How Do Stock Market Development and Competitiveness Affect Equity Risk Premium? Implications from World Economies
Abstract
:1. Introduction
1.1. Indicators of Stock Market Development
1.1.1. Market Capitalization of Listed Domestic Companies as a Percentage of GDP
1.1.2. Total Value of Trading Stocks as a Percentage of GDP
1.1.3. Total Number of Listed Domestic Companies
1.1.4. Turnover Ratio of Domestic Shares to Total Traded Stocks
1.2. Contribution
1.3. Objectives
- (a)
- To examine the robust indicators of stock market development that affect ERP significantly.
- (b)
- To examine the association between ERP and stock market competitiveness.
2. Hypotheses Development
3. Variables, Statistical Testing, and Data
3.1. Data
3.2. Dependent Variable
3.3. Independent Variables
A Proxy for Stock Market Competitiveness
3.4. Estimation Models
3.5. Testing for the Significance of Levels of Stock Market Competitiveness
3.6. Testing for Linearity vs. Nonlinearity (RESET Test)
3.7. Testing for Fixed and Random Effects (Hausman Test)
3.8. Cointegration Regression Results
4. Discussion
4.1. The Effects of Market Capitalization of Listed Domestic Companies as a Percentage of GDP on ERP
4.2. The Effects of the Value of Trading Stocks as a Percentage of GDP on ERP
4.3. The Effects of the Number of Listed Domestic Companies on ERP
4.4. The Effects of Turnover Ratio of Domestic Shares to Stocks Traded on ERP
4.5. The Role of Market Potential Index as a Proxy for Market Competitiveness
4.6. The Effect of the Duration of ERP
4.7. Testing for the Effects of Structural Break
4.8. Testing for Robustness of the Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Dimension | Weight Measures Used |
---|---|
Market size | 25/100 (weight)
|
Market intensity | 15/100 (weight)
|
Market growth rate | 12.5/50 (weight)
|
Market consumption capacity | 12.5/100 (weight)
|
Commercial infrastructure | 10/100 (weight)
|
Market receptivity | 10/100 (weight)
|
Economic freedom | 7.5/100 (weight)
|
Country risk | 7.5/100 (weight)
|
Mean | Standard Error | Median | Mode | Sample Variance | Kurtosis | Skewness | Minimum | Maximum | Count | |
---|---|---|---|---|---|---|---|---|---|---|
ERP | −0.07200 | 0.047596 | −0.03664 | −0.66848 | 0.353396 | 43.17198 | −4.61559 | −5.45494 | 1.664132 | 156 |
Stock market index returns | 0.060866 | 0.038846 | 0.030668 | −0.38448 | 0.2294 | 14.9966 | −1.6095 | −3.2229 | 1.7587 | 156 |
Market capitalization of listed domestic companies (% of GDP) | 0.993379 | 0.324266 | 0.177156 | 0.042842 | 16.40313 | 27.7855 | 5.257087 | 0.037421 | 29.87876 | 156 |
Stocks traded, total value (% of GDP) | 0.116918 | 0.014133 | 0.053394 | 0.000956 | 0.031158 | 7.123418 | 2.624998 | 0.000956 | 0.933249 | 156 |
lnListed domestic companies, total | 4.643637 | 0.078835 | 4.532542 | 3.78419 | 0.969531 | −0.43151 | −0.03419 | 2.197225 | 6.654153 | 156 |
Stocks traded, turnover ratio of domestic shares (%) | 0.334995 | 0.028576 | 0.194594 | 0.022314 | 0.127384 | 4.402697 | 1.825099 | 0.014044 | 1.885788 | 156 |
LowMPI | 0.397436 | 0.039307 | 0 | 0 | 0.241026 | −1.84467 | 0.423251 | 0 | 1 | 156 |
MedMPI | 0.423077 | 0.039683 | 0 | 0 | 0.245658 | −1.92599 | 0.314431 | 0 | 1 | 156 |
HighMPI | 0.179487 | 0.030824 | 0 | 0 | 0.148222 | 0.855572 | 1.686644 | 0 | 1 | 156 |
Duration1 | 0.166667 | 0.029934 | 0 | 0 | 0.139785 | 1.278839 | 1.806269 | 0 | 1 | 156 |
Duration2 | 0.237179 | 0.034165 | 0 | 0 | 0.182093 | −0.44890 | 1.247806 | 0 | 1 | 156 |
