Sensor for Determining Single Droplet Acidities in the Venusian Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pigments
2.2. Film Preparation
2.3. Spectral Measurements
2.4. Image Capture
3. Results and Discussion
3.1. Measuring Candidate Pigment Characteristics in Aqueous Solutions
3.2. Film Formulation
3.2.1. Mist Generation Using an Ultrasonic Atomizer
3.2.2. Spectral Analysis of Droplet-Film Interaction
4. Proposed Device Design
4.1. Design Based on Modification of OPIC
4.2. Optimized Design
4.3. Plans for Reaching the Flight Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DI | Deionized |
LED | Light emitting diode |
PVA | Polyvinyl alcohol |
FPGA | Field-programmable gate array |
OPIC | Optical Periscopic Imager for Comets |
References
- Way, M.J.; Del Genio, A.D.; Kiang, N.Y.; Sohl, L.E.; Grinspoon, D.H.; Aleinov, I.; Kelley, M.; Clune, T. Was Venus the First Habitable World of Our Solar System? Geophys. Res. Lett. 2016, 43, 8376–8383. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C.S. Life on Venus. Planet. Space Sci. 1999, 47, 1487–1501. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology 2021, 21, 1206–1223. [Google Scholar] [CrossRef] [PubMed]
- Gentry, D.; Dahlgren, R. Venus Aerosol Sampling Considerations for In Situ Biological Analysis; NASA Ames Research Center: Mountain View, CA, USA, 2019. [Google Scholar]
- Hallsworth, J.E.; Koop, T.; Dallas, T.D.; Zorzano, M.-P.; Burkhardt, J.; Golyshina, O.V.; Martín-Torres, J.; Dymond, M.K.; Ball, P.; McKay, C.P. Water Activity in Venus’s Uninhabitable Clouds and Other Planetary Atmospheres. Nat. Astron. 2021, 5, 665–675. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttle, O.; Hobbs, R.; Paschodimas, A. Hydroxide Salts in the Clouds of Venus: Their Effect on the Sulfur Cycle and Cloud Droplet pH. Planet. Sci. J. 2021, 2, 133. [Google Scholar] [CrossRef]
- Schleper, C.; Pühler, G.; Klenk, H.-P.; Zillig, W. Picrophilus oshimae and Picrophilus torridus Fam. Nov., Gen. Nov., Sp. Nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea. Int. J. Syst. Bacteriol. 1996, 46, 814–816. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Rimmer, P.B.; Seager, S. Production of Ammonia Makes Venusian Clouds Habitable and Explains Observed Cloud-Level Chemical Anomalies. Proc. Natl. Acad. Sci. USA 2021, 118, e2110889118. [Google Scholar] [CrossRef] [PubMed]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.; Ehlmann, B.; Saikia, S.J.; Agrawal, R.; Buchanan, W.; Weber, M.U.; French, R.; et al. Venus Life Finder Mission Study. arXiv 2021, arXiv:2112.05153. [Google Scholar]
- French, R.; Mandy, C.; Hunter, R.; Mosleh, E.; Sinclair, D.; Beck, P.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; et al. Rocket Lab Mission to Venus. Aerospace 2022, 9, 445. [Google Scholar] [CrossRef]
- Agrawal, R.; Buchanan, W.P.; Arora, A.; Girija, A.P.; De Jong, M.; Seager, S.; Petkowski, J.J.; Saikia, S.J.; Carr, C.E.; Grinspoon, D.H.; et al. Mission architecture to characterize habitability of Venus cloud layers via an aerial platform. Aerospace 2022, 9, 359. [Google Scholar] [CrossRef]
- Buchanan, W.P.; de Jong, M.; Agrawal, R.; Petkowski, J.J.; Arora, A.; Saikia, S.J.; Seager, S.; Longuski, J.; Venus Life Finder Mission Team. Aerial platform design options for a life-finding mission at Venus. Aerospace 2022, 9, 363. [Google Scholar] [CrossRef]
