Spectrum of Corona Discharges and Electric Arcs in Air under Aeronautical Pressure Conditions
Abstract
:1. Introduction
2. Previous Studies
3. Spectra Processing
4. Experimental Setup
5. Results
5.1. Corona Discharges at Standard Pressure with ac (50 Hz) and dc Supply of Both Polarities
5.2. Electric Arcs at Standard Pressure with ac (50 Hz) and dc Supply of Both Polarities
5.3. Corona Discharges in the 100–20 kPa Pressure Range with ac Supply
5.4. Electric Arcs in the 100–10 kPa Pressure Range with ac Supply
6. Applicability of the Results
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borghei, M.; Ghassemi, M. Insulation Materials and Systems for More and All-Electric Aircraft: A Review Identifying Challenges and Future Research Needs. IEEE Trans. Transp. Electrif. 2021, 7, 1930–1953. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors. Sensors 2020, 20, 411. [Google Scholar] [CrossRef] [PubMed]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M.; Bogarra, S. Arc Tracking Control in Insulation Systems for Aeronautic Applications: Challenges, Opportunities, and Research Needs. Sensors 2020, 20, 1654. [Google Scholar] [CrossRef] [PubMed]
- Federal Aviation Administration. Aircraft Electrical Wiring Interconnect System (EWIS) Best Practices; FAA: Washington, DC, USA, 2020.
- Shafiq, M.; Robles, G.; Kauhaniemi, K.; Stewart, B.; Lehtonen, M. Propagation Characteristics of Partial discharge Signals in Medium Voltage Branched Cable Joints using HFCT Sensor. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Borghei, M.; Ghassemi, M. Separation and Classification of Corona Discharges under Low Pressures Based on Deep Learning Method. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 319–326. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, Y.; Wang, L. Positive dc corona inception on dielectric-coated stranded conductors in air. IET Sci. Meas. Technol. 2016, 10, 557–563. [Google Scholar] [CrossRef]
- IEEE Std 100-2000; The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. IEEE: Piscataway, NJ, USA, 2000; pp. 1–1362. [CrossRef]
- Anis, H.; Srivastava, K.D. Pre-breakdown Discharges in Highly Non-uniform Fields in Relation to Gas-insulated Systems. IEEE Trans. Electr. Insul. 1982, EI-17, 131–142. [Google Scholar] [CrossRef]
- Du, B.X.; Liu, Y.; Liu, H.J. Effects of low pressure on tracking failure of printed circuit boards. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1379–1384. [Google Scholar] [CrossRef]
- Cella, B. On-line Partial Discharges Detection in Conversion Systems Used in Aeronautics. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2015. [Google Scholar]
- Riba, J.-R.; Morosini, A.; Capelli, F. Comparative Study of AC and Positive and Negative DC Visual Corona for Sphere-Plane Gaps in Atmospheric Air. Energies 2018, 11, 2671. [Google Scholar] [CrossRef] [Green Version]
- Mermigkas, A.C.; Clark, D.; Manu Haddad, A. Investigation of High Altitude/Tropospheric Correction Factors for Electric Aircraft Applications. In Lecture Notes in Electrical Engineering, Proceedings of the 21st International Symposium on High Voltage Engineering, Budapest, Hungary, 26–30 August 2019; Springer: Cham, Switzerland, 2020; pp. 308–315. [Google Scholar] [CrossRef]
- Paschen, F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. 1889, 273, 69–96. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, K.; Chen, L.; Cotton, I.; Chen, J.; Chen, J.; Zhang, C. Optical sensing of partial discharge in more electric aircraft. IEEE Sens. J. 2020, 20, 12723–12731. [Google Scholar] [CrossRef]
