Integration of Finite Element Method and Neural Network for Enhanced Prediction of Rubber Buffer Stiffness in Light Aircraft
Abstract
:1. Introduction
2. Experiment and Simulation
2.1. Specimen
2.2. Experiments
2.3. Simulation of Experiment
3. Parametric FE Analysis
3.1. Analysis Parameters
3.2. Discussion of Results
4. Neural Network Predictions
4.1. BP Neural Network Prediction Principle
4.2. BP Neural Network Modeling
4.3. BP Neural Network Model Training
5. Comparison Between BP Network and Formula
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures; Butterworth-Heinemann: Oxford, UK, 2013; pp. 480–485. [Google Scholar]
- Can, Z.J.; Huang, Z.W.; Yu, J.H.; Gao, Z.J. The 14th Fascicule of Aircraft Design Manual: Take-Off and Landing System Design; Aviation Industry Press: Beijing, China, 2002; pp. 95–107. [Google Scholar]
- Lee, J.; Park, H.; Kim, S.-J.; Kwon, Y.-N.; Kim, D. Numerical investigation into plastic deformation and failure in aluminum alloy sheet rubber-diaphragm forming. Int. J. Mech. Sci. 2018, 142, 112–120. [Google Scholar] [CrossRef]
- Xu, X.; Yao, X.; Dong, Y.; Yang, H.; Yan, H. Mechanical behaviors of non-orthogonal fabric rubber seal. Compos. Struct. 2021, 259, 113453. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Liu, R.; Chen, M.; Zhang, C.; Li, X.; Li, W.; Wang, H. Compressive stress-hydrothermal aging behavior and constitutive model of shield tunnel EPDM rubber material. Constr. Build. Mater. 2022, 320, 126298. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, H.; Zhu, W.; Li, C.; Pi, Y. Dynamic performance of a multi-ribbed belt based on an overlay constitutive model of carbon-black-filled rubber and experimental validation. Mech. Syst. Signal Process. 2017, 95, 252–272. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Yin, H. Numerical investigation of nonlinear properties of a rubber absorber in rail fastening systems. Int. J. Mech. Sci. 2013, 69, 107–113. [Google Scholar] [CrossRef]
- Wang, J. Mechanical Properties and Stability Analysis of Thick Laminated Rubber Seismic Isolation Bearing. Master’s Thesis, Guangzhou University, Guangzhou, China, 2020. [Google Scholar]
- Wang, Y.; Shen, C.; Huang, X. Calculation of vertical stiffness of thick rubber seismic isolation bearings and analysis of their influencing factors. South China Earthq. 2023, 43, 132–142. [Google Scholar]
- Chen, L.; Cui, L.; Chen, Y.; Wang, Y.; Ke, K. BP Neural Network Prediction of Vertical Stiffness of Rubber Seismic Isolation Bearing. J. Archit. Civ. Eng. 2023, 40, 84–90. [Google Scholar]
- Yuan, Z.; Niu, M.-Q.; Ma, H.; Gao, T.; Zang, J.; Zhang, Y.; Chen, L.-Q. Predicting mechanical behaviors of rubber materials with artificial neural networks. Int. J. Mech. Sci. 2023, 249, 108265. [Google Scholar] [CrossRef]
- Versaci, M.; Laganà, F.; Morabito, F.C.; Palumbo, A.; Angiulli, G. Adaptation of an Eddy Current Model for Characterizing Subsurface Defects in CFRP Plates Using FEM Analysis Based on Energy Functional. Mathematics 2024, 12, 2854. [Google Scholar] [CrossRef]
- Angiulli, G.; Calcagno, S.; De Carlo, D.; Laganá, F.; Versaci, M. Second-order parabolic equation to model, analyze, and forecast thermal-stress distribution in aircraft plate attack wing–fuselage. Mathematics 2019, 8, 6. [Google Scholar] [CrossRef]
- CCAR-23-R3. Civil Aviation Regulations of China Part 23: Airworthiness Standards for Normal, Utility, Aerobatic, and Commuter Aircraft. 2004. Available online: http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201511/t20151102_8500.html (accessed on 10 February 2025).
