Numerical Investigation of the Two-Phase Flow Characteristics of an Axisymmetric Bypass Dual-Throat Nozzle
Abstract
:1. Introduction
2. Model and Methodology
2.1. Computational Method
2.2. Geometry Description and Grid Generation
2.3. Model Verification and Grid Independence Analysis
3. Definitions of Nozzle Performance Parameters
4. Results and Discussion
4.1. Particle Trajectory and Internal Flow Field
4.2. Particle Deposition Characteristics
4.3. TV Performance
5. Conclusions
- (1)
- Particle trajectories differ significantly with D within the nozzle. As D increases, the entrainment of particles with the flow weakens. Submicron- to submillimeter-sized particles (D = 1–10 μm) exhibit trajectories that closely aligned with the streamlines in the pure gas-phase case, with minimal collisions with the nozzle walls. As D increases, particle trajectories gradually approach the axis, the distribution area within the cavity narrows, and the particle concentration significantly increases. This results in the formation of a horizontal λ-shaped high-particle-concentration zone within the nozzle. At D = 40 μm, particle distribution within the cavity becomes more dispersed owing to wall collisions and inertial effects;
- (2)
- The continuous deposition of high-temperature condensate particles on the walls can lead to severe issues such as wall erosion and flow passage blockage. The significant deposition of particles within the bypass channel can substantially reduce the bypass jet flow rate during engine operation, thereby increasing the instability of the TV performance. Moreover, this deposition poses a significant risk of erosion. In the design and manufacturing of the nozzle, it is crucial to prioritize thermal protection at the bends of the bypass channel, the upstream converging section of the nozzle, and the converging section of the cavity. Additionally, efforts should be made to improve the efficiency of solid propellant combustion and reduce the mass fraction of condensate particles in the combustion gases;
- (3)
- The introduction of the particle phase reduces the axial thrust and TV angles of the nozzle. Changes in D directly affect the axial and normal forces of the nozzle, thereby influencing TV angles and thrust coefficients. At NPR = 200 and an inlet total temperature of 3000 K, the D = 20 μm scenario yields the maximum TV performance: a TV angle of 11.12° and a thrust coefficient of 0.822. Under the R–R distribution, the TV angle is 10.37° and the thrust coefficient is 0.815;
- (4)
- Under the R–R distribution, particles with a diameter of 20 μm account for the highest mass fraction, and the TV performance parameters are consistent with those of the case with a uniform D of 20 μm. However, the internal flow characteristics and particle deposition characteristics encompass the features observed across various particle-size conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilde, P.I.A.; Crowther, W.J.; Buonanno, A.; Savvaris, A. Aircraft Control Using Fluidic Maneuver Effectors. In Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Xia, X.; Gao, F.; Huang, G.; Yang, W. Research progress of the dual throat thrust-vectoring nozzle. Adv. Aeronaut. Sci. Eng. 2017, 8, 249–255, 298. [Google Scholar] [CrossRef]
- Cong, R.; Ye, Y.; Zhao, Z.; Wu, J. Numerical research on jet tab thrust vector nozzle aerodynamic characteristics. Acta Aerodyn. Sin. 2019, 1300, 012089. [Google Scholar] [CrossRef]
- Forghany, F. Numerical investigation of injection angle effects on shock vector control performance. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 405–417. [Google Scholar] [CrossRef]
- Jingwei, S.; Zhanxue, W.; Li, Z.; Xiaolin, S. Investigation on Flow Characteristics of SVC Nozzles. J. Appl. Fluid Mech. 2018, 11, 331–342. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasan, M.A.; Hasan, A.B.M.T. An analysis of thrust vectoring in a supersonic nozzle using bypass mass injection. AIP Conf. Proc. 2018, 1980, 040014. [Google Scholar] [CrossRef]
- Salimi, M.R.; Askari, R.; Hasani, M. Computational Investigation of Effects of Side-Injection Geometry on Thrust-Vectoring Performance in a Fuel-Injected Dual Throat Nozzle. J. Appl. Fluid Mech. 2022, 15, 1137–1153. [Google Scholar] [CrossRef]
