Neural Network-Aided Optical Navigation for Precise Lunar Descent Operations
Abstract
:1. Introduction
2. Data and Methods
2.1. Generation of Synthetic Images
2.2. Optical Data Modeling
2.3. Crater Detection
Training
2.4. Crater Matching
Algorithm 1 Crater Matching Algorithm |
|
3. Software Pipeline Testing Campaign
3.1. Robustness Analysis of Machine Vision Techniques
3.2. Impact of Surface Landmark Mismodeling on Crater Matching Performance
3.3. Inference Times
4. Numerical Simulations on a Landing Test Case
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix C.1
Appendix C.2
Planetocentric Coordinates 1 | Map Coordinates () |
---|---|
or | |
and and |
Appendix C.3
Planetocentric Coordinates 1 | Map Coordinates () |
---|---|
or | |
and |
References
- Campbell, J.; Synnott, S.; Bierman, G. Voyager orbit determination at Jupiter. IEEE Trans. Autom. Control 1983, 28, 256–268. [Google Scholar] [CrossRef]
- Riedel, J.; Bhaskaran, S.; Synnott, S.; Bollman, W.; Null, G. An Automomous Optical Navigation and Control System for Interplanetary Exploration Missions. In Proceedings of the Second IAA International Conference on Low-Cost Planetary Missions, Laurel, MD, USA, 16–19 April 1996; International Academy of Astronautics: Stockholm, Sweden, 1996. [Google Scholar]
- De Santayana, R.P.; Lauer, M. Optical measurements for ROSETTA navigation near the comet. In Proceedings of the 25th International Symposium on Space Flight Dynamics (ISSFD), Munich, Germany, 19–23 October 2015. [Google Scholar]
- Uo, M.; Shirakawa, K.; Hasimoto, T.; Kubota, T.; Kawaguchi, J. Hayabusa touching-down to Itokawa-Autonomous guidance and navigation. J. Space Technol. Sci. 2006, 22, 32–41. [Google Scholar]
- McCarthy, L.K.; Adam, C.D.; Leonard, J.M.; Antresian, P.G.; Nelson, D.; Sahr, E.; Pelgrift, J.; Lessac-Chenen, E.J.; Geeraert, J.; Lauretta, D. OSIRIS-REx landmark optical navigation performance during orbital and close proximity operations at asteroid Bennu. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2520. [Google Scholar]
- Johnson, A.E.; Cheng, Y.; Trawny, N.; Montgomery, J.F.; Schroeder, S.; Chang, J.; Clouse, D.; Aaron, S.; Mohan, S. Implementation of a Map Relative Localization System for Planetary Landing. J. Guid. Control Dyn. 2023, 46, 618–637. [Google Scholar] [CrossRef]
- Ishida, T.; Fukuda, S.; Kariya, K.; Kamata, H.; Takadama, K.; Kojima, H.; Sawai, S.; Sakai, S. Vision-based navigation and obstacle detection flight results in SLIM lunar landing. Acta Astronaut. 2025, 226, 772–781. [Google Scholar] [CrossRef]
- Owen, W.M.J. Methods of optical navigation. In Proceedings of the AAS Spaceflight Mechanics Conference, AAS 11-215, New Orleans, LA, USA, 13–17 February 2011. [Google Scholar]
- Christian, J.A.; Derksen, H.; Watkins, R. Lunar crater identification in digital images. J. Astronaut. Sci. 2021, 68, 1056–1144. [Google Scholar] [CrossRef]
- Gaskell, R.W.; Barnouin-Jha, O.S.; Scheeres, D.J.; Konopliv, A.S.; Mukai, T.; Abe, S.; Saito, J.; Ishiguro, M.; Kubota, T.; Hashimoto, T.; et al. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 2008, 43, 1049–1061. [Google Scholar] [CrossRef]
- Gaskell, R.W.; Barnouin, O.S.; Daly, M.G.; Palmer, E.E.; Weirich, J.R.; Ernst, C.M.; Daly, R.T.; Lauretta, D.S. Stereophotoclinometry on the OSIRIS-REx Mission: Mathematics and Methods. Planet. Sci. J. 2023, 4, 63. [Google Scholar] [CrossRef]