- van Tonder, J.D.; Venter, M.P.; Venter, G. A novel method for resolving non-unique solutions observed in fitting parameters to the Mooney Rivlin material model. Finite Elem. Anal. Des. 2023, 225, 104006. [Google Scholar] [CrossRef]
- Manan, N.; Noor, S.; Azmi, N.N.; Mahmud, J. Numerical investigation of Ogden and Mooney-Rivlin material parameters. ARPN J. Eng. Appl. Sci. 2015, 10, 6329–6335. [Google Scholar]
- Sun, Y.; Chen, L.; Yick, K.-L.; Yu, W.; Lau, N.; Jiao, W. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models. J. Mech. Behav. Biomed. Mater. 2019, 90, 615–625. [Google Scholar] [CrossRef]
- Bin, D.X.; Zhao, Y.Q.; Lin, F.; Xiao, Z. Parameters determination of Mooney-Rivlin model for rubber material of mechanical elastic wheel. Appl. Mech. Mater. 2017, 872, 198–203. [Google Scholar]
- Wang, W.; Deng, T.; Zhao, S. Determination of material constants in the Mooney-Rivlin model of rubber. Spec. Rubber Prod. 2004, 25, 8–10. [Google Scholar]
- Huang, Q. Rubber Mooney-Rivlin model and its coefficient least squares solution. Trop. Agric. Sci. 2009, 29, 20–24. [Google Scholar]
- Zhang, M.; Li, W.; Zhang, L.; Jin, H.; Mu, Y.; Wang, L. A Pearson correlation-based adaptive variable grouping method for large-scale multi-objective optimization. Inf. Sci. 2023, 639, 118737. [Google Scholar] [CrossRef]
- Guha, S.; Jana, R.K.; Sanyal, M.K. Artificial neural network approaches for disaster management: A literature review. Int. J. Disaster Risk Reduct. 2022, 81, 103276. [Google Scholar] [CrossRef]
- De Albuquerque Filho, J.E.; Brandão, L.C.P.; Fernandes, B.J.T.; Maciel, A.M.A. A review of neural networks for anomaly detection. IEEE Access 2022, 10, 112342–112367. [Google Scholar] [CrossRef]
- Seo, Y.M.; Pandey, S.; Lee, H.U.; Choi, C.; Park, Y.G.; Ha, M.Y. Prediction of heat transfer distribution induced by the variation in vertical location of circular cylinder on Rayleigh-Bénard convection using artificial neural network. Int. J. Mech. Sci. 2021, 209, 106701. [Google Scholar] [CrossRef]
- Jalal, M.; Moradi-Dastjerdi, R.; Bidram, M. Big data in nanocomposites: ONN approach and mesh-free method for functionally graded carbon nanotube-reinforced composites. J. Comput. Des. Eng. 2019, 6, 209–223. [Google Scholar] [CrossRef]
- Jodaei, A.; Jalal, M.; Yas, M.H. Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Compos. Part B Eng. 2012, 43, 340–353. [Google Scholar] [CrossRef]
- Weng, H.; Luo, C.; Yuan, H. ANN-aided evaluation of dual-phase microstructural fabric tensors for continuum plasticity representation. Int. J. Mech. Sci. 2022, 231, 107560. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of CNN and RNN for natural language processing. arXiv 2017, arXiv:1702.01923. [Google Scholar]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Rahul, C.; Ghanshala, K.K.; Joshi, R.C. Convolutional neural network (CNN) for image detection and recognition. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Kurucan, M.; Özbaltan, M.; Yetgin, Z.; Alkaya, A. Applications of artificial neural network based battery management systems: A literature review. Renew. Sustain. Energy Rev. 2024, 192, 114262. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Alsarraf, J.; Moayedi, H.; Rashid, A.S.A.; Muazu, M.A.; Shahsavar, A. Application of PSO–ANN modelling for predicting the exergetic performance of a building integrated photovoltaic/thermal system. Eng. Comput. 2020, 36, 633–646. [Google Scholar] [CrossRef]
- Panahi, F.; Ahmed, A.N.; Singh, V.P.; Ehtearm, M.; Elshafie, A.; Haghighi, A.T. Predicting freshwater production in seawater greenhouses using hybrid artificial neural network models. J. Clean. Prod. 2021, 329, 129721. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.-H.; Shi, J.-Y.; Huang, F. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In Advances in Computer Science and Information Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Goh, A.T.C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Z.; Gao, C.; Qin, J.; Yao, F.; Xu, W. Determining the number of BP neural network hidden layer units. J. Tianjin Univ. Technol. 2008, 24, 13. [Google Scholar]
- Huang, L.; Qin, J.; Zhou, Y.; Zhu, F.; Liu, L.; Shao, L. Normalization techniques in training dnns: Methodology, analysis and application. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10173–10196. [Google Scholar] [CrossRef]
- GB 20688.3; Rubber Bearings Part 3: Seismic Isolation Rubber Bearings for Buildings. General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2006.