- Nafi, M.A.; Hasan, A.B. 3D Computational Study of Thrust Vectoring using Bypass Mass Injection in a Propulsion Nozzle. In AlP Conference Proceedings, Proceedings of the 8th Bsme International Conference on Thermal Engineering, Dhaka, Bangladesh, 19–21 December 2018; AIP Publishing: Melville, NY, USA, 2019; Volume 2121, p. 050013. [Google Scholar] [CrossRef]
- Ferlauto, M.; Marsilio, R. Computational Investigation of Injection Effects on Shock Vector Control Performance. In Proceedings of the 2018 Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Zong, H.; Chiatto, M.; Kotsonis, M.; de Luca, L. Plasma Synthetic Jet Actuators for Active Flow Control. Actuators 2018, 7, 77. [Google Scholar] [CrossRef]
- AlAsadi, A.A.-M.H.; Faseeh, A.H. Fluidics Jet Vectoring for Incompressible Flow by Using Counter Flow Method for Circular Duct. Alnahrain J. Eng. Sci. 2017, 20, 911–923. [Google Scholar]
- Wu, K.; Zhang, G.; Kim, T.H.; Kim, H.D. Numerical parametric study on three-dimensional rectangular counter-flow thrust vectoring control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 2221–2247. [Google Scholar] [CrossRef]
- Wu, K.; Kim, H.; Jin, Y. Fluidic thrust vector control based on counter-flow concept. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 1412–1422. [Google Scholar] [CrossRef]
- Li, J.; Lu, W.; Wang, Y.; Zhang, Y. Improved design and performance analysis of counterflow thrust vectoring technology under high subsonic. J. Intell. Fuzzy Syst. 2018, 34, 1213–1223. [Google Scholar] [CrossRef]
- Saghafi, F.; Banazadeh, A. Co-flow fluidic thrust vectoring requirements for longitudinal and lateral trim purposes. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006. [Google Scholar]
- Al-Asady, A.A.A.; Abdullah, A.M. Fluidics Thrust Vectoring Using Co-Flow Method. Al-Nahrain J. Eng. Sci. 2017, 20, 5–18. [Google Scholar]
- Miller, D.; Yagle, P.; Hamstra, J. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 11–14 January 1999. [Google Scholar]
- Williams, R.; Vittal, B. Fluidic Thrust Vectoring and Throat Control Exhaust Nozzle. In Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, USA, 7–10 July 2002. [Google Scholar]
- Yagle, P.J.; Miller, D.N.; Ginn, K.B.; Hamstra, J.W. Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles. J. Eng. Gas Turbines Power 2001, 123, 502–507. [Google Scholar] [CrossRef]
- Ali, A.; Rodriguez, C.; Neely, A.; Young, J. Combination of Fluidic Thrust Modulation and Vectoring in a 2D Nozzle; University of New South Wales Canberra: Canberra, Australia, 2012. [Google Scholar]
- Deere, K. Summary of Fluidic Thrust Vectoring Research at NASA Langley Research Center. In Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlando, FL, USA, 23–26 June 2003. [Google Scholar]
- Deere, K.; Berrier, B.; Flamm, J.; Johnson, S. Computational Study of Fluidic Thrust Vectoring Using Separation Control in a Nozzle; NASA Langley Research Center: Hampton, VA, USA, 2003. [Google Scholar]
- Flamm, J.D.; Deere, K.A.; Mason, M.L.; Berrier, B.L.; Johnson, S.K. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic ThrustVectoring Nozzle Concept. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Deere, K.A.; Flamm, J.D.; Berrier, B.L.; Johnson, S.K. Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007; NASA Langley Research Center: Hampton, VA, USA, 2007. [Google Scholar]
- Flamm, J.D.; Deere, K.A.; Mason, M.L.; Berrier, B.L.; Johnson, S.K. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007; NASA Langley Research Center: Hampton, VA, USA, 2007. [Google Scholar]
- Flamm, J.D.; Deere, K.A.; Berrier, B.L.; Johnson, S.K.; Mason, M.L. Experimental Study of a Dual-Throat Fluidic Thrust-Vectoring NozzleConcept. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA, 10–13 July 2005. [Google Scholar]
- Deere, K.A.; Berrier, B.L.; Flamm, J.D.; Johnson, S.K. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA, 10–13 July 2005. [Google Scholar]
- Shin, C.S.; Kim, H.D.; Setoguchi, T.; Matsuo, S. A computational study of thrust vectoring control using dual throat nozzle. J. Therm. Sci. 2010, 19, 486–490. [Google Scholar] [CrossRef]
- Wu, K.X.; Kim, T.H.; Kim, H.D. Numerical Study of Fluidic Thrust Vector Control Using Dual Throat Nozzle. J. Appl. Fluid Mech. 2021, 14, 73–87. [Google Scholar] [CrossRef]