- Pastura, M.; Nuzzo, S.; Immovilli, F.; Toscani, A.; Rumi, A.; Cavallini, A.; Franceschini, G.; Barater, D. Partial Discharges in Electrical Machines for the More Electric Aircraft—Part I: A Comprehensive Modeling Tool for the Characterization of Electric Drives Based on Fast Switching Semiconductors. IEEE Access 2021, 9, 27109–27121. [Google Scholar] [CrossRef]
- Belijar, G.; Chanaud, G.; Hermette, L.; Risacher, A. Study of Electric Arc Ignition, Behavior and Extinction in Aeronautical Environment in Presence of FOD; HAL Open Science: Lyon, France, 2017; pp. 1–8. [Google Scholar]
- Esfahani, A.N.; Shahabi, S.; Stone, G.; Kordi, B. Investigation of Corona Partial Discharge Characteristics Under Variable Frequency and Air Pressure. In Proceedings of the 2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA, 17–20 June 2018; pp. 31–34. [Google Scholar] [CrossRef]
- Ramin, R.; Montanari, G.C.; Yang, Q. Designing the Insulation System for Motors in Electrified Aircraft: Optimization, Partial Discharge Issues and Use of Advanced Materials. Materials 2021, 14, 7555. [Google Scholar] [CrossRef] [PubMed]
- Capineri, L.; Dainelli, G.; Materassi, M.; Dunn, B.D. Partial discharge testing of solder fillets on PCBs in a partial vacuum: New experimental results. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 294–304. [Google Scholar] [CrossRef]
- Rui, R.; Cotton, I. Impact of low pressure aerospace environment on machine winding insulation. In Proceedings of the 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 6–9 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Xavier, G.V.R.; Da Costa, E.G.; Serres, A.J.R.; Nobrega, L.A.M.M.; Oliveira, A.C.; Sousa, H.F.S. Design and Application of a Circular Printed Monopole Antenna in Partial Discharge Detection. IEEE Sens. J. 2019, 19, 3718–3725. [Google Scholar] [CrossRef]
- Bas-Calopa, P.; Riba, J.R.; Moreno-Eguilaz, M. Corona Discharge Characteristics under Variable Frequency and Pressure Environments. Sensors 2021, 21, 6676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Electrical Tracking over Solid Insulating Materials for Aerospace Applications. Ph.D. Thesis, University of Manchester, Manchester, UK, 2011. Available online: https://www.research.manchester.ac.uk/portal/files/54508943/FULL_TEXT.PDF (accessed on 14 September 2022).
- Riba, J.-R.; Gomez-Pau, A.; Moreno-Eguilaz, M. Sensor Comparison for Corona Discharge Detection Under Low Pressure Conditions. IEEE Sens. J. 2020, 20, 11698–11706. [Google Scholar] [CrossRef]
- Clean Sky. Annex: 11th Call for Proposals (CFP11)—List and Full Description of Topics Call Text. 2019. Available online: https://ec.europa.eu/info/funding-tenders/opportunities/docs/cap/h2020/jti-cs2-2020-cfp11-tht-12/1875197-cfp11_call_text_-_list_and_full_description_of_topics_r1_en.pdf (accessed on 12 November 2020).
- Wu, X.; Mahmoudi, R.; Xing, L.; Lents, C.E. Arc detection for high voltage aircraft distribution systems. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- Clean Sky. Annex V: 9th Call for Proposals (CFP09)—List and Full Description of Topics. 2018. Available online: http://ec.europa.eu/research/participants/portal/doc/call/h2020/jti-cs2-2018-cfp09-lpa-01-70/1837638-cfp09_call_text_-_list_and_full_description_of_topics_r1_en.pdf (accessed on 12 November 2020).