- Cheng, Y.; Ansar, A.; Johnson, A. Making an Onboard Reference Map From MRO/CTX Imagery for Mars 2020 Lander Vision System. Earth Space Sci. 2021, 8, e2020EA001560. [Google Scholar] [CrossRef]
- Takadama, K.; Harada, T.; Kamata, H.; Ozawa, S.; Fukuda, S.; Sawai, S. Evaluating an Integration of Spacecraft Location Estimation with Crater Detection Toward Smart Lander for Investigating Moon. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Montreal, QC, Canada, 17–19 June 2014. [Google Scholar]
- Tanaami, T.; Takeda, Y.; Aoyama, N.; Mizumi, S.; Kamata, H.; Takadama, K.; Ozawa, S.; Fukuda, S.; Sawai, S. Crater detection using Haar-like feature for Moon landing system based on the surface image. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2012, 10, 39–44. [Google Scholar] [CrossRef]
- Downes, L.M.; Steiner, T.J.; How, J.P. Lunar terrain relative navigation using a convolutional neural network for visual crater detection. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4448–4453. [Google Scholar]
- Powell, W.; Campola, M.; Sheets, T.; Davidson, A.; Welsh, S. Commercial Off-the-Shelf GPU Qualification for Space Applications; NASA: Washington, DC, USA, 2018.
- Wang, H.; Myint, S.; Verma, V.; Winetraub, Y.; Yang, J.; Cidon, A. Mars Attacks!: Software Protection Against Space Radiation. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks. HotNets ’23, Cambridge, MA, USA, 28–29 November 2023; ACM: New York, NY, USA, 2023; pp. 245–253. [Google Scholar] [CrossRef]
- Mu, L.; Xian, L.; Li, L.; Liu, G.; Chen, M.; Zhang, W. YOLO-Crater Model for Small Crater Detection. Remote Sens. 2023, 15, 5040. [Google Scholar] [CrossRef]
- Genova, A.; Andolfo, S.; Ciambellini, M.; Federici, P.; Teodori, R.; Torrini, T.; Zavoli, A.; Del Vecchio, E.; Maria Gargiulo, A.; Petricca, F.; et al. Sensor data fusion for precise orbit determination of interplanetary spacecraft. In Proceedings of the 2024 International Conference on Space Robotics (iSpaRo), Luxembourg, 24–27 June 2024; pp. 22–27. [Google Scholar] [CrossRef]
- Martin, I.; Dunstan, M.; Gestido, M.S. Planetary surface image generation for testing future space missions with PANGU. In Proceedings of the 2nd RPI Space Imaging Workshop, Saratoga Springs, NY, USA, 28–30 October 2019; Sensing, Estimation, and Automation Laboratory (SEAL), Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute: Troy, NY, USA, 2019. [Google Scholar]
- Brochard, R.; Lebreton, J.; Robin, C.; Kanani, K.; Jonniaux, G.; Masson, A.; Despré, N.; Berjaoui, A. Scientific image rendering for space scenes with the SurRender software. arXiv 2018, arXiv:1810.01423. [Google Scholar]
- Pajusalu, M.; Iakubivskyi, I.; Schwarzkopf, G.J.; Knuuttila, O.; Väisänen, T.; Bührer, M.; Palos, M.F.; Teras, H.; Le Bonhomme, G.; Praks, J.; et al. SISPO: Space imaging simulator for proximity operations. PLoS ONE 2022, 17, e0263882. [Google Scholar] [CrossRef] [PubMed]
- Pugliatti, M.; Buonagura, C.; Topputo, F. CORTO: The Celestial Object Rendering TOol at DART Lab. Sensors 2023, 23, 9595. [Google Scholar] [CrossRef] [PubMed]
- Blender Development Team. Blender 3.6 Reference Manual. Available online: https://docs.blender.org/manual/en/3.6/ (accessed on 2 January 2025).
- Epic Games. Unreal Engine 4.27 Documentation. Available online: https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-5-5-documentation (accessed on 2 January 2025).