Duration3 | 0.230769 | 0.033842 | 0 | 0 | 0.17866 | −0.33922 | 1.290461 | 0 | 1 | 156 |
Duration4 | 0.24359 | 0.034478 | 0 | 0 | 0.185443 | −0.55202 | 1.206326 | 0 | 1 | 156 |
Duration5 | 0.25641 | 0.035073 | 0 | 0 | 0.191894 | −0.74047 | 1.12658 | 0 | 1 | 156 |
Duration6 | 0.25641 | 0.035073 | 0 | 0 | 0.191894 | −0.74047 | 1.12658 | 0 | 1 | 156 |
Duration7 | 0.25641 | 0.035073 | 0 | 0 | 0.191894 | −0.74047 | 1.12658 | 0 | 1 | 156 |
Duration8 | 0.217949 | 0.033161 | 0 | 0 | 0.171547 | −0.09797 | 1.379656 | 0 | 1 | 156 |
Duration9 | 0.217949 | 0.033161 | 0 | 0 | 0.171547 | −0.09797 | 1.379656 | 0 | 1 | 156 |
Duration10 | 0.205128 | 0.032434 | 0 | 0 | 0.164103 | 0.1769 | 1.47472 | 0 | 1 | 156 |
Duration11 | 0.185897 | 0.031247 | 0 | 0 | 0.152316 | 0.667063 | 1.630544 | 0 | 1 | 156 |
Duration12 | 0.217949 | 0.033161 | 0 | 0 | 0.171547 | −0.09797 | 1.379656 | 0 | 1 | 156 |
Duration13 | 0.205128 | 0.032434 | 0 | 0 | 0.164103 | 0.1769 | 1.47472 | 0 | 1 | 156 |
Duration14 | 0.217949 | 0.033161 | 0 | 0 | 0.171547 | −0.09797 | 1.379656 | 0 | 1 | 156 |
Duration15 | 0.224359 | 0.033507 | 0 | 0 | 0.175145 | −0.22245 | 1.334379 | 0 | 1 | 156 |
Duration16 | 0.205128 | 0.032434 | 0 | 0 | 0.164103 | 0.1769 | 1.47472 | 0 | 1 | 156 |
Duration17 | 0.237179 | 0.034165 | 0 | 0 | 0.182093 | −0.44890 | 1.247806 | 0 | 1 | 156 |
Duration18 | 0.230769 | 0.033842 | 0 | 0 | 0.17866 | −0.33922 | 1.290461 | 0 | 1 | 156 |
Duration19 | 0.185897 | 0.031247 | 0 | 0 | 0.152316 | 0.667063 | 1.630544 | 0 | 1 | 156 |
Duration20 | 0.185897 | 0.031247 | 0 | 0 | 0.152316 | 0.667063 | 1.630544 | 0 | 1 | 156 |
Duration21 | 0.211538 | 0.032803 | 0 | 0 | 0.167866 | 0.03489 | 1.426397 | 0 | 1 | 156 |
Argentina | 0.070513 | 0.020563 | 0 | 0 | 0.065964 | 9.600868 | 3.38791 | 0 | 1 | 156 |
Bahrain | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Bulgaria | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Costa Rica | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Croatia | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Cyprus | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Czech Republic | 0.083333 | 0.0222 | 0 | 0 | 0.076882 | 7.363011 | 3.044466 | 0 | 1 | 156 |
Egypt | 0.00641 | 0.00641 | 0 | 0 | 0.00641 | 156 | 12.49 | 0 | 1 | 156 |
Greece | 0.012821 | 0.009036 | 0 | 0 | 0.012738 | 75.4478 | 8.745319 | 0 | 1 | 156 |
Hungary | 0.128205 | 0.026853 | 0 | 0 | 0.11249 | 3.083213 | 2.245851 | 0 | 1 | 156 |
Indonesia | 0.032051 | 0.014148 | 0 | 0 | 0.031224 | 27.13321 | 5.365211 | 0 | 1 | 156 |
Israel | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Kazakhstan | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Morocco | 0.00641 | 0.00641 | 0 | 0 | 0.00641 | 156 | 12.49 | 0 | 1 | 156 |
Nigeria | 0.012821 | 0.009036 | 0 | 0 | 0.012738 | 75.4478 | 8.745319 | 0 | 1 | 156 |
Oman | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Pakistan | 0.032051 | 0.014148 | 0 | 0 | 0.031224 | 27.13321 | 5.365211 | 0 | 1 | 156 |
Peru | 0.032051 | 0.014148 | 0 | 0 | 0.031224 | 27.13321 | 5.365211 | 0 | 1 | 156 |
The Philippines | 0.051282 | 0.017717 | 0 | 0 | 0.048966 | 15.071 | 4.108276 | 0 | 1 | 156 |
Poland | 0.044872 | 0.016628 | 0 | 0 | 0.043135 | 17.9408 | 4.4397 | 0 | 1 | 156 |
Portugal | 0.012821 | 0.009036 | 0 | 0 | 0.012738 | 75.4478 | 8.745319 | 0 | 1 | 156 |
Slovenia | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
South Korea | 0.00641 | 0.00641 | 0 | 0 | 0.00641 | 156 | 12.49 | 0 | 1 | 156 |
