Quantifying the Environmental Design Trades for a State-of-the-Art Turbofan Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Engine Performance Modeling and Conceptual Design
2.2. Aircraft and Trajectory Modeling
Fy = FN sin(γ + α) + L cos(γ) − D sin(γ) − mg
2.3. Noise Assessment Modeling
2.4. NOx Assessment Modeling
2.5. Optimization and Trade Studies
3. Results
3.1. Tool Validation
3.2. Engine Cycle Design Space Exploration
3.3. Multidisciplinary Trades
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Nomenclature
α | Angle of attack | HPC | High pressure compressor |
γ | Flight path angle | HPT | High pressure turbine |
b | Fuel flow | IPC | Intermediate pressure compressor |
Amax | Maximum nacelle area | ISA | International standard atmosphere |
BPR | Bypass ratio | L | Lift |
Cd_nac | Nacelle drag coefficient | LPT | Low pressure turbine |
D | Drag | LTO | Landing and take-off cycle |
Dengine mass | Drag due to the engine weight | m | Aircraft mass |
Dnacelle | Nacelle drag | OPR | Overall pressure ratio |
EINOx | Emission index of NOx | p3 | Compressor outlet pressure |
FN | Net thrust for all engines | q | Dynamic pressure |
FPR | Fan pressure ratio | SFC | Specific fuel consumption |
Fx | Net thrust horizontal component | SFCinstalled | SFC accounting for installation effects |
Fy | Net thrust vertical component | T3 | Compressor outlet temperature |
g | Gravitational acceleration |
References
- Peeters, P.M.; Middel, J.; Hoolhorst, A. Fuel Efficiency of Commercial Aircraft: An Overview of Historical and Future Trends; NLR-CR-2005-669; Netherlands National Aerospace Laboratory (NLR): Amsterdam, The Netherlands, 2005. [Google Scholar]
- Correia, A.W.; Peters, J.L.; Levy, J.I.; Melly, S. Residential Exposure to Aircraft Noise and Hospital Admissions for Cardiovascular Diseases: Multi-Airport Retrospective Study; BMJ: Beijing, China, 2013; Volume 347. [Google Scholar]
- Sparrow, V.; Gjestland, T.; Guski, R.; Richard, I.; Basner, M.; Hansell, A.; de Kluizenaar, Y.; Clark, C.; Janssen, S.; Mestre, V.; et al. Aviation Noise Impacts White Paper; ICAO: Montreal, QC, Canada, 2019; pp. 44–61. [Google Scholar]
- Reduction of Noise at Source. Available online: https://www.icao.int/environmental-protection/pages/reduction-of-noise-at-source.aspx (accessed on 27 July 2020).
- Zhang, M.; Filippone, A.; Bojdo, N. Multi-Objective Optimisation of Aircraft Departure Trajectories. Aerosp. Sci. Technol. 2018, 79, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Antoine, N.E.; Kroo, I.M. Aircraft Optimization for Minimal Environmental Impact. J. Aircr. 2004, 41, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Gliebe, P.R.; Janardan, B.A. Ultra-High Bypass Engine Aeroacoustic Study; General Electric Aircraft Engines: Cincinnati, OH, USA, 2003. [Google Scholar]
- Kyprianidis, K.G.; Dahlquist, E. On the Trade-off between Aviation NOx and Energy Efficiency. Appl. Energy 2017, 185, 1506–1516. [Google Scholar] [CrossRef]
- Cumpsty, N.; Mavris, D.; Kirby, M. Aviation and the Environment: Outlook; ICAO: Montreal, QC, Canada, 2019; pp. 24–38. [Google Scholar]
- Grönstedt, T. Development of Methods for Analysis and Optimization of Complex Jet Engine Systems. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2000. [Google Scholar]
- Grönstedt, T.; Au, D.; Kyprianidis, K.G.; Ogaji, S. Low-Pressure System Component Advancements and Its Influence on Future Turbofan Engine Emissions. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea and Air, Orlando, FL, USA, 8–12 June 2009. [Google Scholar] [CrossRef]
