Multi-Attribute Data-Driven Flight Departure Delay Prediction for Airport System Using Deep Learning Method
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Input Data Processing
3.1.1. Congestion Index Calculation
3.1.2. Aircraft Operational Stages Extraction
3.2. Input Layer
3.2.1. Spatial Data
3.2.2. Temporal Data
3.2.3. Spatial-Temporal Data
3.3. Feature Extraction Layer
3.3.1. Spatial Features Extracted from GCN
3.3.2. Temporal-Spatial Features Extracted from 3D-CNN
3.3.3. Temporal Features Extracted from LSTM
3.3.4. Fusion Technique
3.4. Loss Function and Evaluation Methods
4. Case Analysis Results
4.1. Data Collection
4.2. Model Training and Testing
4.3. Flight Delay Prediction Based on the 3DF-DSCL Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Lall, A. Delays in the New York City metroplex. Transp. Res. Part A Policy Pract. 2017, 114, 10–21. [Google Scholar] [CrossRef]
- Anguita, J.G.M.; Díaz Olariaga, O. Prediction of Departure Flight Delays through the Use of Predictive Tools Based on Machine Learning/Deep Learning Algorithms. Aeronaut. J. 2024, 128, 23. [Google Scholar]
- Tu, Y.; Ball, M.; Jank, W. Estimating flight departure delay distributions, a statistical approach with long-term trend and short-term pattern. J. Am. Stat. Assoc. 2008, 103, 112–125. [Google Scholar] [CrossRef]
- Fu, T.-C. A review on time series data mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181. [Google Scholar] [CrossRef]
- Belcastro, L.; Marozzo, F.; Talia, D.; Trunfio, P. Using scalable data mining for predicting flight delays. ACM Trans. Intell. Syst. Technol. 2016, 8, 1–22. [Google Scholar] [CrossRef]
- Hao, L.; Hansen, M.; Zhang, Y.; Post, J. New York, New York: Two ways of estimating the delay impact of New York airports. Transp. Res. Part E Logist. Transp. Rev. 2014, 70, 245–260. [Google Scholar] [CrossRef]
- Khan, W.; Ma, H.-L.; Chung, S.-H.; Wen, X. Hierarchical integrated machine learning model for predicting flight departure delays and duration in series. Transp. Res. Part C Emerg. Technol. 2021, 129, 103225. [Google Scholar] [CrossRef]
- Liu, F.; Sun, J.; Liu, M.; Yang, J.; Gui, G. Generalized flight delay prediction method using gradient boosting decision tree. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020. [Google Scholar] [CrossRef]
- Chakrabarty, N.; Kundu, T.; Dandapat, S.; Sarkar, A.; Kole, D.K. Flight arrival delay prediction using gradient boosting classifier. In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2018; pp. 651–659. [Google Scholar] [CrossRef]
- Moreira, L.; Dantas, C.; Oliveira, L.; Soares, J.; Ogasawara, E. On evaluating data preprocessing methods for machine learning models for flight delays. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar] [CrossRef]
- Manna, S.; Biswas, S.; Kundu, R.; Rakshit, S.; Gupta, P.; Barman, S. A statistical approach to predict flight delay using gradient boosted decision tree. In Proceedings of the IEEE International Conference on Computational Intelligence and Data Science (ICCIDS), Chennai, India, 2–3 June 2017; pp. 1–5. [Google Scholar]
- Bao, J.; Yang, Z.; Zeng, W. Graph to sequence learning with attention mechanism for network-wide multi-step-ahead flight delay prediction. Transp. Res. Part C Emerg. Technol. 2021, 130, 103323. [Google Scholar] [CrossRef]
- Huang, P.; Wen, C.; Fu, L.; Peng, Q.; Tang, Y. A deep learning approach for multi-attribute data: A study of train delay prediction in railway systems. Inf. Sci. 2019, 216, 234–253. [Google Scholar] [CrossRef]
- Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 2019, 69, 140–150. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Ge, J.; Ning, K. An airport scene delay prediction method based on LSTM: 14th International Conference on Advanced Data Mining and Applications, ADMA 2018, Nanjing, China, 16–18 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 174–184. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, S.; Briceno, S.; Mavris, D. A deep learning approach to flight delay prediction. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016. [Google Scholar] [CrossRef]
- Silvestre, J.; Martinez-Prieto, M.A.; Bregon, A.; Alvarez-Esteban, P.C. A Deep Learning-Based Approach for Predicting In-Flight Estimated Time of Arrival. J. Supercomput. 2024, 80, 80. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Dong, H. Multiple-feature-based vehicle supply–demand difference prediction method for social transportation. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1095–1103. [Google Scholar] [CrossRef]
- Sanaei, R.; Pinto, B.; Gollnick, V. Toward ATM resiliency: A deep CNN to predict number of delayed flights and ATFM delay. Aerospace 2021, 8, 28. [Google Scholar] [CrossRef]
- Liu, H.; Lin, Y.; Chen, Z.; Guo, D.; Zhang, J.; Jing, H. Research on the air traffic flow prediction using a deep learning approach. IEEE Access 2019, 7, 148019–148030. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 22, 3848–3858. [Google Scholar] [CrossRef]
- Alfarhood, M.; Alotaibi, R.; Abdulrahim, B.; Einieh, A.; Almousa, M.; Alkhanifer, A. Predicting Flight Delays with Machine Learning: A Case Study from Saudi Arabian Airlines. Int. J. Aerosp. Eng. 2024, 2024, 12. [Google Scholar] [CrossRef]
