Fault Detection and Distributed Consensus Fault-Tolerant Control for Multiple Quadrotor UAVs Based on Nussbaum-Type Function
Abstract
1. Introduction
- (1)
- (2)
- (3)
- Compared with the previous centralized control method [7], the developed distributed consensus FTC strategy can guarantee the autonomy of each QUAV and the boundedness of the error signal of the entire closed-loop system.
Some Existing Methods | Proposed Method | Superiority |
---|---|---|
Direct FTC method [24,25] | Fault detection | Improves early warning capability |
Direct adaptive estimation [20,21] | Nussbaum function | Avoids singularity problem |
Centralized control [7] | Distributed control | Enhances autonomy of each UAV |
2. Dynamic Modeling and Problem Description
2.1. Dynamic Modeling
2.2. Graph Theory
3. Fault Detection and Distributed Consensus Fault-Tolerant Control Design
3.1. Fault Detection Scheme Design
3.2. Distributed Consensus Fault-Tolerant Control Design
3.3. Stability Analysis
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Y.; Liu, H.; Wang, Y.; Liu, C. A comprehensive review for typical applications based upon unmanned aerial vehicle platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9654–9666. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Yan, Y. UAV formation trajectory planning algorithms: A review. Drones 2023, 7, 62. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Huangfu, S.; Yu, D. Leader-follower formation of light-weight UAVs with novel active disturbance rejection control. Appl. Math. Model. 2023, 117, 577–591. [Google Scholar] [CrossRef]
- Zhen, Q.; Wan, L.; Li, Y.; Jiang, D. Formation control of a multi-AUVs system based on virtual structure and artificial potential field on SE (3). Ocean Eng. 2022, 253, 111148. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Xia, Y.; Xiong, H. An improved artificial potential field method for path planning and formation control of the multi-UAV systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1129–1133. [Google Scholar] [CrossRef]
- Suo, W.; Wang, M.; Zhang, D.; Qu, Z. Formation control technology of fixed-wing UAV swarm based on distributed ad hoc network. Appl. Sci. 2022, 12, 535. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Jiang, B.; Fu, J. A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles. Chin. J. Aeronaut. 2022, 35, 1–18. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wu, Z.; Cong, Y.; Wang, Z. Formation control of unmanned aerial vehicle swarms: A comprehensive review. Asian J. Control 2023, 25, 570–593. [Google Scholar] [CrossRef]
- Cai, Z.; Zhou, H.; Zhao, J.; Wu, K. Formation control of multiple unmanned aerial vehicles by event-triggered distributed model predictive control. IEEE Access 2018, 6, 55614–55627. [Google Scholar] [CrossRef]
- Liu, Y.; Montenbruck, J.; Zelazo, D.; Odelga, M. A distributed control approach to formation balancing and maneuvering of multiple multirotor UAVs. IEEE Trans. Robot. 2018, 34, 870–882. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, L.; Zhao, J.; Wu, K. Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs. Chin. J. Aeronaut. 2020, 33, 1037–1056. [Google Scholar] [CrossRef]
- Tong, W.; Jie, W.; Bailing, T. Periodic event-triggered formation control for multi-UAV systems with collision avoidance. Chin. J. Aeronaut. 2022, 35, 193–203. [Google Scholar]
- Dong, X.; Hua, Y.; Zhou, Y.; Ren, Z. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems. IEEE Trans. Autom. Sci. Eng. 2018, 16, 229–240. [Google Scholar] [CrossRef]
- Guo, J.; Qi, J.; Wang, M.; Wu, C. Collision-free distributed control for multiple quadrotors in cluttered environments with static and dynamic obstacles. IEEE Robot. Autom. Lett. 2023, 8, 1501–1508. [Google Scholar] [CrossRef]
- Ouyang, Y.; Xue, L.; Dong, L.; Sun, C. Neural network-based finite-time distributed formation-containment control of two-layer quadrotor UAVs. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 4836–4848. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Jiang, B.; Su, C. Refined fractional-order fault-tolerant coordinated tracking control of networked fixed-wing UAVs against faults and communication delays via double recurrent perturbation FNNs. IEEE Trans. Cybern. 2022, 54, 1189–1201. [Google Scholar] [CrossRef]
- Zhang, H.; Mu, Y.; Gao, Z.; Wang, W. Observer-based fault reconstruction and fault-tolerant control for nonlinear systems subject to simultaneous actuator and sensor faults. IEEE Trans. Fuzzy Syst. 2021, 30, 2971–2980. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, X.; Yu, J.; Wu, X. Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy. Neural Netw. 2020, 121, 474–483. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Park, J.; He, P. Event-triggered impulsive fault-tolerant control for memristor-based RDNNs with actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2993–3004. [Google Scholar] [CrossRef]