- Ellbrant, L.; Karlson, D. A Noise Prediction Tool for Subsonic Aircraft and Engines Including a Numerical Investigation of Noise Radiation. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2008. [Google Scholar]
- Grönstedt, T.; Irannezhad, M.; Lei, X.; Thulin, O.; Lundbladh, A. First and Second Law Analysis of Future Aircraft Engines. J. Eng. Gas Turbines Power 2014, 136. [Google Scholar] [CrossRef]
- Grönstedt, T.; Wallin, M. A Comparative Study of Genetic Algorithms and Gradient Methods for RM12 Turbofan Engine Diagnostics and Performance Estimation. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea and Air, Vienna, Austria, 14–17 June 2004; GT2004-53591. pp. 615–624. [Google Scholar]
- Korsia, J.-J.; Spiegeleer, G.D. VITAL, an European R&D Program for Greener Aero-Engines. In Proceedings of the 25th International Congress of Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006. ICAS 2006-5.6.1. [Google Scholar]
- Wilfert, G.; Sieber, J.; Rolt, A.; Baker, N.; Touyeras, A.; Colantuoni, S. New Environmental Friendly Aero Engine Core Concepts. In Proceedings of the 18th International symposium on air breathing engines (IASBE), Beijing, China, 2–7 September 2007. ISABE – 2007 – 1120. [Google Scholar]
- ESDU. Drag of Axisymmetric Cowls at Zero Incidence for Subsonic Mach Numbers; ESDU International: London, UK, 1981. [Google Scholar]
- Robinson, M.; MacManus, D.G.; Sheaf, C. Aspects of Aero-Engine Nacelle Drag. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 233, 1667–1682. [Google Scholar] [CrossRef] [Green Version]
- LEAP Overview CFM International. Available online: https://www.cfmaeroengines.com/wp-content/uploads/2017/09/Brochure_LEAPfiches_2017.pdf (accessed on 13 September 2020).
- ICAO Aircraft Engine Emissions Databank. Available online: https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank (accessed on 18 September 2020).
- Grieb, H. Projektierung von Turboflugtriebwerken, 1st ed.; Birkhäuser: Basel, Switzerland, 2004. [Google Scholar]
- Samuelsson, S.; Kyprianidis, K.G.; Grönstedt, T. Consistent Conceptual Design and Performance Modelling of Aero Engines. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar] [CrossRef]
- Wilcock, R.C.; Young, J.B.; Horlock, J.H. The Effect of Turbine Blade Cooling on the Cycle Efficiency of Gas Turbine Power Cycles. J. Eng. Gas Turbines Power 2005, 127, 109–120. [Google Scholar] [CrossRef]
- Avellan, R.; Grönstedt, T. Preliminary Design of Subsonic Transport Aircraft/Engines. In Proceedings of the 18th International symposium on air breathing engines (IASBE), Beijing, China, 2–7 September 2007. ISABE 2007-1195. [Google Scholar]
- Jenkinson, J.; Simpkin, P.; Rhodes, D. Civil Jet Aircraft Design. Available online: https://booksite.elsevier.com/9780340741528/appendices/data-a/table-1/table.htm (accessed on 3 October 2020).
- Heidmann, M.F. Interim Prediction Method for Fan and Compressor Source Noise; NASA: Lewis Research Center: Cleveland, OH, USA, 1975. [Google Scholar]
- Gliebe, P.; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S. Aeroacoustic Prediction Codes; NASA: Glenn Research Center: Cleveland, OH, USA, 2000.
- Dunn, D.G.; Peart, N.A. Aircraft Noise Source and Contour Estimation; NASA: Boeing Commercial Airplane Co.: Seattle, WA, USA, 1973.
- Russel, J.W. An Empirical Method for Predicting the Mixing Noise Levels of Subsonic Circular and Coaxial Jets; NASA: Langley Research Center: Hampton, VA, USA, 1984.
- Golub, R.A.; Sen, R.; Hardy, B.; Yamamoto, K.; Guo, Y.-P.; Miller, G. Airframe Noise Sub-Component Definition and Model; NASA: Langley Research Center: Hampton, VA, USA, 2004.