Sri Lanka | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Thailand | 0.032051 | 0.014148 | 0 | 0 | 0.031224 | 27.13321 | 5.365211 | 0 | 1 | 156 |
Tunisia | 0.025641 | 0.012696 | 0 | 0 | 0.025145 | 35.18209 | 6.060624 | 0 | 1 | 156 |
Turkey | 0.019231 | 0.011031 | 0 | 0 | 0.018983 | 48.60165 | 7.069559 | 0 | 1 | 156 |
Venezuela | 0.128205 | 0.026853 | 0 | 0 | 0.11249 | 3.083213 | 2.245851 | 0 | 1 | 156 |
Vietnam | 0.00641 | 0.00641 | 0 | 0 | 0.00641 | 156 | 12.49 | 0 | 1 | 156 |
Mean | Standard Error | Median | Mode | Sample Variance | Kurtosis | Skewness | Minimum | Maximum | Count | |
---|---|---|---|---|---|---|---|---|---|---|
ERP | 0.04032 | 0.019456 | 0.065376 | −0.29895 | 0.119239 | 4.71283 | −0.89074 | −1.91874 | 1.248012 | 315 |
Stock market index returns | 0.089517 | 0.020333 | 0.113529 | 0.334450 | 0.126506 | 4.563673 | −0.66241 | −1.90864 | 1.294532 | 315 |
Market capitalization of listed domestic companies (% of GDP) | 1.598876 | 0.566251 | 0.484125 | 0.451346 | 101.0017 | 116.4873 | 10.65886 | 0.09583 | 128.2342 | 315 |
Stocks traded, total value (% of GDP) | 0.283378 | 0.016297 | 0.169848 | 0.439929 | 0.083658 | 12.04943 | 2.446532 | 0 | 2.554426 | 315 |
lnListed domestic companies, total | 5.630147 | 0.057713 | 5.55296 | 6.075346 | 1.049198 | 1.459267 | −0.03161 | 2.564949 | 8.699348 | 315 |
Stocks traded, turnover ratio of domestic shares (%) | 0.428187 | 0.022234 | 0.299753 | 0.974705 | 0.155722 | 3.763276 | 1.804899 | 0.007346 | 2.380804 | 315 |
LowMPI | 0.244444 | 0.024253 | 0 | 0 | 0.18528 | −0.57567 | 1.195 | 0 | 1 | 315 |
MedMPI | 0.574603 | 0.027901 | 1 | 1 | 0.245213 | −1.92028 | −0.30324 | 0 | 1 | 315 |
HighMPI | 0.180952 | 0.021726 | 0 | 0 | 0.148681 | 0.778536 | 1.665423 | 0 | 1 | 315 |
Duration1 | 0.209524 | 0.022967 | 0 | 0 | 0.166151 | 0.057686 | 1.43435 | 0 | 1 | 315 |
Duration2 | 0.203175 | 0.022707 | 0 | 0 | 0.16241 | 0.198987 | 1.482486 | 0 | 1 | 315 |
Duration3 | 0.212698 | 0.023093 | 0 | 0 | 0.167991 | −0.00951 | 1.410883 | 0 | 1 | 315 |
Duration4 | 0.2 | 0.022573 | 0 | 0 | 0.16051 | 0.273306 | 1.507187 | 0 | 1 | 315 |
Duration5 | 0.203175 | 0.022707 | 0 | 0 | 0.16241 | 0.198987 | 1.482486 | 0 | 1 | 315 |
Duration6 | 0.231746 | 0.023812 | 0 | 0 | 0.178607 | −0.37014 | 1.277595 | 0 | 1 | 315 |
Duration7 | 0.231746 | 0.023812 | 0 | 0 | 0.178607 | −0.37014 | 1.277595 | 0 | 1 | 315 |
Duration8 | 0.238095 | 0.024036 | 0 | 0 | 0.181984 | −0.47604 | 1.23573 | 0 | 1 | 315 |
Duration9 | 0.244444 | 0.024253 | 0 | 0 | 0.18528 | −0.57567 | 1.195 | 0 | 1 | 315 |
Duration10 | 0.238095 | 0.024036 | 0 | 0 | 0.181984 | −0.47604 | 1.23573 | 0 | 1 | 315 |
Duration11 | 0.257143 | 0.024665 | 0 | 0 | 0.191629 | −0.75795 | 1.116649 | 0 | 1 | 315 |
Duration12 | 0.231746 | 0.023812 | 0 | 0 | 0.178607 | −0.37014 | 1.277595 | 0 | 1 | 315 |
Duration13 | 0.206349 | 0.022838 | 0 | 0 | 0.164291 | 0.127151 | 1.458212 | 0 | 1 | 315 |
Duration14 | 0.196825 | 0.022438 | 0 | 0 | 0.158589 | 0.350226 | 1.532333 | 0 | 1 | 315 |
Duration15 | 0.2 | 0.022573 | 0 | 0 | 0.16051 | 0.273306 | 1.507187 | 0 | 1 | 315 |
Duration16 | 0.215873 | 0.023218 | 0 | 0 | 0.169811 | −0.07453 | 1.387797 | 0 | 1 | 315 |
Duration17 | 0.228571 | 0.023697 | 0 | 0 | 0.176888 | −0.31469 | 1.29898 | 0 | 1 | 315 |
Duration18 | 0.263492 | 0.02486 | 0 | 0 | 0.194682 | −0.84137 | 1.078895 | 0 | 1 | 315 |
Duration19 | 0.301587 | 0.0259 | 0 | 0 | 0.211303 | −1.25321 | 0.868786 | 0 | 1 | 315 |
