Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost
Abstract
:1. Introduction
2. Computational Methods and Problem Description
2.1. Computational Methods
2.2. Problem Description
3. Data-Driven Methods
3.1. The Extreme Gradient Boosting Model
3.2. Data Sets
3.3. Error Analysis
3.3.1. RMSE
3.3.2.
3.3.3. Distribution of Errors
4. Simulations and Results
4.1. Numerical Simulation Results
4.2. Aircraft Icing Severity Evaluation Based on XGBoost
4.2.1. Icing Area and Maximum Ice Thickness Evaluation
4.2.2. Icing Severity Level Determination
- PrecisionPrecision indicates the proportion of the positive prediction which was correct. It is defined as the number of true positives (TP) over the number of true positives plus the number of false positives (FP).
- Recall RateRecall Rate indicates the proportion of actual positives was identified correctly. It is defined as the number of true positives (TP) over the number of true positives plus the number of false negatives (FN).
- F1 ScoreF1 Score relates precision and recall and is defined as the harmonic mean of them.
- Confusion MatrixThe confusion matrix [37] is used for evaluating the model when faced with a multi-classification problem. In the current work, it is applied to measure the performance of the model predicting the icing severity level. Each row of the matrix represents the predicted category while each column represents the actual category, which allows more detailed analysis than mere proportion of correct classifications.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCann, D.W. NNICE—A neural network aircraft icing algorithm. Environ. Model. Softw. 2005, 20, 1335–1342. [Google Scholar] [CrossRef]
- Bragg, M.B.; Broeren, A.P.; Blumenthal, L.A. Iced-airfoil aerodynamics. Prog. Aerosp. Sci. 2005, 41, 323–362. [Google Scholar] [CrossRef]
- Ratvasky, T.P.; Ranaudo, R.J. Icing Effects on Aircraft Stability and Control Determined from Flight Data, Preliminary Results. In Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993. [Google Scholar]
- Messinger, B.L. Equilibrium temperature of an unheated icing surface as a function of air speed. J. Aeronaut. Sci. 1953, 20, 29–42. [Google Scholar] [CrossRef]
- Myers, T.G. Extension to the Messinger Model for Aircraft Icing. AIAA J. 2001, 39, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Ruff, G.; Berkowitz, B. User’s Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE); NASA-CR-185129; NASA: Washington, DC, USA, 1990.
- Wright, W.B. User Manual for the NASA Glenn Ice Accretion Code LEWICE, Ver. 2.2.2; NASA/CR-2002-211793; NASA: Washington, DC, USA, 2002.
- Gori, G.; Zocca, M.; Garabelli, M.; Guardone, A.; Quaranta, G. PoliMIce: A simulation framework for three-dimensional ice accretion. Appl. Math. Comput. 2015, 267, 96–107. [Google Scholar] [CrossRef]
- Pena, D.; Hoarau, Y.; Laurendeau, E. A single step ice accretion model using Level-Set method. J. Fluids Struct. 2016, 65, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Ma, C.; Zhang, Q.; Sheridan, J. Numerical simulation of ice accretions on an aircraft wing. Aerosp. Sci. Technol. 2012, 23, 296–304. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J.; Yin, J. Numerical simulation of three-dimensional ice accretion on an aircraft wing. Int. J. Heat Mass Transf. 2016, 92, 34–54. [Google Scholar] [CrossRef]
- Li, S.; Paoli, R. Modeling of Ice Accretion over Aircraft Wings Using a Compressible OpenFOAM Solver. Int. J. Aerosp. Eng. 2019, 2019, 11. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Lampton, A.; Valasek, J. Prediction of Icing Effects on the Dynamic Response of Light Airplanes. J. Guid. Control Dyn. 2007, 30, 722–732. [Google Scholar] [CrossRef]
- F.A. Regulations, Part 25—Airworthiness Standards: Transport Category Air-Planes; Federal Aviation Administration (FAA): Washington, DC, USA, 2013.