- Depitre, A. Noise Certification Workshop, Session 2; ICAO: Montreal, QC, Canada, 2006.
- Chandrasekaran, N.; Guha, A. Study of Prediction Methods for NOx Emission from Turbofan Engines. J. Propuls. Power 2012, 28, 170–180. [Google Scholar] [CrossRef]
- Green, J.E. Greener by Design—The Technology Challenge. Aeronaut. J. 2002, 106, 57–113. [Google Scholar] [CrossRef]
- Gray, J.S.; Hwang, J.T.; Martins, J.R.R.A.; Moore, K.T.; Naylor, B.A. OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization. Struct. Multidiscip. Optim. 2019, 59, 1075–1104. [Google Scholar] [CrossRef]
- EASA Certification Noise Levels. Available online: https://www.easa.europa.eu/domains/environment/easa-certification-noise-levels (accessed on 18 September 2020).
- Daroukh, M. Effects of Distortion on Modern Turbofan Tonal Noise. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2017. [Google Scholar]
- Nesbitt, E. Towards a Quieter Low Pressure Turbine: Design Characteristics and Prediction Needs. Int. J. Aeroacoust. 2010, 10, 1–15. [Google Scholar] [CrossRef]
Altitude | 10,668 m | ηpoly,FAN | 0.930 | LTO Ratings (kN) | Noise Assessment Ratings (kN) | ||
Mach | 0.78 | ηpoly,IPC | 0.905 | Take-off | 143.1 | Sideline Cutback Approach | 135.9 68.0 19.1 |
ISA | +10 K | ηpoly,HPC | 0.918 | Climb-out | 121.6 | ||
Net thrust | 25 kN | ηpoly,HPT | 0.900 | Approach | 42.9 | ||
Mass flow | 196 kg/s | ηpoly,LPT | 0.930 | Idle | 10.0 |
Leap-1A26 | Leap-1A32 | ||||||
---|---|---|---|---|---|---|---|
Public Data | Model | Diff (%) | Public Data | Model | Diff (%) | ||
Cruise | BPR | NA | 11.59 | - | NA | 11.59 | - |
SFC (mg/Ns) | NA | 14.53 | - | NA | 14.53 | - | |
LTO take-off | OPR | 33.3 | 33.71 | 1.2 | 38.6 | 39.24 | 1.7 |
BPR | 11.1 | 11.0 | −0.9 | 10.5 | 10.6 | 1.0 | |
Fan Diameter (m) | 1.98 | 1.98 | 0.0 | 1.98 | 1.98 | 0.0 | |
Bare Engine weight (kg) | 2990 (with fluids) | 2817 | −5.8 | 2990 (with fluids) | 2817 | −5.8 | |
Engine length (m) | 3.328 | 3.102 | −6.8 | 3.328 | 3.102 | −6.8 | |
Engine architecture | 1 Fan − 3 IPC − 10 HPC − 2 HPT − 7 LPT | ||||||
Fuel flow (kg/s) | Take-off | 0.861 | 0.837 | −2.8 | 1.062 | 1.031 | −2.9 |
Climb-out | 0.710 | 0.685 | −3.5 | 0.869 | 0.846 | −2.6 | |
Approach | 0.244 | 0.239 | −2.0 | 0.284 | 0.282 | −0.7 | |
Idle | 0.091 | 0.091 | 0.0 | 0.098 | 0.102 | 4.1 | |
EINOx (gNOx/kgFuel) | Take-off | 30.80 | 32.12 | 4.3 | 59.74 | 39.39 | −34.1 |
Climb-out | 13.38 | 26.48 | 97.9 | 32.35 | 32.46 | 0.3 | |
Approach | 8.75 | 10.00 | 14.3 | 9.95 | 11.26 | 13.2 | |