- Lindley, P.B. Natural rubber structural bearings. Spec. Publ. 1981, 70, 353–378. [Google Scholar]
C10 | C01 | C10/C01 | |
---|---|---|---|
CS-1 | 0.958 | 0.231 | 0.241 |
CS-2 | 0.995 | 0.194 | 0.195 |
CS-3 | 1.161 | 0.028 | 0.024 |
Model ID | D/ mm | d/ mm | tr/ mm | HS N/mm2 | n | G GPa |
---|---|---|---|---|---|---|
CL1 | 95 | 25 | 63 | 70.5 | 1 | 0.96 |
CL2 | 95 | 25 | 63 | 70.5 | 2 | 0.96 |
CL3 | 95 | 25 | 63 | 70.5 | 3 | 0.96 |
CL4 | 95 | 25 | 63 | 70.5 | 4 | 0.96 |
CL5 | 95 | 25 | 63 | 70.5 | 5 | 0.96 |
D105 | 105 | 25 | 63 | 70.5 | 6 | 0.96 |
D95/CL6/GS6 | 95 | 25 | 63 | 70.5 | 6 | 0.96 |
D85 | 85 | 25 | 63 | 70.5 | 6 | 0.96 |
D75 | 75 | 25 | 63 | 70.5 | 6 | 0.96 |
GS1 | 95 | 25 | 393 | 70.5 | 1 | 0.96 |
GS2 | 95 | 25 | 195 | 70.5 | 2 | 0.96 |
GS3 | 95 | 25 | 129 | 70.5 | 3 | 0.96 |
GS4 | 95 | 25 | 96 | 70.5 | 4 | 0.96 |
GS5 | 95 | 25 | 76.2 | 70.5 | 5 | 0.96 |
DK1 | 95 | 25 | 73 | 70.5 | 1 | 0.96 |
DK2 | 95 | 25 | 73 | 70.5 | 2 | 0.96 |
DK3 | 95 | 25 | 73 | 70.5 | 3 | 0.96 |
DK4 | 95 | 25 | 73 | 70.5 | 4 | 0.96 |
DK5 | 95 | 25 | 73 | 70.5 | 5 | 0.96 |
DK6 | 95 | 25 | 73 | 70.5 | 6 | 0.96 |
Pearson Correlation | D (mm) | tr (mm) | n | P (Mpa) | K (N/mm) |
---|---|---|---|---|---|
D (mm) | 1 | ||||
tr (mm) | 0.079 | 1 | |||
n | −0.234 | −0.457 | 1 | ||
P (Mpa) | −0.002 | 0.003 | 0.031 | 1 | |
K (N/mm) | 0.170 | −0.178 | −0.544 | 0.357 | 1 |
Model ID | P (Mpa) | FE Model (N/mm) | Formula (N/mm) | Error |
---|---|---|---|---|
CL1 | 2 | 1058.54 | 331.03 | 68.73% |
CL2 | 4.4 | 945 | 165.51 | 82.48% |
CL3 | 2 | 363.78 | 110.34 | 69.67% |
CL4 | 6.6 | 711 | 82.75 | 88.36% |
CL5 | 2 | 210.02 | 66.20 | 68.48% |
D105 | 2 | 216 | 70.01 | 67.59% |
D85 | 6.6 | 286 | 42.41 | 85.17% |
D75 | 2 | 104.26 | 31.52 | 69.76% |
GS2 | 6.6 | 431 | 49.56 | 88.5% |
GS3 | 2 | 165.66 | 50.53 | 69.49% |
GS4 | 2 | 168.4 | 51.78 | 69.25% |
GS5 | 2 | 431 | 53.32 | 83.5% |
Model ID | P (Mpa) | FE Model (N/mm) | BP Network (N/mm) | Error |
---|---|---|---|---|
CL1 | 4.4 | 1711 | 1712.86 | 0.11% |
GS5 | 4.4 | 330 | 327.67 | 0.71% |
CL2 | 2 | 541.53 | 548.91 | 1.34% |
GS4 | 6.6 | 472 | 465.34 | 1.41% |
D105 | 6.6 | 570 | 579.64 | 1.69% |
DK3 | 2 | 309.3 | 316.94 | 2.41% |
GS2 | 6.6 | 431 | 411.34 | 4.78% |
GS1 | 4.4 | 309 | 327.74 | 5.72% |
D105 | 2 | 216 | 230.08 | 6.52% |
DK2 | 4.4 | 721.2 | 781.63 | 7.73% |
DK5 | 4.4 | 284.41 | 312.30 | 8.93% |
D95 | 4.4 | 348 | 315.81 | 9.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Xiong, X.; Zheng, S.; Ma, H. Integration of Finite Element Method and Neural Network for Enhanced Prediction of Rubber Buffer Stiffness in Light Aircraft. Aerospace 2025, 12, 253. https://doi.org/10.3390/aerospace12030253
Huang Z, Xiong X, Zheng S, Ma H. Integration of Finite Element Method and Neural Network for Enhanced Prediction of Rubber Buffer Stiffness in Light Aircraft. Aerospace. 2025; 12(3):253. https://doi.org/10.3390/aerospace12030253
Chicago/Turabian StyleHuang, Zhenyu, Xuhai Xiong, Shuang Zheng, and Hongtu Ma. 2025. "Integration of Finite Element Method and Neural Network for Enhanced Prediction of Rubber Buffer Stiffness in Light Aircraft" Aerospace 12, no. 3: 253. https://doi.org/10.3390/aerospace12030253
APA StyleHuang, Z., Xiong, X., Zheng, S., & Ma, H. (2025). Integration of Finite Element Method and Neural Network for Enhanced Prediction of Rubber Buffer Stiffness in Light Aircraft. Aerospace, 12(3), 253. https://doi.org/10.3390/aerospace12030253