- Yan, K.; Ren, H. Fault identification and fault-tolerant control for unmanned autonomous helicopter with global neural finite-time convergence. Neurocomputing 2021, 459, 165–175. [Google Scholar] [CrossRef]
- Shen, H.; Du, J.; Yan, K.; Liu, Y. VGESO-based finite-time fault-tolerant tracking control for quadrotor unmanned aerial vehicle. Int. J. Aerosp. Eng. 2024, 2024, 2541698. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Jiang, B.; Su, C. Nussbaum-based finite-time fractional-order backstepping fault-tolerant flight control of fixed-wing UAV against input saturation with hardware-in-the-loop validation. Mech. Syst. Signal Process. 2021, 153, 107406. [Google Scholar] [CrossRef]
- Xu, G.; Xia, Y.; Zhai, D.; Lyu, W. Adaptive finite-time attitude tracking control of quadrotor under actuator faults and external disturbances with guaranteed performance. Int. J. Adapt. Control Signal Process. 2022, 36, 2662–2676. [Google Scholar] [CrossRef]
- Tan, J.; Dong, Y.; Shao, P.; Qu, G. Anti-saturation adaptive fault-tolerant control with fixed-time prescribed performance for UAV under AOA asymmetric constraint. Aerosp. Sci. Technol. 2022, 120, 107264. [Google Scholar] [CrossRef]
- Yan, K.; Chen, C.; Xu, X.; Wu, Q. Neural network-based output feedback fault tolerant tracking control for nonlinear systems with unknown control directions. Complexity 2022, 2022, 4770439. [Google Scholar] [CrossRef]
- Bounemeur, A.; Chemachema, M. General fuzzy adaptive fault-tolerant control based on Nussbaum-type function with additive and multiplicative sensor and state-dependent actuator faults. Fuzzy Sets Syst. 2023, 468, 108616. [Google Scholar] [CrossRef]
- Puchalski, R.; Giernacki, W. UAV fault detection methods, state-of-the-art. Drones 2022, 6, 330. [Google Scholar] [CrossRef]
- Song, J.; Shang, W.; Ai, S.; Zhao, K. Model and data-driven combination: A fault diagnosis and localization method for unknown fault size of quadrotor UAV actuator based on extended state observer and deep forest. Sensors 2022, 22, 7355. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Yu, Z.; Cheng, Y. Fault detection and fault-tolerant cooperative control of multi-UAVs under actuator faults sensor faults, and wind disturbances. Drones 2023, 7, 503. [Google Scholar] [CrossRef]
- Madruga, S.; Nascimento, T.; Holzapfel, F.; Lima, A. Estimating the loss of effectiveness of UAV actuators in the presence of aerodynamic effects. IEEE Robot. Autom. Lett. 2023, 8, 1335–1342. [Google Scholar] [CrossRef]
- Abbaspour, A.; Yen, K.; Forouzannezhad, P.; Sargolzaei, A. A neural adaptive approach for active fault-tolerant control design in UAV. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 3401–3411. [Google Scholar] [CrossRef]
- Li, X.; Wang, J. Active fault-tolerant consensus control of Lipschitz nonlinear multiagent systems. Int. J. Robust Nonlinear Control 2020, 30, 5233–5252. [Google Scholar] [CrossRef]
- Yan, K.; Wu, Q. Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults. ISA Trans. 2022, 128, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ma, H.; Gu, D.; Xie, A. Backstepping sliding-mode and cascade active disturbance rejection control for a quadrotor UAV. IEEE/ASME Trans. Mechatron. 2020, 25, 2743–2753. [Google Scholar] [CrossRef]
- Yan, K.; Chen, M.; Wu, Q.; Zhu, R. Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults. Chin. J. Aeronaut. 2019, 32, 2299–2310. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, C.; Su, H.; Zhang, Q. On decentralized adaptive full-order sliding mode control of multiple UAVs. ISA Trans. 2017, 71, 196–205. [Google Scholar] [CrossRef]
- Chen, M.; Shi, P.; Lim, C. Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 260–270. [Google Scholar] [CrossRef]
Number | /(m) | /(rad) |
---|---|---|
QUAV1 | ||
QUAV2 | ||
QUAV3 | ||
QUAV4 |
Number | /(m) | /(rad) |
---|---|---|
QUAV1 | ||
QUAV2 | ||
QUAV3 | ||
QUAV4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Fan, J.; Tang, J.; He, C. Fault Detection and Distributed Consensus Fault-Tolerant Control for Multiple Quadrotor UAVs Based on Nussbaum-Type Function. Aerospace 2025, 12, 734. https://doi.org/10.3390/aerospace12080734
Yan K, Fan J, Tang J, He C. Fault Detection and Distributed Consensus Fault-Tolerant Control for Multiple Quadrotor UAVs Based on Nussbaum-Type Function. Aerospace. 2025; 12(8):734. https://doi.org/10.3390/aerospace12080734
Chicago/Turabian StyleYan, Kun, Jinxing Fan, Jianing Tang, and Chuchao He. 2025. "Fault Detection and Distributed Consensus Fault-Tolerant Control for Multiple Quadrotor UAVs Based on Nussbaum-Type Function" Aerospace 12, no. 8: 734. https://doi.org/10.3390/aerospace12080734
APA StyleYan, K., Fan, J., Tang, J., & He, C. (2025). Fault Detection and Distributed Consensus Fault-Tolerant Control for Multiple Quadrotor UAVs Based on Nussbaum-Type Function. Aerospace, 12(8), 734. https://doi.org/10.3390/aerospace12080734