | 0.03294 | 0.02157 |
MAE | 0.84427 | 0.48220 | 0.02902 | 0.01873 | |
TMC17 | RMSE | 0.77010 | 0.43085 | 0.03355 | 0.01901 |
MAE | 0.76960 | 0.39963 | 0.02528 | 0.01316 | |
TMC18 | RMSE | 0.67605 | 0.24346 | 0.03563 | 0.02177 |
MAE | 0.67569 | 0.21981 | 0.02771 | 0.01562 | |
TMC19 | RMSE | 0.78155 | 0.31655 | 0.03339 | 0.01960 |
MAE | 0.78004 | 0.27662 | 0.02611 | 0.01411 | |
TMC21 | RMSE | 0.58878 | 0.17176 | 0.04887 | 0.02791 |
MAE | 0.58815 | 0.15765 | 0.03634 | 0.02059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Jia, S.; Xie, L.; Shang, J. Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation. Aerospace 2024, 11, 398. https://doi.org/10.3390/aerospace11050398
Peng Y, Jia S, Xie L, Shang J. Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation. Aerospace. 2024; 11(5):398. https://doi.org/10.3390/aerospace11050398
Chicago/Turabian StylePeng, Yi, Shuze Jia, Lizi Xie, and Jian Shang. 2024. "Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation" Aerospace 11, no. 5: 398. https://doi.org/10.3390/aerospace11050398
APA StylePeng, Y., Jia, S., Xie, L., & Shang, J. (2024). Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation. Aerospace, 11(5), 398. https://doi.org/10.3390/aerospace11050398