Long-Term Evaluation of Changes in Kidney Function after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Patients Living with HIV
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Biotechnology Information. “PubChem Compound Summary for CID 464205, Tenofovir” PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tenofovir (accessed on 29 July 2021).
- Viread (Tenofovir Disoproxil Fumarate); Package Insert; Gilead Sciences, Inc.: Foster City, CA, USA, 2001.
- Jafari, A.; Khalili, H.; Dashti-Khavidaki, S. Tenofovir-induced nephrotoxicity: Incidence, mechanism, risk factors, prognosis and proposed agents for prevention. Eur. J. Clin. Pharmacol. 2014, 70, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.J.; Emerson, C.R.; Dinsmore, W.W.; Donnelly, C.M. Incidence of proximal kidney tubular dysfunction in patients on tenofovir disoproxil fumarate. Int. J. STD AIDS 2010, 21, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Scherzer, R.; Estrella, M.; Li, Y.; Choi, A.I.; Deeks, S.G.; Grunfeld, C.; Shlipak, M.G. Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS 2012, 26, 867–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruane, P.J.; DeJesus, E.; Berger, D.; Markowitz, M.; Bredeek, U.F.; Callebaut, C.; Zhong, L.; Ramanathan, S.; Rhee, M.S.; Fordyce, M.W.; et al. Antiviral Activity, Safety, and Pharmacokinetics/Pharmacodynamics of Tenofovir Alafenamide as 10-Day Monotherapy in HIV-1–Positive Adults. J. Acquir. Immune Defic. Syndr. 2013, 63, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bam, R.A.; Yant, S.R.; Cihlar, T. Tenofovir Alafenamide is Not a Substrate for Renal Organic Anion Transporters (Oats) and Does Not Exhibit Oat-Dependent Cytotoxicity. Antivir. Ther. 2014, 19, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milinkovic, A.; Berger, F.; Arenas-Pinto, A.; Mauss, S. Reversible effect on lipids by switching from tenofovir disoproxil fumarate to tenofovir alafenamide and back. AIDS 2019, 33, 2387–2391. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.A.; Horberg, M.A.; Agwu, A.L.; Colasanti, J.A.; Jain, M.K.; Short, W.R.; Singh, T.; Aberg, J.A. Primary Care Guidance for Persons with Human Immunodeficiency Virus: 2020 Update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin. Infect. Dis. 2021, 73, e3572–e3605. [Google Scholar] [CrossRef] [PubMed]
- Surial, B.; Ledergerber, B.; Calmy, A.; Cavassini, M.; Günthard, H.F.; Kovari, H.; Stöckle, M.; Bernasconi, E.; Schmid, P.; Fux, C.A.; et al. Changes in Renal Function After Switching from TDF to TAF in HIV-Infected Individuals: A Prospective Cohort Study. J. Infect. Dis. 2020, 222, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Drak, D.; O’Connor, C.C.; Templeton, D.J.; Gracey, D.M. Renal function change after switching tenofovir disoproxil fumarate for tenofovir alafenamide in the HIV-positive patients of a metropolitan sexual health service. AIDS Res. Ther. 2019, 16, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Chen, Y.; Hu, H.; Liu, L.; Hu, X.; Wang, J.; Shi, W.; Yin, D. Association Between Age-Related Decline of Kidney Function and Plasma Malondialdehyde. Rejuvenation Res. 2012, 15, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Kanasaki, K.; Kitada, M.; Koya, D. Pathophysiology of the aging kidney and therapeutic interventions. Hypertens. Res. 2012, 35, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Pozniak, A.; Arribas, J.R.; Gathe, J.; Gupta, S.K.; Post, F.A.; Bloch, M.; Avihingsanon, A.; Crofoot, G.; Benson, P.; Lichtenstein, K.; et al. Switching to Tenofovir Alafenamide, Coformulated With Elvitegravir, Cobicistat, and Emtricitabine, in HIV-Infected Patients With Renal Impairment. Am. J. Ther. 2016, 71, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nucleoside Reverse Transcriptase Inhibitor Options as Part of Initial Therapy: NIH. Guidelines for the Use of Antiretrovirals Agents in Adults and Adolescents with HIV. NIH. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/nucleoside-reverse-transcriptase (accessed on 24 December 2021).