- Chen, J.-W.; Chen, C.-M.; Chang, C.-C. A Fluorescent pH Probe for Acidic Organelles in Living Cells. Org. Biomol. Chem. 2017, 15, 7936–7943. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Graham, J.Y.; Walczak, P.A.; Nguyen, R.M.; Lee, L.K.; Carson, M.D.; Nelson, L.Y.; Patel, S.N.; Xu, Z.; Seibel, E.J. Optical pH Measurement System Using a Single Fluorescent Dye for Assessing Susceptibility to Dental Caries. J. Biomed. Opt. 2019, 24, 017001. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, T.; Yan, J.; Chen, X.; Wang, L.; Liu, X.; Zheng, K.; Zhang, N. A Simple Acidic ‘Turn-on’ Fluorescent PH Probe Based on BOPYIN and Its Visual Detection and Cellular Imaging. Dyes Pigments 2020, 177, 108318. [Google Scholar] [CrossRef]
- Zhang, X.; Song, G.-J.; Cao, X.-J.; Liu, J.-T.; Chen, M.-Y.; Cao, X.-Q.; Zhao, B.-X. A New Fluorescent pH Probe for Acidic Conditions. RSC Adv. 2015, 5, 89827–89832. [Google Scholar] [CrossRef]
- Le Guern, F.; Mussard, V.; Gaucher, A.; Rottman, M.; Prim, D. Fluorescein Derivatives as Fluorescent Probes for pH Monitoring along Recent Biological Applications. Int. J. Mol. Sci. 2020, 21, 9217. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, L. The Triplet State of Fluorescein in Sulfuric Acid. J. Phys. Chem. 1963, 67, 1701–1704. [Google Scholar] [CrossRef]
- Martin, M.M.; Lindqvist, L. The pH Dependence of Fluorescein Fluorescence. J. Lumin. 2008, 10, 381–390. [Google Scholar] [CrossRef]
- Hallensleben, M.L.; Fuss, R.; Mummy, F. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 1–23. [Google Scholar]
- Finch, C.A. Polyvinyl Alcohol–Developments; Wiley: Weinheim, Germany, 1992. [Google Scholar]
- Gadhave, R.V.; Mahanwar, P.A.; Gadekar, P.T. Study of Cross-Linking between Boric Acid and Different Types of Polyvinyl Alcohol Adhesive. OJPChem 2019, 9, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Ion Power, Inc. LIQUION Solutions Safety Data Sheet. Available online: https://www.ion-power.com/wp-content/uploads/2020/05/Liquion-SDS-Solutions-English-1.pdf (accessed on 31 August 2022).
- Pajusalu, M.; Kivastik, J.; Iakubivskyi, I.; Slavinskis, A. Developing autonomous image capturing systems for maximum science yield for high fly-by velocity small solar system body exploration. In Proceedings of the International Astronautical Congress, IAC-2020, Online, 12–14 October 2020. [Google Scholar]
- Spacek, J.; Benner, S.A. The Organic Carbon Cycle in the Atmosphere of Venus and Evolving Red Oil. In Proceedings of the Venera-D Venus Cloud Habitability Syst. Workshop, Virtual, 29 November–3 December 2021. LPI Contribution No. 2629, 4052. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaasik, L.; Rahu, I.; Roper, E.M.; Seeba, R.; Rohtsalu, A.; Pajusalu, M. Sensor for Determining Single Droplet Acidities in the Venusian Atmosphere. Aerospace 2022, 9, 560. https://doi.org/10.3390/aerospace9100560
Kaasik L, Rahu I, Roper EM, Seeba R, Rohtsalu A, Pajusalu M. Sensor for Determining Single Droplet Acidities in the Venusian Atmosphere. Aerospace. 2022; 9(10):560. https://doi.org/10.3390/aerospace9100560
Chicago/Turabian StyleKaasik, Laila, Ida Rahu, Ellen Marigold Roper, Riika Seeba, Agnes Rohtsalu, and Mihkel Pajusalu. 2022. "Sensor for Determining Single Droplet Acidities in the Venusian Atmosphere" Aerospace 9, no. 10: 560. https://doi.org/10.3390/aerospace9100560
APA StyleKaasik, L., Rahu, I., Roper, E. M., Seeba, R., Rohtsalu, A., & Pajusalu, M. (2022). Sensor for Determining Single Droplet Acidities in the Venusian Atmosphere. Aerospace, 9(10), 560. https://doi.org/10.3390/aerospace9100560