Duration20 | 0.295238 | 0.025742 | 0 | 0 | 0.208735 | −1.19386 | 0.902085 | 0 | 1 | 315 |
Duration21 | 0.292063 | 0.025661 | 0 | 0 | 0.207421 | −1.16292 | 0.918969 | 0 | 1 | 315 |
Argentina | 0.028571 | 0.009402 | 0 | 0 | 0.027843 | 30.53087 | 5.686568 | 0 | 1 | 315 |
Austria | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Bangladesh | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Belgium | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Brazil | 0.025397 | 0.008878 | 0 | 0 | 0.024831 | 34.97271 | 6.062235 | 0 | 1 | 315 |
Chile | 0.063492 | 0.013761 | 0 | 0 | 0.05965 | 11.01078 | 3.597348 | 0 | 1 | 315 |
China | 0.006349 | 0.004482 | 0 | 0 | 0.006329 | 154.9744 | 12.48961 | 0 | 1 | 315 |
Colombia | 0.047619 | 0.012018 | 0 | 0 | 0.045496 | 16.327 | 4.268884 | 0 | 1 | 315 |
Czech Republic | 0.022222 | 0.008319 | 0 | 0 | 0.021798 | 40.68464 | 6.513552 | 0 | 1 | 315 |
Egypt | 0.044444 | 0.01163 | 0 | 0 | 0.042604 | 17.84754 | 4.442326 | 0 | 1 | 315 |
Greece | 0.022222 | 0.008319 | 0 | 0 | 0.021798 | 40.68464 | 6.513552 | 0 | 1 | 315 |
Hong Kong | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
India | 0.025397 | 0.008878 | 0 | 0 | 0.024831 | 34.97271 | 6.062235 | 0 | 1 | 315 |
Indonesia | 0.044444 | 0.01163 | 0 | 0 | 0.042604 | 17.84754 | 4.442326 | 0 | 1 | 315 |
Ireland | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Israel | 0.050794 | 0.012391 | 0 | 0 | 0.048367 | 14.99699 | 4.111181 | 0 | 1 | 315 |
Malaysia | 0.060317 | 0.013435 | 0 | 0 | 0.05686 | 11.84938 | 3.711358 | 0 | 1 | 315 |
Mexico | 0.053968 | 0.012751 | 0 | 0 | 0.051218 | 13.8239 | 3.966884 | 0 | 1 | 315 |
Morocco | 0.009524 | 0.005481 | 0 | 0 | 0.009463 | 101.6347 | 10.14837 | 0 | 1 | 315 |
New Zealand | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Nigeria | 0.006349 | 0.004482 | 0 | 0 | 0.006329 | 154.9744 | 12.48961 | 0 | 1 | 315 |
Norway | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Pakistan | 0.019048 | 0.007714 | 0 | 0 | 0.018744 | 48.3017 | 7.070718 | 0 | 1 | 315 |
Peru | 0.031746 | 0.009894 | 0 | 0 | 0.030836 | 26.9781 | 5.367201 | 0 | 1 | 315 |
The Philippines | 0.038095 | 0.010803 | 0 | 0 | 0.036761 | 21.65073 | 4.849052 | 0 | 1 | 315 |
Poland | 0.04127 | 0.011225 | 0 | 0 | 0.039693 | 19.60258 | 4.634453 | 0 | 1 | 315 |
Portugal | 0.022222 | 0.008319 | 0 | 0 | 0.021798 | 40.68464 | 6.513552 | 0 | 1 | 315 |
Qatar | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Russia | 0.006349 | 0.004482 | 0 | 0 | 0.006329 | 154.9744 | 12.48961 | 0 | 1 | 315 |
Saudi Arabia | 0.028571 | 0.009402 | 0 | 0 | 0.027843 | 30.53087 | 5.686568 | 0 | 1 | 315 |
Singapore | 0.031746 | 0.009894 | 0 | 0 | 0.030836 | 26.9781 | 5.367201 | 0 | 1 | 315 |
South Africa | 0.025397 | 0.008878 | 0 | 0 | 0.024831 | 34.97271 | 6.062235 | 0 | 1 | 315 |
South Korea | 0.022222 | 0.008319 | 0 | 0 | 0.021798 | 40.68464 | 6.513552 | 0 | 1 | 315 |
Thailand | 0.044444 | 0.01163 | 0 | 0 | 0.042604 | 17.84754 | 4.442326 | 0 | 1 | 315 |
Turkey | 0.053968 | 0.012751 | 0 | 0 | 0.051218 | 13.8239 | 3.966884 | 0 | 1 | 315 |
The United Arab Emirates | 0.012698 | 0.006319 | 0 | 0 | 0.012577 | 74.96652 | 8.745889 | 0 | 1 | 315 |
Vietnam | 0.009524 | 0.005481 | 0 | 0 | 0.009463 | 101.6347 | 10.14837 | 0 | 1 | 315 |
Mean | Standard Error | Median | Mode | Sample Variance | Kurtosis | Skewness | Minimum | Maximum | Count | |
---|---|---|---|---|---|---|---|---|---|---|