- Penttilä, A.; Palos, M.F.; Näsilä, A.; Kohout, T. Blender modeling and simulation testbed for solar system object imaging and camera performance. In Proceedings of the Copernicus Meetings, Vienna, Austria, 23–27 May 2022. number No. EPSC2022-788. [Google Scholar]
- Smith, K.W.; Anastas, N.; Olguin, A.; Fritz, M.; Sostaric, R.R.; Pedrotty, S.; Tse, T. Building Maps for Terrain Relative Navigation Using Blender: An Open Source Approach. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Villa, J.; Mcmahon, J.; Nesnas, I. Image Rendering and Terrain Generation of Planetary Surfaces Using Source-Available Tools. In Proceedings of the 46th Annual AAS Guidance, Navigation & Control Conference, Breckenridge, CO, USA, 31 January–5 February 2023; pp. 1–24. [Google Scholar]
- Snyder, J.P. Map Projections—A Working Manual; US Government Printing Office: Washington, DC, USA, 1987; Volume 1395.
- Yamazaki, J.; Mitsuhashi, S.; Yamauchi, M.; Tachino, J.; Honda, R.; Shirao, M.; Tanimoto, K.; Tanaka, H.; Harajima, N.; Omori, A.; et al. High-Definition Television System Onboard Lunar Explorer Kaguya (SELENE) and Imaging of the Moon and the Earth. Space Sci. Rev. 2010, 154, 21–56. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, B.; Xue, H.; Li, X.; Ma, J. An Improved Global Catalog of Lunar Impact Craters (>1 km) with 3D Morphometric Information and Updates on Global Crater Analysis. J. Geophys. Res. Planets 2021, 126, e2020JE006728. [Google Scholar] [CrossRef]
- Speyerer, E.; Robinson, M.; Denevi, B.; Team, L.S. Lunar Reconnaissance Orbiter Camera global morphological map of the Moon. In Proceedings of the 42nd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011; p. 2387. [Google Scholar]
- Cheng, Y.; Ansar, A. Landmark Based Position Estimation for Pinpoint Landing on Mars. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 1573–1578. [Google Scholar] [CrossRef]
- Silvestrini, S.; Piccinin, M.; Zanotti, G.; Brandonisio, A.; Bloise, I.; Feruglio, L.; Lunghi, P.; Lavagna, M.; Varile, M. Optical navigation for Lunar landing based on Convolutional Neural Network crater detector. Aerosp. Sci. Technol. 2022, 123, 107503. [Google Scholar] [CrossRef]
- Cauligi, A.; Swan, R.M.; Ono, H.; Daftry, S.; Elliott, J.; Matthies, L.; Atha, D. ShadowNav: Crater-Based Localization for Nighttime and Permanently Shadowed Region Lunar Navigation. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–12. [Google Scholar] [CrossRef]
- Cheng, Y.; Miller, J.K. Autonomous Landmark Based Spacecraft Navigation System. In Proceedings of the 13th AAS/AIAA Space Flight Mechanics Conference, Ponce, Puerto Rico, 9–13 February 2003. [Google Scholar]
- Andolfo, S.; Genova, A.; Federici, P.; Teodori, R.; Cottini, V. Precise orbit determination through a joint analysis of optical and radiometric data. In Proceedings of the 2024 IEEE 1st International Conference on Space Robotics (iSpaRo), Luxembourg, 24–27 June 2024. [Google Scholar]
- Cheng, Y.; Johnson, A.E.; Matthies, L.H.; Olson, C.F. Optical Landmark Detection for Spacecraft Navigation. In Proceedings of the 13th AAS/AIAA Astrodynamics Specialist Conference, Monterey, CA, USA, 13–17 August 2003. [Google Scholar]
- Clerc, S.; Spigai, M.; Simard-Bilodeau, V. A crater detection and identification algorithm for autonomous lunar landing. IFAC Proc. Vol. 2010, 43, 527–532. [Google Scholar] [CrossRef]
- Bilodeau, V.S.; Neveu, D.; Bruneau-Dbuc, S.; Alger, M.; de LaFontaine, J.; Clerc, S.; Drai, R. Pinpoint Lunar Landing Navigation using Crater Detection and Matching: Design and Laboratory Validation. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar] [CrossRef]
