Open AccessArticle
Distributed Cooperative Control of Flexible Spacecraft Based on PDE-ODE Coupled Dynamics Model
by
Kai Cao, Pan Sun, Zhitao Zhou, Fan Mo, Liguo Wang, Haiyang Li, Kaiheng Xiang and Shuang Li
Aerospace 2025, 12(9), 828; https://doi.org/10.3390/aerospace12090828 (registering DOI) - 15 Sep 2025
Abstract
With the increasing application of smart-material-based actuators for vibration suppression in flexible spacecraft, there is a growing need for advanced control strategies suited to distributed-parameter systems. This paper proposes a distributed cooperative control (DCC) scheme to address phase inconsistencies in actuator outputs within
[...] Read more.
With the increasing application of smart-material-based actuators for vibration suppression in flexible spacecraft, there is a growing need for advanced control strategies suited to distributed-parameter systems. This paper proposes a distributed cooperative control (DCC) scheme to address phase inconsistencies in actuator outputs within a decentralized control framework. The piezoelectric actuators embedded in flexible appendages are modeled as a multi-agent system that utilizes local information to improve coordination. A consensus-based cooperative controller is designed to synchronize actuator actions, with closed-loop stability rigorously established via Lyapunov’s direct method. The robustness of the controller is evaluated through Monte Carlo simulations under varying initial conditions. Comparative numerical results demonstrate that the proposed DCC achieves superior performance and energy efficiency over conventional decentralized control, along with inherent fault tolerance due to its distributed topology. Furthermore, the practical implementability of the approach is supported by discrete-time controller validation and automatic code generation, confirming its readiness for real-time embedded deployment. The study highlights the potential of DCC for enhancing vibration suppression in next-generation flexible spacecraft.
Full article