Idle | 4.61 | 4.70 | 2.0 | 4.85 | 5.00 | 3.1 | |
EPNL total (EPNdB) | Sideline | 85.8 | 86.4 | 0.7 | 88.3 | 87.6 | −0.8 |
Cutback | 81.2 | 84.2 | 3.7 | 83.3 | 86.5 | 3.8 | |
Approach | 92.0 | 94.3 | 2.5 | 94.7 | 95.3 | 0.6 |
OPR | T4 (TET, ISA+10) | FPR | BPR | Fan Diameter |
---|---|---|---|---|
48.5 | 1650 K | 1.60 | 8.6 | 1.85 m (73 inch) |
OPR Trade Space | Low | Opt. | High |
---|---|---|---|
FPR | 1.51 | 1.52 | 1.52 |
Inst. SFC (mg/Ns) | 16.90 | 16.81 | 16.90 |
SFC (mg/Ns) | 14.52 | 14.49 | 14.53 |
OPR | 37.3 | 41.1 | 45.9 |
OPR (top-of-climb) | 44.1 | 48.5 | 54.0 |
BPR | 9.6 | 9.1 | 8.3 |
Mass flow (kg/s) | 186.2 | 186.2 | 186.3 |
HPT cool. flow % | 23.0 | 25.4 | 28.7 |
Nacelle drag 1 % | 5.2 | 5.2 | 5.2 |
Mechanical Architecture | |||
HPC stages | 11 | 11 | 12 |
LPT stages | 7 | 6 | 6 |
Weight (kg) | 4147 | 4050 | 4125 |
Fan Diameter (Inches) | 77 | 73 | 68 |
---|---|---|---|
FPR | 1.44 | 1.52 | 1.64 |
FPR (top-of-climb) | 1.51 | 1.60 | 1.74 |
Inst. SFC (mg/Ns) | 16.90 | 16.81 | 16.90 |
SFC (mg/Ns) | 14.41 | 14.49 | 14.73 |
OPR | 41.3 | 41.1 | 40.9 |
BPR | 10.1 | 9.1 | 7.6 |
BPR (top-of-climb) | 9.6 | 8.6 | 7.1 |
Mass flow (kg/s) | 206.4 | 186.2 | 160.1 |
Core jet velocity (m/s) | 421.8 | 409.6 | 407.8 |
BP jet velocity (m/s) | 306.7 | 308.9 | 312.4 |
Nacelle drag 1 % | 5.6 | 5.2 | 4.7 |
Mechanical Architecture | |||
Fan Diameter (m) | 1.95 | 1.85 | 1.73 |
HPC stages | 11 | 11 | 12 |
LPT stages | 6 | 6 | 6 |
Weight (kg) | 4278 | 4050 | 3797 |
Fan rot. speed (rpm) | 3979 | 4180 | 4493 |
LPT stage loading | 2.98 | 2.97 | 2.96 |
LPT last stage tip vel. (m/s) | 260.6 | 262.6 | 272.4 |
Low OPR | Optimal OPR | High OPR | ||
---|---|---|---|---|
Approach | Fan inlet | 87.7 | 87.7 | 87.8 |
Fan discharge | 93.1 | 93.2 | 93.2 | |
LPT | 82.0 | 81.8 | 82.5 | |
Engine | 94.5 | 94.5 | 94.6 | |
Airframe | 89.8 | 89.8 | 89.8 | |
Total | 95.8 | 95.8 | 95.8 | |
Cutback | Fan inlet | 83.4 | 83.4 | 83.4 |
Fan discharge | 83.8 | 83.8 | 83.8 | |
LPT | 72.8 | 72.7 | 73.5 | |
Jet | 73.9 | 74.0 | 74.0 | |
Engine | 87.0 | 87.0 | 87.0 | |
Total | 87.1 | 87.1 | 87.1 | |
Sideline | Fan inlet | 72.2 | 72.2 | 72.2 |
Fan discharge | 79.2 | 79.2 | 79.2 | |
LPT | 74.1 | 73.9 | 74.7 | |
Jet | 84.4 | 84.5 | 84.7 | |
Engine | 86.0 | 86.1 | 86.3 | |
Airframe | 83.1 | 83.1 | 83.1 | |
Total | 87.8 | 87.8 | 88.0 | |
Cumulative EPNL | 270.7 | 270.7 | 270.9 |
NOx Mass (g) | Deviation | |
---|---|---|
Low OPR | 8028 | −12% |
Optimal OPR | 9095 | - |