- Carvalho, L.; Sternberg, A.; Maia Goncalves, L.; Beatriz Cruz, A.; Soares, J.A.; Brandão, D.; Ogasawara, E. On the relevance of data science for flight delay research: A systematic review. Transp. Rev. 2021, 41, 499–528. [Google Scholar] [CrossRef]
- Yu, B.; Guo, Z.; Asian, S.; Wang, H.; Chen, G. Flight delay prediction for commercial air transport: A deep learning approach. Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 203–221. [Google Scholar] [CrossRef]
- Sousa, M.; Carvalho, A.M. Polynomial-time algorithm for learning optimal BFS-consistent dynamic Bayesian networks. Entropy 2018, 20, 274. [Google Scholar] [CrossRef]
- Güvercin, M.; Ferhatosmanoglu, N.; Gedik, B. Forecasting flight delays using clustered models based on airport networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3179–3189. [Google Scholar] [CrossRef]
- Zonglei, L.; Jiandong, W.; Guansheng, Z. A new method to alarm large scale of flight delays based on machine learning. In Proceedings of the 2008 International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, 21–22 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 589–592. [Google Scholar]
- Wu, Z.J.; Tian, S.; Ma, L. A 4D trajectory prediction model based on the BP neural network. J. Intell. Syst. 2020, 29, 1545–1557. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, B. Phased Flight Trajectory Prediction with Deep Learning. arXiv 2022, arXiv:2203.09033. [Google Scholar]
- Qu, J.; Zhao, T.; Ye, M.; Li, J.; Liu, C. Flight delay prediction using deep convolutional neural network based on fusion of meteorological data. Neural Process. Lett. 2020, 52, 1461–1484. [Google Scholar] [CrossRef]
- Cai, K.; Li, Y.; Fang, Y.P.; Zhu, Y. A deep learning approach for flight delay prediction through time-evolving graphs. IEEE Trans. Intell. Transp. Syst. 2021, 22, 11397–11407. [Google Scholar] [CrossRef]
- Li, G.; Xiong, C.; Thabet, A.; Ghanem, B. DeeperGCN: All you need to train deeper GCNs. arXiv 2020, arXiv:2006.07739. [Google Scholar]
- Sun, C.; Li, S.; Cao, D.; Wang, F.-Y.; Khajepour, A. Tabular learning-based traffic event prediction for intelligent social transportation systems. IEEE Trans. Comput. Soc. Syst. 2023, 10, 1199–1210. [Google Scholar] [CrossRef]
- Kong, X.; Huang, Z.; Shen, G.; Lin, H.; Lv, M. Urban overtourism detection based on graph temporal convolutional networks. IEEE Trans. Comput. Soc. Syst. 2022, 9, 442–454. [Google Scholar] [CrossRef]
- Ma, L.; Tian, S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction. IEEE Access 2020, 8, 134668–134680. [Google Scholar] [CrossRef]
- Khan, S.; Alarabi, L.; Basalamah, S. Toward smart lockdown: A novel approach for COVID-19 hotspots prediction using a deep hybrid neural network. Computers 2020, 9, 99. [Google Scholar] [CrossRef]
- Ai, Y.; Pan, W.; Yang, C.; Wu, D.; Tang, J. A deep learning approach to predict the spatial and temporal distribution of flight delay in network. J. Intell. Fuzzy Syst. 2019, 37, 6029–6037. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, R.; Zeng, W.; Lu, J.; Zhang, Z. Short-term prediction of airway congestion index using machine learning methods. Transp. Res. Part C Emerg. Technol. 2021, 125, 103040. [Google Scholar] [CrossRef]
- Chen, M.; Zeng, W.; Xu, Z.; Li, J. Delay prediction based on deep stacked autoencoder networks. In Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering 2018, Beijing, China, 21–23 December 2018; pp. 238–242. [Google Scholar]
- Yi, J.; Zhang, H.; Liu, H.; Zhong, G.; Li, G. Flight delay classification prediction based on stacking algorithm. J. Adv. Transp. 2021, 2021, 4292778. [Google Scholar] [CrossRef]
- Roh, H.-J. Development and performance assessment of winter climate hazard models on traffic volume with four model structure types. Nat. Hazards Rev. 2020, 21, 04020023. [Google Scholar] [CrossRef]
- Sridhar, B.; Chen, N. Short-term national airspace system delay prediction using weather-impacted traffic index. J. Guid. Control Dyn. 2009, 32, 657–662. [Google Scholar] [CrossRef]
- Adacher, L.; Flamini, M.; Romano, E. Rerouting algorithms solving the air traffic congestion. In Proceedings of the Applied Mathematics and Computer Science: Proceedings of the 1st International Conference on Applied Mathematics and Computer Science, Rome, Italy, 27–29 January 2017; p. 020053. [Google Scholar] [CrossRef]
- Rani, S.; Sikka, G. Recent techniques of clustering of time series data: A survey. Int. J. Comput. Appl. 2012, 52, 1–9. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, Z.; Liu, Y.; Zhang, Q.; Wu, D. China’s corridors-in-the-sky design and space-time congestion identification and the influence of air routes’ traffic flow. J. Geogr. Sci. 2019, 29, 1999–2014. [Google Scholar] [CrossRef]
- Enayatollahi, F.; Atashgah, M.A.A. Wind effect analysis on air traffic congestion in terminal area via cellular automata. Aviation 2018, 22, 102–114. [Google Scholar] [CrossRef]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef]
- Simaiakis, I. Analysis, Modeling and Control of the Airport Departure Process. Doctor of Philosophy in Aeronautics and Astronautics, Massachusetts Institute of Technology. 2013. Available online: http://dspace.mit.edu/handle/1721.1/79342 (accessed on 16 June 2016).