- Ogretim, E.; Huebsch, W.; Shinn, A. Aircraft Ice Accretion Prediction Based on Neural Networks. J. Aircr. 2006, 43, 233–240. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, K.; Li, G. Effects of ice geometry on airfoil performance using neural networks prediction. Aircr. Eng. Aerosp. Technol. 2011, 83, 266–274. [Google Scholar] [CrossRef]
- Fossati, M.; Habashi, W.G. Multiparameter analysis of aero-icing problems using proper orthogonal decomposition and multidimensional interpolation. AIAA J. 2013, 51, 946–960. [Google Scholar] [CrossRef]
- Zhan, Z.; Habashi, W.G.; Fossati, M. Real-Time Regional Jet Comprehensive Aeroicing Analysis via Reduced-Order Modeling. AIAA J. 2016, 54, 3787–3802. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Paoli, R.; D’Mello, M. Scalability of OpenFOAM Density-Based Solver with Runge–Kutta Temporal Discretization Scheme. Sci. Program. 2020, 2020, 11. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Nwachukwu, A.; Jeong, H.; Pyrcz, M.; Lake, L.W. Fast evaluation of well placements in heterogeneous reservoir models using machine learning. J. Pet. Sci. Eng. 2018, 163, 463–475. [Google Scholar] [CrossRef]
- Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. IEEE Access 2018, 6, 21020–21031. [Google Scholar] [CrossRef]
- Li, S.; Paoli, R. Numerical Study of Ice Accretion over Aircraft Wings Using Delayed Detached Eddy Simulation. In Proceedings of the 72nd Annual Meeting of the APS Division of Fluid Dynamics, Seattle, WA, USA, 23–26 November 2019. [Google Scholar]
- Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theor. Comput. Fluid Dyn. 2006, 20, 181. [Google Scholar] [CrossRef]
- Modesti, D.; Pirozzoli, S. A low-dissipative solver for turbulent compressible flows on unstructured meshes, with OpenFOAM implementation. Comput. Fluids 2017, 152, 14–23. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Liou, M.S.; Steffen, C. A New Flux Splitting Scheme. J. Comput. Phys. 1993, 107, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Spalart, P.; Allmaras, S. A one-equation turbulence model for aerodynamic flow. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992. [Google Scholar]
- Silva, G.L.D.; Pimenta, M. Proposed Wall Function Models for Heat Transfer around a Cylinder with Rough Surface in Cross Flow; SAE Technical Papers; SAE international: Warrendale, PA, USA, 2011. [Google Scholar]
- Henzeand, C.; Bragg, M. Turbulence Intensity Measurement Technique for Use in Icing Wind Tunnels. J. Aircr. 1999, 36, 577–583. [Google Scholar]
- Shin, J.W.; Bond, T.H. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil. In Proceedings of the 5th Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, USA, 13–15 January 1992. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chang, S.; Leng, M.; Wu, H.; Thompson, J. Aircraft ice accretion prediction using neural network and wavelet packet transform. Aircr. Eng. Aerosp. Technol. 2016, 88, 128–136. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J.; Yin, J. ONERA three-dimensional icing model. AIAA J. 1995, 33, 1038–1045. [Google Scholar]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
Icing Severity Level | Light | Moderate | Heavy | Severe |
---|---|---|---|---|
Maximum thickness (mm) | 0.1–5.0 | 5.1–15 | 15.1–30 | >30 |
No. of Training Data | RMSE | Median Error | |
---|---|---|---|
300 | 0.107 | 0.927 | 0.0040 |
600 | 0.058 | 0.991 | 0.0021 |
1200 | 0.041 | 0.999 | 0.0014 |
No. of Training Data | RMSE | Median Error | |
---|---|---|---|
300 | 0.049 | 0.921 | 0.0720 |
600 | 0.027 | 0.957 | 0.0470 |
1200 | 0.020 | 0.969 | 0.0400 |
#Grid | #Points (Million) | ||||
---|---|---|---|---|---|
DDES Grid | 680 | 210 | 130 | 950 | 13.22 |
Dataset | RMSE | Median Error | Training Time (s) | |
---|---|---|---|---|
CMI dataset | 0.103 | 0.999 | 0.0014 | 0.29 |
IMI dataset | 0.057 | 0.999 | 0.0006 | 0.57 |
Whole dataset | 0.036 | 0.999 | 0.0012 | 0.91 |
Dataset | RMSE | Median Error | Training Time (s) | |
---|---|---|---|---|
CMI dataset | 0.097 | 0.957 | 0.0420 | 0.04 |
IMI dataset | 0.039 | 0.987 | 0.0400 | 0.15 |
Whole dataset | 0.020 | 0.977 | 0.0400 | 0.37 |
Confusion Matrix | Precision | Recall Rate | F1 Score | |||||
---|---|---|---|---|---|---|---|---|
Actual | Light | Moderate | Heavy | Severe | ||||
Predicted | ||||||||
Light | 55 | 0 | 2 | 1 | 0.95 | 0.96 | 0.95 | |
Moderate | 0 | 245 | 3 | 0 | 0.99 | 0.99 | 0.99 | |
Heavy | 0 | 1 | 161 | 0 | 0.99 | 0.97 | 0.98 | |
Severe | 2 | 0 | 0 | 51 | 0.96 | 0.98 | 0.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Qin, J.; He, M.; Paoli, R. Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost. Aerospace 2020, 7, 36. https://doi.org/10.3390/aerospace7040036
Li S, Qin J, He M, Paoli R. Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost. Aerospace. 2020; 7(4):36. https://doi.org/10.3390/aerospace7040036
Chicago/Turabian StyleLi, Sibo, Jingkun Qin, Miao He, and Roberto Paoli. 2020. "Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost" Aerospace 7, no. 4: 36. https://doi.org/10.3390/aerospace7040036
APA StyleLi, S., Qin, J., He, M., & Paoli, R. (2020). Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost. Aerospace, 7(4), 36. https://doi.org/10.3390/aerospace7040036