- Maass, B.; Woicke, S.; Oliveira, W.M.; Razgus, B.; Krüger, H. Crater Navigation System for Autonomous Precision Landing on the Moon. J. Guid. Control Dyn. 2020, 43, 1414–1431. [Google Scholar] [CrossRef]
- Stepinski, T.F.; Ding, W.; Vilalta, R. Detecting impact craters in planetary images using machine learning. In Intelligent Data Analysis for Real-Life Applications: Theory and Practice; IGI Global: Hershey, PA, USA, 2012; pp. 146–159. [Google Scholar]
- La Grassa, R.; Cremonese, G.; Gallo, I.; Re, C.; Martellato, E. YOLOLens: A Deep Learning Model Based on Super-Resolution to Enhance the Crater Detection of the Planetary Surfaces. Remote Sens. 2023, 15, 1171. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, J.; Zhang, G. CraterIDNet: An End-to-End Fully Convolutional Neural Network for Crater Detection and Identification in Remotely Sensed Planetary Images. Remote Sens. 2018, 10, 1067. [Google Scholar] [CrossRef]
- Downes, L.; Steiner, T.J.; How, J.P. Deep Learning Crater Detection for Lunar Terrain Relative Navigation. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision–ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Bodmann, P.R.; Rech, P.; Saveriano, M. Evaluating the Reliability of Vision Transformers for Space Robotics Applications. In Proceedings of the 2024 International Conference on Space Robotics (iSpaRo), Luxembourg, 24–27 June 2024; pp. 278–283. [Google Scholar] [CrossRef]
- La Grassa, R.; Martellato, E.; Cremonese, G.; Re, C.; Tullo, A.; Bertoli, S. LU5M812TGT: An AI-Powered global database of impact craters ≥0.4 km on the Moon. ISPRS J. Photogramm. Remote Sens. 2025, 220, 75–84. [Google Scholar] [CrossRef]
- Parracino, G.P.; Ceresoli, M.; Silvestrini, S.; Lavagna, M. Integrated Optical Terrain Relative Navigation for Autonomous Lunar Landing. In Proceedings of the 75th International Astronautical Congress (IAC-24), Milan, Italy, 14–18 October 2024; IAF: Paris, France, 2024. [Google Scholar]
- Robbins, S.J. A New Global Database of Lunar Impact Craters >1–2 km: 1. Crater Locations and Sizes, Comparisons With Published Databases, and Global Analysis. J. Geophys. Res. Planets 2019, 124, 871–892. [Google Scholar] [CrossRef]
- Du, L. Object Detectors in Autonomous Vehicles: Analysis of Deep Learning Techniques. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 217–224. [Google Scholar] [CrossRef]
- Park, W.; Jung, Y.; Bang, H.; Ahn, J. Robust Crater Triangle Matching Algorithm for Planetary Landing Navigation. J. Guid. Control Dyn. 2019, 42, 402–410. [Google Scholar] [CrossRef]
- Hanak, C.; Crain, T.; Bishop, R. Crater identification algorithm for the lost in low lunar orbit scenario. In Proceedings of the AAS Guidance & Control Conference, AAS 10-052, Breckenridge, CO, USA, 1–6 February 2008. [Google Scholar]
- Neira, J.; Tardós, J.D. Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 2001, 17, 890–897. [Google Scholar] [CrossRef]
- Mortari, D.; Neta, B. K-vector range searching techniques. Adv. Astronaut. Sci. 2000, 105, 449–464. [Google Scholar]
- Marco Figuera, R.; Riedel, C.; Rossi, A.P.; Unnithan, V. Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sens. 2022, 14, 450. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; QGIS Association: Zurich, Switzerland, 2024. [Google Scholar]