- Moschopoulos, C.; Protopapas, K.; Thomas, K.; Kavatha, D.; Papadopoulos, A.; Antoniadou, A. Switching from tenofovir disoproxil to tenofovir alafenamide fumarate: Impact on cardiovascular risk and lipid profile in people living with HIV, an observational single-center study. AIDS Res. Hum. Retrovir. 2022, 36, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Stelzle, D.; Lee, K.K.; Beck, E.J.; Alam, S.; Clifford, S.; Longenecker, C.T.; Strachan, F.; Bagchi, S.; Whiteley, W.; et al. Global Burden of Atherosclerotic Cardiovascular Disease in People Living With HIV. Circulation 2018, 138, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Naicker, S.; Rahmanian, S.; Kopp, J. HIV and chronic kidney disease. Clin. Nephrol. 2015, 83, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiologi-cal Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics (n = 142) | |
---|---|
Age—median, year. (range) | 66 (33–90) |
Benign hypertension—no. (%) | 68 (48) |
Diabetes mellitus—no. (%) | 31 (22) |
Chronic kidney disease—no. (%) | 13 (9) |
Race—no. (%) | |
American Indian or Alaska Native | 1 (0.7) |
Asian | 1 (0.7) |
Black or African American | 89 (63) |
Native Hawaiian or other Pacific Islander | 1 (0.7) |
White | 40 (28) |
Unknown | 4 (3) |
Declined to Answer | 6 (5) |
Ethnicity—no. (%) | |
Hispanic or Latino | 38 (27) |
Not Hispanic or Latino | 103 (73) |
Declined to Answer | 1 (0.7) |
ART Characteristics | |
TDF-containing regimen—no. (%) | |
Atripla (EFV/FTC/TDF) | 39 (27) |
Complera (FTC/RPV/TDF) | 27 (19) |
Stribild (EVG/COBI/FTC/TDF) | 31 (22) |
TDF 300 mg tab + Background Therapy | 4 (3) |
Truvada (FTC/TDF) + Background Therapy | 41 (29) |
TAF-containing regimen—no. (%) | |
Biktarvy (BIC/FTC/TAF) | 9 (6) |
Descovy (FTC/TAF) | 22 (15) |
Genvoya (EVG/COBI/FTC/TAF) | 60 (42) |
Odefsey (FTC/RPV/TAF) | 51 (36) |
Duration of therapy—days (± SD) | |
TDF-containing regimen | 2389.7 ± 1304.6 |
TAF-containing regimen | 1385.6 ± 371.7 |
Baseline Laboratory Data | |
Scr—median, mg/dL (range) | 1.081 (0.6–2.3) |
eGFR—mL/min/1.73m2 (± SD) | 84.2 ± 23.2 |
Viral load—median, copies/mL (range) | <20 (<20–362,000) |
Undetectable viral load (%) | 102 (71.8) |
CD4+ count—median, cells/mm3 (range) | 517 (38–1366) |
Total cholesterol—median, mmol/L (range) | 176 (100–334) |
LDL—median, mmol/L (range) | 98.8 (20.8–220.6) |
HDL—median, mmol/L (range) | 45 (26.4–139.9) |
Triglycerides—median, mmol/L (range) | 136 (31–470) |
Lab | Pre-Switch Value— Median (Range) | Post- Switch Value *—Median (Range) |
---|---|---|
eGFR (mL/min/1.73m2) | 84 (29–154) | 79 (37–138) |
Scr (mg/dL) | 1 (0.6–2.3) | 1.1 (0.6–1.9) |
Total cholesterol (mmol/L) | 176 (100–334) | 175 (72–263) |
LDL (mmol/L) | 98.8 (20.8–220.6) | 93.5 (22.8–174.4) |
HDL (mmol/L) | 45 (26.4–139.9) | 43 (24–99) |
Triglycerides (mmol/L) | 136 (31–470) | 115 (54–429) |
Viral load (copies/mL) | <20 (<20–362,000) | <20 (<20–1,230,000) |
CD4+ count (cells/mm3) | 517 (38–1366) | 532 (42–1285) |
Lab | Median Change (Range) |
---|---|
Viral load (copies/mL) | <20 (−361,747–1,230,000) |
CD4+ count (cells/mm3) | 4 (−786–540) |
Total cholesterol (mmol/L) | −2.5 (−113–85) |
LDL (mmol/L) | −0.1 (−96.6–86.5) |
HDL (mmol/L) | −0.6 (−40.9–49) |
Triglycerides (mmol/L) | −9 (−213–218) |
Time (mo) | Atripla (n = 39) | Complera (n = 27) | Stribild (n = 31) | TDF + Background Therapy (n = 4) | Truvada + Background Therapy (n = 41) | |||||