- Zhang, Y. Research on Low Visibility Forecasting and its Correlation with Flight Punctuality. Master’s Thesis, Civil Aviation Flight Academy of China, Nanchang, China, 2018. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Ranzato, M.A.; Huang, F.; Boureau, Y.-L.; LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proceedings of the CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850. [Google Scholar]
- Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. Phys.-Verl. HD 2010, 10, 177–186. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Tao, H.; Lu, X. On Comparing Six Optimization Algorithms for Network-Based Wind Speed Forecasting. In Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018. [Google Scholar] [CrossRef]
Dimension | Name | Description |
---|---|---|
Temporal dataLa | Time | Time in a day (yyyy/mm/dd hh:mm:ss). |
Flight ID | The ID of each flight (e.g., CA975). | |
Historic delay | Historic delay time of each flight (min). | |
Weather | Dummy variable, general (or severe) unfavorable weather (mist, light rain, shower, rain, thunderstorm and snowfall) = 1; others = 0. | |
Special situation | Dummy variable, Special situation (Political regulation, holidays, winter and summer vacations) = 1; others = 0. | |
Aircrew ID | Dummy variable, crew scheduled = 1; others = 0. | |
Aircraft ID | The type of aircraft (e.g., b737). | |
Spatial data | Longitude | Longitude of the sections and stages point. |
LatLatitude | Latitude of the sections and stages point. | |
Moving sections length | Length for each moving sections (km), including taxiing, runway and airway. | |
Congestion index | Congestion index for each moving sections (min/km). | |
Spatial-temporal data | Scheduled flow | Flow of each moving stages according to flight plan (aircraft/km). |
Aircraft operation status | Historic aircraft operation status of flight flow for each moving stages (aircraft/min). |
Model | MAE (min) | RMSE (min) | MAPE (*) |
---|---|---|---|
LSTM | 0.430 | 0.728 | 0.297 |
ARIMA | 0.681 | 0.927 | 0.265 |
CNN | 0.581 | 0.860 | 0.584 |
GCN | 0.584 | 0.847 | 0.568 |
GCN+LSTM | 0.403 | 0.728 | 0.296 |
2D CNN+LSTM | 0.418 | 0.598 | 0.332 |
3D CNN+LSTM | 0.341 | 0.551 | 0.322 |
2D CNN+GCN+LSTM | 0.304 | 0.454 | 0.163 |
3DF-DSCL | 0.260 | 0.363 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Wang, Y.; Lai, C.S. Multi-Attribute Data-Driven Flight Departure Delay Prediction for Airport System Using Deep Learning Method. Aerospace 2025, 12, 246. https://doi.org/10.3390/aerospace12030246
Yuan Y, Wang Y, Lai CS. Multi-Attribute Data-Driven Flight Departure Delay Prediction for Airport System Using Deep Learning Method. Aerospace. 2025; 12(3):246. https://doi.org/10.3390/aerospace12030246
Chicago/Turabian StyleYuan, Yujie, Yantao Wang, and Chun Sing Lai. 2025. "Multi-Attribute Data-Driven Flight Departure Delay Prediction for Airport System Using Deep Learning Method" Aerospace 12, no. 3: 246. https://doi.org/10.3390/aerospace12030246
APA StyleYuan, Y., Wang, Y., & Lai, C. S. (2025). Multi-Attribute Data-Driven Flight Departure Delay Prediction for Airport System Using Deep Learning Method. Aerospace, 12(3), 246. https://doi.org/10.3390/aerospace12030246