- Ferlauto, M.; Marsilio, R. Numerical Investigation of the Dynamic Characteristics of a Dual-Throat-Nozzle for Fluidic Thrust-Vectoring. AIAA J. 2017, 55, 86–98. [Google Scholar] [CrossRef]
- Ferlauto, M.; Marsilio, R. Numerical Simulation of Fluidic Thrust-Vectoring. Aerotec. Missili Spaz. 2016, 95, 153–162. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Huang, S. Study of Starting Problem of Axisymmetric Divergent Dual Throat Nozzle. J. Eng. Gas Turbines Power 2017, 139, 062602. [Google Scholar] [CrossRef]
- Wu, K.; Kim, H.D. Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept. J. Korean Soc. Propuls. Eng. 2019, 23, 24–32. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Xu, J.-L.; Huang, S.; Lin, Y.-C.; Jiang, J.-J. Experimental and numerical investigation of an axisymmetric divergent dual throat nozzle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 563–572. [Google Scholar] [CrossRef]
- Maruyama, Y.; Sakata, M.; Takahashi, Y. Performance Analyses of Fluidic Thrust Vector Control System Using Dual Throat Nozzle. AIAA J. 2022, 60, 1730–1744. [Google Scholar] [CrossRef]
- Li, S.; Sun, Z.; Zha, B.; Zhu, Y.; Ding, Y.; Xia, Y. A family of spatio-temporal optimized finite difference schemes with adaptive dispersion and critical-adaptive dissipation for compressible flows. J. Comput. Phys. 2023, 474, 111821. [Google Scholar] [CrossRef]
- Wu, K.; Kim, T.H.; Kim, H.D. Visualization and analysis on the thrust vectoring control in three-dimensional dual-throat nozzles. J. Vis. 2021, 24, 891–915. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, J.; Wang, Y. Effects of downstream throat on aerodynamic performance of dual throat nozzle. J. Aerosp. Power 2015, 30, 580–587. [Google Scholar] [CrossRef]
- He, J.; Chen, Q.; Dong, J. Numerical investigation of aerodynamic performance on dual throat thrust vectoring nozzle. J. Nanjing Univ. Aeronaut. Astronaut. 2017, 49, 16–23. [Google Scholar]
- Li, Y.; Li, J.; Yang, D.; Zhang, Y.; Zhou, Q. Numerical study of a dual-throat fluidic thrust-vectoring nozzle. Acta Aerodyn. Sin. 2015, 33, 211–217. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.L.; Huang, S.G.; Gu, R.; Liao, H.L.; Fu, Y.; Mo, J.W.; Yu, Y. Bypass Type Double-Throat Passive Vectoring Sprayer Nozzle. CN2011103842883, 2011. Available online: http://epub.cnipa.gov.cn/Dxb/IndexQuery (accessed on 31 December 2024).
- Gu, R.; Xu, J.; Guo, S. Experimental and numerical investigations of a bypass dual throat nozzle. J. Eng. Gas Turbines Power 2014, 136, 084501. [Google Scholar] [CrossRef]
- Gu, R.; Xu, J. Dynamic Experimental Investigations of a Bypass Dual Throat Nozzle. J. Eng. Gas Turbines Power 2015, 137, 084501. [Google Scholar] [CrossRef]
- Hamedi-Estakhrsar, M.H.; Mahdavy-Moghaddam, H. Experimental evaluation and numerical simulation of performance of the bypass dual throat nozzle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 768–781. [Google Scholar] [CrossRef]
- Hamedi-Estakhrsar, M.; Ferlauto, M.; Mahdavy-Moghaddam, H. Numerical study of secondary mass flow modulation in a Bypass Dual-Throat Nozzle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 235, 488–500. [Google Scholar] [CrossRef]
- Afridi, S.; Khan, T.A.; Shah, S.I.A.; Shams, T.A.; Mehmood, K.; Li, W.; Kukulka, D. Numerical Investigation on the Thrust Vectoring Performance of Bypass Dual Throat Nozzle. Energies 2023, 16, 594. [Google Scholar] [CrossRef]
- Afridi, S.; Khan, T.A.; Shah, S.I.A.; Shams, T.A.; Mohiuddin, K.; Kukulka, D.J. Techniques of Fluidic Thrust Vectoring in Jet Engine Nozzles: A Review. Energies 2023, 16, 5721. [Google Scholar] [CrossRef]
- Afridi, S.; Khan, T.A. Multi-objective nozzle design optimization for maximum thrust vectoring performance. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2023, 237, 587–599. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Huang, S.; Lin, Y.; Jiang, J. Computational study of axisymmetric divergent bypass dual throat nozzle. Aerosp. Sci. Technol. 2019, 86, 177–190. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Huang, S.; Jiang, J.; Pan, R. Design and Preliminary Analysis of the Variable Axisymmetric Divergent Bypass Dual Throat Nozzle. J. Fluids Eng. 2020, 142, 061204. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Han, J.; Huang, S.; Wang, Y. Flight test of a fluidic thrust vectoring flying wing without rudder. J. Aerosp. Power 2019, 34, 701–707. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, J.; Huang, S.; Wang, Y.; Pan, R. Numerical study of bypass dual throat nozzle with parallelogram cross-section. J. Aerosp. Power 2020, 35, 805–814. [Google Scholar] [CrossRef]