---|---|---|---|---|---|---|---|---|---|---|
∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | |
6 ± 1 | 0 (−0.4–0.3) | 0 (−47–23) | 0 (−0.5–0.1) | 0 (−13–36) | 0 (−0.3–0.3) | 0 (−37–35) | 0 (−0.1–0.3) | 0 (−14–6) | −0.05 (−0.5–0.2) | 4 (−28–46) |
9 ± 1 | 0 (−0.5–0.5) | 0 (−67–27) | 0 (−0.5–0.3) | 0 (−24–45) | 0 (−0.5–0.1) | 0 (−12–23) | −0.1 (−0.3–0.1) | 8.5 (−6–23) | 0 (−0.7–0.7) | 0 (−36–41) |
12 ± 1 | 0.1 (−0.7–0.5) | −10 (−67–35) | 0.1 (−0.3–0.5) | −4 (−51–36) | 0 (−0.4–0.4) | 0 (−29–20) | 0 (−0.2–0.6) | 0 (−23–14) | 0 (−0.5–0.4) | 0 (−37–20) |
18 ± 1 | 0.1 (−0.7–0.5) | −9 (−59–35) | 0 (−0.3–0.3) | 0 (−30–36) | 0 (−0.4–0.3) | −1 (−16–17) | 0.1 (0–0.2) | −10 (−17–0) | −0.05 (−1.3–0.2) | 4 (−23–26) |
24 ± 1 | 0.1 (−0.6–0.6) | −14 (−59–27) | 0 (−0.3–0.3) | −1 (−30–30) | 0 (−0.5–0.3) | −3.5 (−24–20) | 0 (−0.1–0.3) | −0.5 (−14–6) | 0 (−0.7–0.5) | −1 (−38–56) |
36 ± 1 | 0.1 (−0.5–0.5) | −10 (−60–20) | 0.1 (−0.2–0.3) | −8 (−20–17) | 0 (−0.2–0.4) | −1 (−23–20) | 0.1 (0.1–0.1) | −6 (−6–−6) | 0 (−0.7–0.4) | −1 (−41–20) |
44 | 0.2 (−0.6–0.5) | −11 (−60–26) | 0.1 (−0.4–0.7) | −8 (−37–54) | 0 (−0.5–0.3) | −1 (−23–23) | 0.15 (0–0.2) | −11 (−17–−1) | 0 (−0.5–0.6) | −1 (−47–45) |
Time (mo) | Biktarvy (n = 9) | Descovy (n = 22) | Genvoya (n = 60) | Odefsey (n = 51) | ||||
---|---|---|---|---|---|---|---|---|
∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | ∆ Scr | ∆ eGFR | |
6 ± 1 | 0.1 (−0.1–0.3) | −9.5 (−45–15) | −0.1 (−0.3–0.2) | 8.5 (−18–46) | −0.05 (−0.5–0.3) | 3 (−47–35) | 0 (−0.5–0.2) | 0 (−28–36) |
9 ± 1 | 0 (−0.1–0.3) | 0 (−45–11) | 0.1 (−0.1–0.3) | −10 (−24 −8) | 0 (−0.7–0.7) | 0 (−67–45) | 0 (−0.5 –0.3) | 0 (−17–34) |
12 ± 1 | 0.1 (−0.1–0.4) | −9 (−29–9) | 0 (−0.3–0.4) | 0 (−37–21) | 0 (−0.5–0.6) | 0 (−67–20) | 0 (−0.2–0.6) | 0 (−23–14) |
18 ± 1 | 0 (0–0.3) | −1 (−45–0) | −0.05 (−1.3–0.2) | 5.5 (−18–26) | 0 (−0.5–0.5) | 0 (−59–20) | 0 (−0.7–0.5) | −1 (−51–36) |
24 ± 1 | 0.1 (0–0.1) | −4.5 (−11–20) | 0.1 (−0.3–0.5) | −10 (−31–46) | 0 (−0.7–0.4) | −1 (−59–56) | 0.1 (−0.6–0.6) | −7 (−38–30) |
36 ± 1 | 0.2 (−0.1–0.3) | −20 (−20–11) | 0 (−0.2–0.4) | −1 (−18–11) | 0 (−0.7–0.5) | −1 (−60–20) | 0.1 (−0.5–0.3) | −9.5 (−37–20) |
44 | 0.1 (−0.2–0.3) | −9 (−46–20) | 0 (−0.4–0.3) | −1 (−31–45) | 0.1 (−0.5–0.6) | −3.5 (−60–40) | 0.1 (−0.6–0.7) | −11 (−37–54) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilbert, J.M.; Vest, K.; Kish, T.D. Long-Term Evaluation of Changes in Kidney Function after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Patients Living with HIV. Pharmacy 2022, 10, 164. https://doi.org/10.3390/pharmacy10060164
Gilbert JM, Vest K, Kish TD. Long-Term Evaluation of Changes in Kidney Function after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Patients Living with HIV. Pharmacy. 2022; 10(6):164. https://doi.org/10.3390/pharmacy10060164
Chicago/Turabian StyleGilbert, Jared M., Kirsten Vest, and Troy D. Kish. 2022. "Long-Term Evaluation of Changes in Kidney Function after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Patients Living with HIV" Pharmacy 10, no. 6: 164. https://doi.org/10.3390/pharmacy10060164
APA StyleGilbert, J. M., Vest, K., & Kish, T. D. (2022). Long-Term Evaluation of Changes in Kidney Function after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Patients Living with HIV. Pharmacy, 10(6), 164. https://doi.org/10.3390/pharmacy10060164