Online Continual Physics-Informed Learning for Quadrotor State Estimation Under Wind-Induced Disturbances
Abstract
1. Introduction
- We propose a PINNs-based state estimation algorithm that incorporates quadrotor dynamic equations in wind-induced environments, facilitating the integration of physical constraints and simulation data.
- We integrate the CBP algorithm into the PINNs-based state estimation model for a quadrotor, enabling the quadrotor system to learn disturbance-related operational data online in real time, thereby enhancing the network’s online learning capability.
- We validate the proposed algorithm on a quadrotor simulation platform. Experimental results demonstrate that the proposed algorithm achieves satisfactory online state estimation performance for quadrotor-simulated wind disturbance scenarios, indicating its excellent learning capability.
2. Preparation
2.1. Notations
2.2. Quadrotor Nominal Dynamics
2.3. Disturbance Modeling
3. Continual Physics-Informed Learning State Estimation
3.1. Offline Model
3.2. Online Model
Algorithm 1 Continual backpropagation for a neural network with L layers |
|
4. Experiment and Results
4.1. Data Acquisition and Model Training
4.2. Offline State Estimation Results
4.3. Online State Estimation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A comprehensive review of recent research trends on unmanned aerial vehicles (uavs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Derrouaoui, S.H.; Bouzid, Y.; Belmouhoub, A.; Guiatni, M.; Siguerdidjane, H. Recent developments and trends in unconventional uavs control: A review. J. Intell. Robot. Syst. 2023, 109, 68. [Google Scholar] [CrossRef]
- Idrissi, M.; Salami, M.; Annaz, F. A review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithms. J. Intell. Robot. Syst. 2022, 104, 22. [Google Scholar] [CrossRef]
- Ning, Z.; Yang, Y.; Wang, X.; Guo, L.; Gao, X.; Guo, S.; Wang, G. Dynamic computation offloading and server deployment for UAV-enabled multi-access edge computing. IEEE Trans. Mob. Comput. 2021, 22, 2628–2644. [Google Scholar] [CrossRef]
- Ningjun, L.; Zhihao, C.; Jiang, Z.; Yingxun, W. Predictor-based model reference adaptive roll and yaw control of a quad-tiltrotor UAV. Chin. J. Aeronaut. 2020, 33, 282–295. [Google Scholar]
- Svacha, J.; Paulos, J.; Loianno, G.; Kumar, V. Imu-based inertia estimation for a quadrotor using newton-euler dynamics. IEEE Robot. Autom. Lett. 2020, 5, 3861–3867. [Google Scholar] [CrossRef]
- Rego, B.S.; Raffo, G.V. Suspended load path tracking control using a tilt-rotor UAV based on zonotopic state estimation. J. Frankl. Inst. 2019, 356, 1695–1729. [Google Scholar] [CrossRef]
- Lyu, P.; Bao, S.; Lai, J.; Liu, S.; Chen, Z. A dynamic model parameter identification method for quadrotors using flight data. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 1990–2002. [Google Scholar] [CrossRef]
- Boualem, N.; Abderrezak, G.; Akram, A.; Lotfi, M. Fault Tolerant Attitude Estimation Strategy for a Quadrotor UAV under Total Sensor Failure. J. Control Eng. Appl. Inform. 2023, 25, 79–89. [Google Scholar]
- Yu, L.; Yang, E.; Yang, B.; Fei, Z.; Niu, C. A robust learned feature-based visual odometry system for UAV pose estimation in challenging indoor environments. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Al-Sharman, M.K.; Zweiri, Y.; Jaradat, M.A.K.; Al-Husari, R.; Gan, D.; Seneviratne, L.D. Deep-learning-based neural network training for state estimation enhancement: Application to attitude estimation. IEEE Trans. Instrum. Meas. 2019, 69, 24–34. [Google Scholar] [CrossRef]
- Luo, S.; Liang, Y.; Luo, Z.; Liang, G.; Wang, C.; Wu, X. Vision-guided object recognition and 6D pose estimation system based on deep neural network for unmanned aerial vehicles towards intelligent logistics. Appl. Sci. 2022, 13, 115. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Sun, W.; Akashi, N.; Kuniyoshi, Y.; Nakajima, K. Physics-informed recurrent neural networks for soft pneumatic actuators. IEEE Robot. Autom. Lett. 2022, 7, 6862–6869. [Google Scholar] [CrossRef]
- Ding, L.; Xu, P.; Li, Z.; Zhou, R.; Gao, H.; Deng, Z.; Liu, G. Pressing and rubbing: Physics-informed features facilitate haptic terrain classification for legged robots. IEEE Robot. Autom. Lett. 2022, 7, 5990–5997. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Yang, J.; Hao, L. Online Incremental Dynamic Modeling using Physics-informed Long Short-term Memory Networks for the Pneumatic Artificial Muscle. IEEE Robot. Autom. Lett. 2024, 9, 8435–8442. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J. Applications of physics-informed neural networks in power systems—A review. IEEE Trans. Power Syst. 2022, 38, 572–588. [Google Scholar] [CrossRef]