High OPR | 10,589 | 16% |
77 Inch Fan | 73 Inch Fan | 68 Inch Fan | ||
---|---|---|---|---|
Approach | Fan inlet | 86.7 | 87.7 | 88.8 |
Fan discharge | 92.8 | 93.2 | 94.9 | |
LPT | 81.3 | 81.8 | 82.4 | |
Engine | 94.0 | 94.5 | 96.0 | |
Airframe | 89.8 | 89.8 | 89.8 | |
Total | 95.3 | 95.8 | 96.8 | |
Cutback | Fan inlet | 83.4 | 83.4 | 84.2 |
Fan discharge | 83.3 | 83.8 | 84.3 | |
LPT | 72.3 | 72.7 | 73.5 | |
Jet | 72.1 | 74.0 | 77.1 | |
Engine | 86.7 | 87.0 | 87.8 | |
Total | 86.7 | 87.1 | 87.8 | |
Sideline | Fan inlet | 71.3 | 72.2 | 75.4 |
Fan discharge | 78.6 | 79.2 | 80.1 | |
LPT | 73.0 | 73.9 | 75.1 | |
Jet | 82.6 | 84.5 | 87.7 | |
Engine | 84.6 | 86.1 | 88.8 | |
Airframe | 83.1 | 83.1 | 83.1 | |
Total | 87.0 | 87.8 | 89.7 | |
Cumulative EPNL | 269.0 | 270.7 | 274.3 |
NOx Mass (g) | Deviation | |
---|---|---|
77 inch Fan | 8483 | −7% |
73 inch Fan | 9095 | - |
68 inch Fan | 10,350 | 14% |
OPR Design Space | Low | Optimum | High | |
Installed cruise SFC (mg/Ns) | 16.90 | 16.81 | 16.90 | |
Cruise fuel flow (kg/s) | 0.338 | 0.336 | 0.338 | |
LTO NOx Mass (g) | 8028 | 9095 | 10,589 | |
EPNL total | Approach | 95.8 | 95.8 | 95.8 |
Cutback | 87.1 | 87.1 | 87.1 | |
Sideline | 87.8 | 87.8 | 88.0 | |
Cumulative EPNL | 270.7 | 270.7 | 270.9 | |
FPR/BPR Design Space | 77 Inches | 73 Inches | 68 Inches | |
Installed cruise SFC (mg/Ns) | 16.90 | 16.81 | 16.90 | |
Cruise fuel flow (kg/s) | 0.338 | 0.336 | 0.338 | |
LTO NOx Mass (g) | 8483 | 9095 | 10,350 | |
EPNL total | Approach | 95.3 | 95.8 | 96.8 |
Cutback | 86.7 | 87.1 | 87.8 | |
Sideline | 87.0 | 87.8 | 89.7 | |
Cumulative EPNL | 269.0 | 270.7 | 274.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoma, E.M.; Grönstedt, T.; Zhao, X. Quantifying the Environmental Design Trades for a State-of-the-Art Turbofan Engine. Aerospace 2020, 7, 148. https://doi.org/10.3390/aerospace7100148
Thoma EM, Grönstedt T, Zhao X. Quantifying the Environmental Design Trades for a State-of-the-Art Turbofan Engine. Aerospace. 2020; 7(10):148. https://doi.org/10.3390/aerospace7100148
Chicago/Turabian StyleThoma, Evangelia Maria, Tomas Grönstedt, and Xin Zhao. 2020. "Quantifying the Environmental Design Trades for a State-of-the-Art Turbofan Engine" Aerospace 7, no. 10: 148. https://doi.org/10.3390/aerospace7100148
APA StyleThoma, E. M., Grönstedt, T., & Zhao, X. (2020). Quantifying the Environmental Design Trades for a State-of-the-Art Turbofan Engine. Aerospace, 7(10), 148. https://doi.org/10.3390/aerospace7100148