- Heyer, T.; Iqbal, W.; Oetting, A.; Hiesinger, H.; van der Bogert, C.; Schmedemann, N. A comparative analysis of global lunar crater catalogs using OpenCraterTool—An open source tool to determine and compare crater size-frequency measurements. Planet. Space Sci. 2023, 231, 105687. [Google Scholar] [CrossRef]
- Barker, M.; Mazarico, E.; Neumann, G.; Zuber, M.; Haruyama, J.; Smith, D. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. ICARUS 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Fukuda, S.; Ishida, T.; Arakawa, T.; Nakagawa, T.; Murao, H. Thermal Cycle Tests of CLCC Solder Joints: Influence of Substrate, Solder, and Pad Patterns. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2020, 18, 51–56. [Google Scholar] [CrossRef]
- Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Trawny, N.; Mourikis, A.I.; Roumeliotis, S.I.; Johnson, A.E.; Montgomery, J.F. Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks. J. Field Robot. 2007, 24, 357–378. [Google Scholar] [CrossRef]
- Houts, S.E.; Dektor, S.G.; Rock, S.M. A robust framework for failure detection and recovery for terrain-relative navigation. In Proceedings of the 18th International Symposium on Unmanned Untethered Submersible Technology (UUST 2013), Portsmouth, NH, USA, 11–14 August 2013. [Google Scholar]
- Ishii, H.; Usui, K.; Takadama, K.; Kamata, H.; Fukuda, S.; Sawai, S.; Sakai, S.i. Robust self-position estimation algorithm against displacement of crater detection in the SLIM spacecraft. In Proceedings of the 13th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Beijing, China, 20–22 June 2016. [Google Scholar]
- Christian, J.A.; Hong, L.; McKee, P.; Christensen, R.; Crain, T.P. Image-Based Lunar Terrain Relative Navigation Without a Map: Measurements. J. Spacecr. Rocket. 2021, 58, 164–181. [Google Scholar] [CrossRef]
Parameter | Initial Epoch | Final Epoch |
---|---|---|
Epoch (UTC) | 19 January 2024 14:50:00 | 19 January 2024 15:15:00 |
Longitude | 25.4° | 25.3° |
Latitude | −74.4° | −13.4° |
Altitude | 61.0 km | 9.5 km |
Instrument | Parameter | Value |
---|---|---|
Camera | Field of view | |
Detector size | px | |
Ground sampling distance | ∼16 m (10 km height) | |
Acquisition rate | 0.01 Hz (10 s) | |
Accelerometer | Velocity Random Walk () | m/s2/ |
Acceleration Random Walk () | m/s3/ | |
Acquisition rate | 100 Hz (0.01 s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andolfo, S.; Genova, A.; Buonomo, F.V.; Gargiulo, A.M.; El Awag, M.; Federici, P.; Teodori, R.; La Grassa, R.; Re, C.; Cremonese, G. Neural Network-Aided Optical Navigation for Precise Lunar Descent Operations. Aerospace 2025, 12, 195. https://doi.org/10.3390/aerospace12030195
Andolfo S, Genova A, Buonomo FV, Gargiulo AM, El Awag M, Federici P, Teodori R, La Grassa R, Re C, Cremonese G. Neural Network-Aided Optical Navigation for Precise Lunar Descent Operations. Aerospace. 2025; 12(3):195. https://doi.org/10.3390/aerospace12030195
Chicago/Turabian StyleAndolfo, Simone, Antonio Genova, Fabio Valerio Buonomo, Anna Maria Gargiulo, Mohamed El Awag, Pierluigi Federici, Riccardo Teodori, Riccardo La Grassa, Cristina Re, and Gabriele Cremonese. 2025. "Neural Network-Aided Optical Navigation for Precise Lunar Descent Operations" Aerospace 12, no. 3: 195. https://doi.org/10.3390/aerospace12030195
APA StyleAndolfo, S., Genova, A., Buonomo, F. V., Gargiulo, A. M., El Awag, M., Federici, P., Teodori, R., La Grassa, R., Re, C., & Cremonese, G. (2025). Neural Network-Aided Optical Navigation for Precise Lunar Descent Operations. Aerospace, 12(3), 195. https://doi.org/10.3390/aerospace12030195