- Mo, Z.; Shi, R.; Di, X. A physics-informed deep learning paradigm for car-following models. Transp. Res. Part C Emerg. Technol. 2021, 130, 103240. [Google Scholar] [CrossRef]
- Gu, W.; Primatesta, S.; Rizzo, A. Physics-informed Neural Network for Quadrotor Dynamical Modeling. Robot. Auton. Syst. 2024, 171, 104569. [Google Scholar] [CrossRef]
- Bianchi, D.; Epicoco, N.; Di Ferdinando, M.; Di Gennaro, S.; Pepe, P. Physics-Informed Neural Networks for Unmanned Aerial Vehicle System Estimation. Drones 2024, 8, 716. [Google Scholar] [CrossRef]
- Sanyal, S.; Roy, K. Ramp-net: A robust adaptive mpc for quadrotors via physics-informed neural network. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 1019–1025. [Google Scholar]
- Li, F.; Song, W.P.; Song, B.F.; Zhang, H. Dynamic modeling, simulation, and parameter study of electric quadrotor system of Quad-Plane UAV in wind disturbance environment. Int. J. Micro Air Veh. 2021, 13, 17568293211022211. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Liu, X.; Guo, Y.; Zhang, W. Model-free integrated navigation of small fixed-wing UAVs full state estimation in wind disturbance. IEEE Sens. J. 2022, 22, 2771–2781. [Google Scholar] [CrossRef]
- Jeon, H.; Song, J.; Lee, H.; Eun, Y. Modeling quadrotor dynamics in a wind field. IEEE/ASME Trans. Mechatron. 2020, 26, 1401–1411. [Google Scholar] [CrossRef]
- de Angelis, E.L.; Giulietti, F. An Improved Method for Swing State Estimation in Multirotor Slung Load Applications. Drones 2023, 7, 654. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Wei, T. Aerodynamic Disturbance Estimation in Quadrotor Landing on Moving Platform via Noise Reduction Extended Disturbance Observer. IEEE Sens. J. 2024, 24, 37566–37574. [Google Scholar] [CrossRef]
- Nobahari, H.; Sharifi, A. Multiple model extended continuous ant colony filter applied to real-time wind estimation in a fixed-wing UAV. Eng. Appl. Artif. Intell. 2020, 92, 103629. [Google Scholar] [CrossRef]
- Dohare, S.; Hernandez-Garcia, J.F.; Lan, Q.; Rahman, P.; Mahmood, A.R.; Sutton, R.S. Loss of plasticity in deep continual learning. Nature 2024, 632, 768–774. [Google Scholar] [CrossRef]
- Dayawansa, W.P. Mathematical control theory: Deterministic finite dimensional systems [Book Review]. IEEE Trans. Autom. Control 2001, 46, 673–675. [Google Scholar] [CrossRef]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 2018, 18, 1–43. [Google Scholar]
- Panerati, J.; Zheng, H.; Zhou, S.; Xu, J.; Prorok, A.; Schoellig, A.P. Learning to fly—A gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 7512–7519. [Google Scholar]
Symbol | Definition |
---|---|
state variables | |
differential of state variables | |
The control inputs | |
quadrotor dynamic | |
drag constant | |
L | arm length of the quadrotor |
collective thrust | |
body torque | |
disturbance effects | |
network parameters | |
neural mapping function | |
mean of the distribution | |
standard deviation of the distribution |
Parameter | Description | Value |
---|---|---|
m | Mass of the quadrotor | 27 g |
Principal Moment of Inertia | (1.395, 1.436, 2.13) × 10−5 kg·m2 | |
Drag Constant | 0.0215 | |
Pybullet_Freq | PyBullet Simulation Frequency | 240 Hz |
Control_Freq | Control Frequency of Quadrotor | 480 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, S.; Shi, J.; Hao, L. Online Continual Physics-Informed Learning for Quadrotor State Estimation Under Wind-Induced Disturbances. Aerospace 2025, 12, 704. https://doi.org/10.3390/aerospace12080704
Liu Y, Wang S, Shi J, Hao L. Online Continual Physics-Informed Learning for Quadrotor State Estimation Under Wind-Induced Disturbances. Aerospace. 2025; 12(8):704. https://doi.org/10.3390/aerospace12080704
Chicago/Turabian StyleLiu, Yanhui, Shuopeng Wang, Junhua Shi, and Lina Hao. 2025. "Online Continual Physics-Informed Learning for Quadrotor State Estimation Under Wind-Induced Disturbances" Aerospace 12, no. 8: 704. https://doi.org/10.3390/aerospace12080704
APA StyleLiu, Y., Wang, S., Shi, J., & Hao, L. (2025). Online Continual Physics-Informed Learning for Quadrotor State Estimation Under Wind-Induced Disturbances. Aerospace, 12(8), 704. https://doi.org/10.3390/aerospace12080704