- Jiang, J. Research on Bzypass Dual Throat Nozzle with Parallelogram Cross-Section and the Transition Section; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2020. [Google Scholar]
- Xia, X.; Gao, F.; Zhang, Q. Investigation on the vector performance of a bypass dual throat nozzle with injection at the divergent section. Acta Aerodyn. Sin. 2021, 39, 51–58. [Google Scholar] [CrossRef]
- Wu, K.; Kim, H. A fluidic thrust vector control using the bypass flow in a dual throat nozzle. J. Mech. Sci. Technol. 2021, 35, 3435–3443. [Google Scholar] [CrossRef]
- Huang, S.; Xu, J.; Yu, K.; Wang, Y.; Pan, R. Design and experimental study of a bypass dual throat nozzle with the ability of short/vertical takeoff and landing. Aerosp. Sci. Technol. 2022, 121, 107301. [Google Scholar] [CrossRef]
- Huang, S.; Xu, J.; Yu, K.; Wang, Y.; Pan, R.; Chen, K.; Zhang, Y. Numerical study of a trapezoidal bypass dual throat nozzle. Chin. J. Aeronaut. 2023, 36, 42–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Pan, R.; Li, Y.; Ma, Z.; Huang, S. Numerical investigation of short takeoff and landing exhaust system using bypass dual throat nozzle. Aerosp. Sci. Technol. 2023, 138, 108316. [Google Scholar] [CrossRef]
- Xia, X.; Sun, Z.; Hu, Y.; Qu, H.; Li, S.; Zhang, Y.; Liu, J. Numerical Investigation on Aerodynamic Vector Performance of a Axisymmetric Bypass Dual Throat Nozzle. In Proceedings of the 6th China Aeronautical Science and Technology Conference, Wuzhen, China, 26–28 September 2023; Available online: https://xcx.csaa.org.cn/client/index.html (accessed on 31 December 2024).
- Brainard, A.J. Gas Tables: International Version Second Edition (SI Units); Keenan, J.H., Chao, J., Kaye, J., Eds.; Chemical Engineering Department, University of Pittsburgh: Pittsburgh, PA, USA; John Wiley and Sons: New York, NY, USA, 1984; Volume 30, p. 172. [Google Scholar] [CrossRef]
- Huang, H.; Feng, Z.; Ma, L.; Yang, T.; Li, G. Effects of Particle Parameters on Performance of Axisymmetric Supersonic Gas-Solid Two-Phase Flow Nozzle. J. Propuls. Technol. 2023, 44. [Google Scholar] [CrossRef]
- Zhang, G.; Fan, Y.; Yang, R.; Li, S. Application of the Rosin-Rammler function to describe quartz sandstone particle size distribution produced by high-pressure gas rapid unloading at different infiltration pressure. Powder Technol. 2022, 412, 117982. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, H.; Zhang, X. Numerical simulation of composite solid propellant rocket motor exhaust plume. J. Solid Rocket Technol. 2014, 37, 37–42. [Google Scholar]
- Hao, X.; Yan, Y.; Cao, T.; Li, W.; Zhang, H. Numerical prediction of the two-phase flow and radiation effects on the thermal environment and ablation of solid rocket nozzle. Int. J. Therm. Sci. 2024, 197, 108794. [Google Scholar] [CrossRef]
Diameter (μm) | Mass Fraction (%) |
---|---|
1 | 5 |
5 | 15 |
10 | 25 |
20 | 40 |
40 | 10 |
80 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Sun, Z.; Hu, Y.; Qiang, H.; Zhu, Y.; Zhang, Y. Numerical Investigation of the Two-Phase Flow Characteristics of an Axisymmetric Bypass Dual-Throat Nozzle. Aerospace 2025, 12, 226. https://doi.org/10.3390/aerospace12030226
Xia X, Sun Z, Hu Y, Qiang H, Zhu Y, Zhang Y. Numerical Investigation of the Two-Phase Flow Characteristics of an Axisymmetric Bypass Dual-Throat Nozzle. Aerospace. 2025; 12(3):226. https://doi.org/10.3390/aerospace12030226
Chicago/Turabian StyleXia, Xuefeng, Zhensheng Sun, Yu Hu, Hongfu Qiang, Yujie Zhu, and Yin Zhang. 2025. "Numerical Investigation of the Two-Phase Flow Characteristics of an Axisymmetric Bypass Dual-Throat Nozzle" Aerospace 12, no. 3: 226. https://doi.org/10.3390/aerospace12030226
APA StyleXia, X., Sun, Z., Hu, Y., Qiang, H., Zhu, Y., & Zhang, Y. (2025). Numerical Investigation of the Two-Phase Flow Characteristics of an Axisymmetric Bypass Dual-Throat Nozzle. Aerospace, 12(3), 226. https://doi.org/10.3390/aerospace12030226