ERP | 0.01212 | 0.02506 | 0.04411 | −0.791 | 0.09927 | 3.46349 | −1.01177 | −1.21274 | 0.995928 | 158 |
Stock market index returns | 0.046225 | 0.025033 | 0.062035 | −0.62905 | 0.096504 | 3.705884 | −0.66477 | −1.11477 | 1.158328 | 158 |
Market capitalization of listed domestic companies (% of GDP) | 1.75812 | 0.20428 | 0.80081 | 0.6230 | 6.59373 | 7.76101 | 2.89102 | 0.274632 | 12.54465 | 158 |
Stocks traded, total value (% of GDP) | 1.11135 | 0.11647 | 0.68935 | 0.41744 | 2.14332 | 11.7059 | 3.263734 | 0.096976 | 9.526673 | 158 |
lnListed domestic companies, total | 6.70332 | 0.10010 | 6.5959 | 5.66988 | 1.5832 | 0.24615 | −0.13819 | 3.044522 | 10.20492 | 158 |
Stocks traded, turnover ratio of domestic shares (%) | 0.71851 | 0.05715 | 0.60185 | 0.67003 | 0.51621 | 10.7523 | 2.951927 | 0.010585 | 4.802873 | 158 |
LowMPI | 0.11392 | 0.02535 | 0 | 0 | 0.10158 | 4.07180 | 2.453654 | 0 | 1 | 158 |
MedMPI | 0.42405 | 0.03944 | 0 | 0 | 0.24578 | −1.9282 | 0.310318 | 0 | 1 | 158 |
HighMPI | 0.46202 | 0.03978 | 0 | 0 | 0.25014 | −2.0018 | 0.153803 | 0 | 1 | 158 |
Duration1 | 0.16455 | 0.02959 | 0 | 0 | 0.13835 | 1.3541 | 1.826779 | 0 | 1 | 158 |
Duration2 | 0.16455 | 0.02959 | 0 | 0 | 0.13835 | 1.3541 | 1.826779 | 0 | 1 | 158 |
Duration3 | 0.2405 | 0.03411 | 0 | 0 | 0.18382 | −0.5035 | 1.225985 | 0 | 1 | 158 |
Duration4 | 0.22151 | 0.03314 | 0 | 0 | 0.17354 | −0.1687 | 1.354097 | 0 | 1 | 158 |
Duration5 | 0.24050 | 0.03411 | 0 | 0 | 0.18382 | −0.5035 | 1.225985 | 0 | 1 | 158 |
Duration6 | 0.24050 | 0.03411 | 0 | 0 | 0.18382 | −0.5035 | 1.225985 | 0 | 1 | 158 |
Duration7 | 0.1962 | 0.03169 | 0 | 0 | 0.15871 | 0.39086 | 1.544693 | 0 | 1 | 158 |
Duration8 | 0.24050 | 0.03411 | 0 | 0 | 0.18382 | −0.5035 | 1.225985 | 0 | 1 | 158 |
Duration9 | 0.20253 | 0.03207 | 0 | 0 | 0.16254 | 0.23662 | 1.494588 | 0 | 1 | 158 |
Duration10 | 0.21519 | 0.03279 | 0 | 0 | 0.16995 | −0.0423 | 1.399413 | 0 | 1 | 158 |
Duration11 | 0.2468 | 0.03441 | 0 | 0 | 0.18709 | −0.6021 | 1.185599 | 0 | 1 | 158 |
Duration12 | 0.20253 | 0.03207 | 0 | 0 | 0.16254 | 0.23662 | 1.494588 | 0 | 1 | 158 |
Duration13 | 0.20253 | 0.03207 | 0 | 0 | 0.16254 | 0.23662 | 1.494588 | 0 | 1 | 158 |
Duration14 | 0.26582 | 0.03525 | 0 | 0 | 0.19640 | −0.8654 | 1.070365 | 0 | 1 | 158 |
Duration15 | 0.29113 | 0.03625 | 0 | 0 | 0.20769 | −1.1529 | 0.928346 | 0 | 1 | 158 |
Duration16 | 0.3417 | 0.03785 | 0 | 0 | 0.22639 | −1.5662 | 0.673613 | 0 | 1 | 158 |
Duration17 | 0.29113 | 0.03625 | 0 | 0 | 0.20769 | −1.1529 | 0.928346 | 0 | 1 | 158 |
Duration18 | 0.31012 | 0.03691 | 0 | 0 | 0.21531 | −1.3299 | 0.828884 | 0 | 1 | 158 |
Duration19 | 0.27848 | 0.03577 | 0 | 0 | 0.20220 | −1.0173 | 0.997868 | 0 | 1 | 158 |
Duration20 | 0.27215 | 0.03552 | 0 | 0 | 0.19934 | −0.9435 | 1.03372 | 0 | 1 | 158 |
Duration21 | 0.32911 | 0.03750 | 0 | 0 | 0.2222 | −1.4796 | 0.734333 | 0 | 1 | 158 |
Australia | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Brazil | 0.0759 | 0.02114 | 0 | 0 | 0.07062 | 8.55493 | 3.23215 | 0 | 1 | 158 |
Canada | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
China | 0.11392 | 0.0253 | 0 | 0 | 0.10158 | 4.07180 | 2.453654 | 0 | 1 | 158 |
France | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Germany | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Hong Kong | 0.10126 | 0.02407 | 0 | 0 | 0.09159 | 5.18814 | 2.668825 | 0 | 1 | 158 |
India | 0.07594 | 0.02114 | 0 | 0 | 0.07062 | 8.55493 | 3.23215 | 0 | 1 | 158 |
Indonesia | 0.00632 | 0.00632 | 0 | 0 | 0.00632 | 158 | 12.56981 | 0 | 1 | 158 |