- Nagi, Ł.; Kozioł, M.; Wotzka, D. Analysis of the spectrum of electromagnetic radiation generated by electrical discharges. IET Sci. Meas. Technol. 2019, 13, 812–817. [Google Scholar] [CrossRef]
- Nagi, Ł.; Kozioł, M.; Zygarlicki, J. Optical Radiation from an Electric Arc at Different Frequencies. Energies 2020, 13, 1676. [Google Scholar] [CrossRef]
- Yuan, Z.; Ye, Q.; Wang, Y.; Guo, Z. State Recognition of Surface Discharges by Visible Images and Machine Learning. IEEE Trans. Instrum. Meas. 2020, 70, 5004511. [Google Scholar] [CrossRef]
- Pinnangudi, B.; Gorur, R.S.S.; Kroese, A.J.J. Quantification of corona discharges on nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 513–523. [Google Scholar] [CrossRef]
- Prasad, D.S.; Reddy, B.S. Understanding Corona Discharges using Digital Imaging. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Insulation Failure Quantification Based on the Energy of Digital Images Using Low-Cost Imaging Sensors. Sensors 2020, 20, 7219. [Google Scholar] [CrossRef] [PubMed]
- Bas-Calopa, P.; Riba, J.-R.; Moreno-Eguilaz, M. Measurement of Corona Discharges under Variable Geometry, Frequency and Pressure Environment. Sensors 2022, 22, 1856. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Yamada, M.; Tanaka, A.; Kurosawa, K. Emission spectrum of partial discharge light in SF6 gas. In Proceedings of the Conference Record of the 1992 IEEE International Symposium on Electrical Insulation, Baltimore, MD, USA, 7–10 June 1992; pp. 332–335. [Google Scholar] [CrossRef]
- Grum, F.; Costa, L.F. Spectral emission of corona discharges. Appl. Opt. 1976, 15, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Muhr, M.; Schwarz, R. Experience with optical partial discharge detection. Mater. Sci. Pol. 2009, 27, 1139–1146. Available online: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPW7-0012-0020 (accessed on 11 June 2022).
- Gallimberti, I.; Hepworth, J.K.; Klewe, R.C. Spectroscopic investigation of impulse corona discharges. J. Phys. D Appl. Phys. 1974, 7, 880. [Google Scholar] [CrossRef]
- Nagi, Ł.; Kozioł, M.; Zygarlicki, J. Comparative Analysis of Optical Radiation Emitted by Electric Arc Generated at AC and DC Voltage. Energies 2020, 13, 5137. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Li, K.; Han, D.; Qiu, Z.; Zhang, G. Emission Spectrum Analysis of Two Typical Partial Discharge Forms under High Frequency Square Wave Voltages. IEEE Access 2020, 8, 219946–219954. [Google Scholar] [CrossRef]
- Czech, T.; Sobczyk, A.T.; Jaworek, A. Optical emission spectroscopy of point-plane corona and back-corona discharges in air. Eur. Phys. J. D 2011, 65, 459–474. [Google Scholar] [CrossRef]
- Janda, M.; Martišovitš, V.; Hensel, K.; Machala, Z. Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge. Plasma Chem. Plasma Process. 2016, 36, 767–781. [Google Scholar] [CrossRef]