Italy | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Japan | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Malaysia | 0.00632 | 0.00632 | 0 | 0 | 0.00632 | 158 | 12.56981 | 0 | 1 | 158 |
Mexico | 0.01898 | 0.01089 | 0 | 0 | 0.01874 | 49.2691 | 7.116573 | 0 | 1 | 158 |
The Netherlands | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Russia | 0.11392 | 0.02535 | 0 | 0 | 0.10158 | 4.07180 | 2.453654 | 0 | 1 | 158 |
Saudi Arabia | 0.01265 | 0.00892 | 0 | 0 | 0.01257 | 76.4484 | 8.802321 | 0 | 1 | 158 |
Singapore | 0.06329 | 0.01943 | 0 | 0 | 0.05966 | 11.2584 | 3.621613 | 0 | 1 | 158 |
South Africa | 0.07594 | 0.02114 | 0 | 0 | 0.07062 | 8.55493 | 3.23215 | 0 | 1 | 158 |
South Korea | 0.07594 | 0.0211 | 0 | 0 | 0.07062 | 8.55493 | 3.23215 | 0 | 1 | 158 |
Spain | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Switzerland | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
Thailand | 0.00632 | 0.00632 | 0 | 0 | 0.00632 | 158 | 12.56981 | 0 | 1 | 158 |
The United Kingdom | 0.02531 | 0.01253 | 0 | 0 | 0.02483 | 35.6829 | 6.101754 | 0 | 1 | 158 |
References
- Arestis, Philip, Panicos O. Demetriades, and Kul B. Luintel. 2001. Financial development and economic growth: The role of stock markets. Journal of Money. Credit and Banking 33: 16–41. [Google Scholar] [CrossRef]
- Aruoba, S. Borağan, Francis X. Diebold, and Chiara Scotti. 2009. Real-Time Measurement of Business Conditions. Journal of Business & Economic Statistics 27: 417–27. [Google Scholar]
- Bahng, Joshua S., and Hyeong-Chul Jeong. 2012. Nonlinear Behaviors in Capital Structure Decisions in Australian Firms. Review of Pacific Basin Financial Markets and Policies 15: 1–19. [Google Scholar]
- Bätje, Fabian, and Lukas Menkhoff. 2013. Macro Determinants of US Stock Market Risk Premia in Bull and Bear Markets. Diskussionsbeitrag, No. 520. Hannover: Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät. [Google Scholar]
- Bayraktar, Nihal. 2014. Measuring relative development level of stock markets: Capacity and effort of countries. Borsa Istanbul Review 14: 74–95. [Google Scholar] [CrossRef]
- Beck, Thorsten, and Ross Levine. 2002. Industry growth and capital allocation: Does having a market-or bank-based system matter? Journal of Financial Economics 64: 147–80. [Google Scholar] [CrossRef]
- Beck, Thorsten, and Ross Levine. 2004. Stock markets, banks, and growth: Panel evidence. Journal of Banking and Finance 28: 423–42. [Google Scholar] [CrossRef]
- Bekaert, Geert, and Campbell R. Harvey. 1998. Capital markets: An engine for economic growth. The Brown Journal of World Affairs 5: 33–53. [Google Scholar]
- Bekaert, Geert, Campbell R. Harvey, and Christian Lundblad. 2003. Liquidity and Expected Returns: Lessons from Emerging Markets. Working paper. Durham: Duke University. [Google Scholar]
- Biswal, P. Chandra, and B. Kamaiah. 2001. Stock Market Development in India: Is There Any Trend Break? Economic and Political Weekly 36: 377–79. [Google Scholar]
- Boyd, John H., Ross Levine, and Bruce D. Smith. 2001. The impact of inflation on financial sector performance. Journal of Monetary Economics 47: 221–48. [Google Scholar] [CrossRef]
- Brennan, Mark, and Sheridan Titman. 1994. A study of monthly fund returns and performance evaluation techniques. Journal of Financial and Quantitative Analysis 29: 419–44. [Google Scholar]
- Bretscher, Lorenzo, Alex Hsu, and Andrea Tamoni. 2022. The Real Response to Uncertainty Shocks: The Risk Premium Channel. Management Science 69. [Google Scholar] [CrossRef]
- Buffett, Warren, and Carol Loomis. 2001. Warren Buffet on the Stock Market. Fortune Magazine, December 10. [Google Scholar]
- Chang, Hui-shyong, and Cheng F. Lee. 1977. Using Pooled Time-Series and Cross-Section Data to Test the Firm and Time Effects in Financial Analyses. The Journal of Financial and Quantitative Analysis 12: 457–471. [Google Scholar] [CrossRef]
- Choong, Chee-Keong, Ahmad Zubaidi Baharumshah, Zulkornain Yusop, and Muzafar Shah Habibullah. 2010. Private capital flows, stock. Japan and the World Economy 22: 107–17. [Google Scholar] [CrossRef]
- Damodaran, Aswath. 2009. Equity Risk Premiums (ERP): Determinants, Estimation and Implications—A Post-Crisis Update. Financial Markets, Institutions and Instruments 18: 289–370. [Google Scholar] [CrossRef]
- Demirgüç-Kunt, Asli, and Ross Levine. 1996. Stock market development and financial intermediaries: Stylized facts. The World Bank Economic Review 10: 291–321. [Google Scholar] [CrossRef]
- DeSerpa, Allan C. 1971. A Theory of the Economics of Time. The Economic Journal 81: 828–46. [Google Scholar] [CrossRef]
- Doane, David P., and Lori E. Seward. 2011. Measuring Skewness: A Forgotten Statistic? Journal of Statistics Education 19: 1–18. [Google Scholar] [CrossRef]
- El-Wassal, Kamal A. 2013. The Development of Stock Markets: In Search of a Theory. International Journal of Economics and Financial Issues 3: 606–24. [Google Scholar]
- Garcia, Valeriano F., and Lin Liu. 1999. Macroeconomic determinants of stock market development. Journal of Applied Economics 2: 29–59. [Google Scholar] [CrossRef]
- Griffin, John, Federico Nardari, and René M. Stulz. 2004. Stock Market Trading and Market Conditions. NBER Working Paper, W10719. Cambridge: NBER. [Google Scholar]
- Grossman, Sanford J., and Oliver D. Hart. 1979. A Theory of Competitive Equilibrium in Stock Market Economies. Econometrica 47: 293–329. [Google Scholar] [CrossRef]
- Han, Yufeng. 2011. On the relation between the market risk premium and market volatility. Applied Financial Economics 21: 1711–23. [Google Scholar] [CrossRef]
- Hausman, Jerry A. 1978. Specification Tests in Econometrics. Econometrica 46: 1251–71. [Google Scholar] [CrossRef]
- Hausman, Jerry A., and William E. Taylor. 1981. Panel Data and Unobservable Individual effects. Econometrica 49: 1377–98. [Google Scholar] [CrossRef]
- Hegde, Shantaram, Hao Lin, and Sanjay Varshney. 2010. Competitive Stock Markets: Evidence from Companies’ Dual Listings on the NYSE and NASDAQ. Financial Analysts Journal 66: 77–87. [Google Scholar] [CrossRef]
- Henry, Ken. 2013. Macroeconomic policy challenges in the Asian century. The Economic and Labour Relations Review 24: 150–60. [Google Scholar] [CrossRef]
- Jun, Sang-Gyung, Achla Marathe, and Hany A. Shawky. 2003. Liquidity and stock markets in emerging equity markets. Emerging Markets Review 4: 1–24. [Google Scholar] [CrossRef]
- Kane, Alex. 1994. Trading cost premiums in capital asset returns—A closed form solution. Journal of Banking and Finance 18: 1177–83. [Google Scholar] [CrossRef]
- Kruskal, William, and W. Allen Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583–621. [Google Scholar] [CrossRef]
- Kumar, N. 2010. Estimation of Market Capitalization and Economic Growth in India. Available online: https://ssrn.com/abstract=1610082 (accessed on 25 December 2019).