- Riba, J.-R.; Bas-Calopa, P.; Qolla, Y.A.; Pourraz, M.; Ozsahin, B. Using CMOS Image Sensors to Determine the Intensity of Electrical Discharges for Aircraft Applications. Appl. Sci. 2022, 12, 8595. [Google Scholar] [CrossRef]
- Riba, J.-R. Application of Image Sensors to Detect and Locate Electrical Discharges: A Review. Sensors 2022, 22, 5886. [Google Scholar] [CrossRef] [PubMed]
Conditions | Applied Voltage kV | Relative Intensity [−] of Bands with Central Points at 295, 316, 337, 357, 380, 393, 399, 405, 427 nm |
---|---|---|
50 Hz ac | 50 | 0.06, 0.47, 1, 0.56, 0.19, 0.02, 0.06, 0.06, 0.02 |
Positive dc | 72 | 0.06, 0.45, 1, 0.56, 0.20, 0.02, 0.06, 0.06, 0.02 |
Negative dc | −80 | 0.07, 0.48, 1, 0.56, 0.19, 0.03, 0.06, 0.06, 0.02 |
Pressure | Applied Voltage [kVRMS] | Relative Intensity [−] of Bands with Central Points at 295, 316, 337, 357, 380, 393, 399, 405, 427 nm |
---|---|---|
100 | 13.7 | 0.06, 0.46, 1, 0.55, 0.18, 0.03, 0.06, 0.06, 0.03 |
90 | 12.5 | 0.07, 0.45, 1, 0.56, 0.19, 0.02, 0.07, 0.06, 0.02 |
80 | 11.4 | 0.06, 0.47, 1, 0.56, 0.19, 0.03, 0.06, 0.06, 0.02 |
70 | 9.9 | 0.07, 0.44, 1, 0.56, 0.19, 0.02, 0.06, 0.06, 0.02 |
60 | 8.6 | 0.06, 0.47, 1, 0.56, 0.19, 0.03, 0.06, 0.06, 0.02 |
50 | 7.6 | 0.07, 0.49, 1, 0.57, 0.19, 0.04, 0.06, 0.06, 0.02 |
40 | 6.4 | 0.11, 0.49, 1, 0.56, 0.18, 0.12, 0.06, 0.05, 0.04 |
30 | 3.2 | 0.09, 0.51, 1, 0.55, 0.18, 0.08, 0.07, 0.06, 0.04 |
20 | 2.8 | 0.12, 0.50, 1, 0.58, 0.21, 0.09, 0.11, 0.07, 0.08 |
Pressure | Applied Voltage [kVRMS] | Relative Intensity [−] of Bands with Central Points at 295, 316, 337, 357, 380, 399, 405, 427 |
---|---|---|
100 | 20.0 | 0.07, 0.47, 1, 0.55, 0.19, 0.07, 0.06, 0.02 |
90 | 18.3 | 0.09, 0.59, 1, 0.55, 0.17, 0.06, 0.05, 0.02 |
80 | 16.2 | 0.10, 0.50, 1, 0.55, 0.17, 0.06, 0.05, 0.02 |
70 | 11.6 | 0.13, 0.52, 1, 0.54, 0.17, 0.06, 0.05, 0.021 |
60 | 8.6 | 0.12, 0.51, 1, 0.54, 0.17, 0.05, 0.05, 0.02 |
50 | 8.2 | 0.11, 0.49, 1, 0.54, 0.17, 0.05, 0.05, 0.02 |
40 | 7.6 | 0.11, 0.48, 1, 0.55, 0.18, 0.06, 0.05, 0.03 |
30 | 4.4 | 0.11, 0.49, 1, 0.55, 0.18, 0.06, 0.05, 0.03 |
20 | 2.0 | 0.19, 0.78, 1, 0.83, 0.26, 0.09, 0.08, 0.12 |
10 | 1.4 | 0.11, 0.55, 1, 0.56, 0.18, 0.06, 0.05, 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riba, J.-R. Spectrum of Corona Discharges and Electric Arcs in Air under Aeronautical Pressure Conditions. Aerospace 2022, 9, 524. https://doi.org/10.3390/aerospace9090524
Riba J-R. Spectrum of Corona Discharges and Electric Arcs in Air under Aeronautical Pressure Conditions. Aerospace. 2022; 9(9):524. https://doi.org/10.3390/aerospace9090524
Chicago/Turabian StyleRiba, Jordi-Roger. 2022. "Spectrum of Corona Discharges and Electric Arcs in Air under Aeronautical Pressure Conditions" Aerospace 9, no. 9: 524. https://doi.org/10.3390/aerospace9090524
APA StyleRiba, J.-R. (2022). Spectrum of Corona Discharges and Electric Arcs in Air under Aeronautical Pressure Conditions. Aerospace, 9(9), 524. https://doi.org/10.3390/aerospace9090524