- Levine, Ross, and Sara Zervos. 1996. Stock Market Development and Long-Run Growth. World Bank Economic Review 10: 323–39. [Google Scholar] [CrossRef]
- Levine, Ross, and Sara Zervos. 1998a. Capital Control Liberalization and Stock Market Development. World Development 26: 1169–84. [Google Scholar] [CrossRef]
- Levine, Ross, and Sara Zervos. 1998b. Stock markets, banks, and economic growth. American Economic Review 88: 537–58. [Google Scholar]
- Li, Kai. 2007. The Growth in Equity Market Size and Trading Activity: An International Study. Journal of Empirical Finance 14: 59–90. [Google Scholar] [CrossRef]
- Madhavan, Ananth. 1996. Security prices and market transparency. Journal of Financial Intermediation 5: 255–83. [Google Scholar] [CrossRef]
- Mahama, Adnan C. 2013. The State of African Stock Market. Bachelor’s thesis, Programme in International Business, Finance, Arcada. [Google Scholar]
- Müller, Elisabeth, and Volker Zimmermann. 2009. The importance of equity finance for R&D activity. Small Business Economics 33: 303–18. [Google Scholar]
- Mureşan, Diana, and Monica Ioana. 2012. Turnover And Market Value, In Capital Markets in the European Union. Paper presented at 6th International Conference on Applied Statistics, Bucharest, Romania, November 16–17; Cluj-Napoca: Faculty of Economics and Business Administration, Babeş-Bolyai University. [Google Scholar]
- O’Brien, Jonathan P. 2003. The capital structure implications of pursuing a strategy of innovation. Strategic Management Journal 24: 415–31. [Google Scholar] [CrossRef]
- Olsen, Robert A., and Muhammad Khaki. 1998. Risk, Rationality, and Time Diversification. Financial Analysts Journal 54: 58–63. [Google Scholar] [CrossRef]
- Pao, Hsiao T., and Yao Y. Chih. 2005. Comparison of Linear and Nonlinear Models for Panel Data Forecasting: Debt Policy in Taiwan. Review of Pacific-Basin Financial Markets and Policies 8: 525–41. [Google Scholar] [CrossRef]
- Rajan, Raghuram, and Luigi Zingales. 2003. The Great Reversals: The politics of Financial Development in the 20th Century. Journal of Financial Economics 69: 5–50. [Google Scholar] [CrossRef]
- Ramsey, James Bernard. 1969. Tests for Specification Errors in Classical Linear Least Squares Regression Analysis. Journal of Royal Statistical Society B 31: 350–71. [Google Scholar] [CrossRef]
- Rietz, Thomas A. 1988. The equity risk premium a solution. Journal of Monetary Economics 22: 117–31. [Google Scholar] [CrossRef]
- Robins, Evan Malcolm, M. Sandler, and F. Durand. 1999. Inter-relationships between the January effect, market capitalisation and value investment strategies on the JSE. Investment Analysts Journal 28: 53–64. [Google Scholar] [CrossRef]
- Rousseau, Peter L., and Paul Wachtel. 2000. Equity markets and growth: Cross country evidence on timing and outcomes. Journal of Banking and Finance 24: 1933–57. [Google Scholar] [CrossRef]
- Sapra, Sunil. 2005. A regression error specification test (RESET) for generalized linear models. Economics Bulletin 3: 1–6. [Google Scholar]
- Schularick, Moritz, and Kaspar Zimmermann. 2018. Towards a New Paradigm: Stabilizing Financial Markets. Intereconomics 53: 124–35. [Google Scholar] [CrossRef]
- Soros, George. 1994. The Alchemy of Finance: Reading the Mind of the Market. Journal of Empirical Finance 14: 59–90. [Google Scholar]
- Tan, Hui-Boo, Eng-Tuck Cheah, Johnnie E. V. Johnson, Ming-Chien Sung, and Chong-Hin Chuah. 2011. Stock market capitalization and financial integration in the Asia Pacific region. Applied Economics 44: 1951–61. [Google Scholar] [CrossRef]
- Thursby, Jerry G. 1979. Alternative Specification Error Tests: A Comparative Study. Journal of the American Statistical Association 74: 222–25. [Google Scholar] [CrossRef]
- Thursby, Jerry G., and Peter Schmidt. 1977. Some Properties of Tests for Specification Error in a Linear Regression Model. Journal of the American Statistical Association 72: 635–41. [Google Scholar] [CrossRef]
- Torre, Augusto, Juan Carlos Gozzi, and Sergio L. Schmukler. 2006. Stock market development under globalization: Whither the gains from reforms? Journal of Banking and Finance 31: 1731–54. [Google Scholar] [CrossRef]
- Wooldridge, Jeffrey M. 2006. Introductory Econometrics—A Modern Approach. Thomson South-Western, International Student Edition. Boston: Cengage. [Google Scholar]
- Yartey, Charles Amo. 2008. The Determinants of Stock Market Development in Emerging Economies: Is South Africa Different? IMF Working Papers No. 08/32. Washington, DC: IMF, pp. 1–31. [Google Scholar]
- Zhang, Ling, Sheng Zhang, and Na Tao. 2016. Financial system risk tolerance capacity and economic growth: Evidence from a cross-country analysis. Global Economic Review 45: 97–115. [Google Scholar] [CrossRef]
- Zhang, Ling, Sheng Zhang, and Yingyuan Guo. 2019. The effects of equity financing and debt financing on technological innovation Evidence from developed countries. Baltic Journal of Management 14: 698–715. [Google Scholar] [CrossRef]
Groups 1: main indicators of stock market development () | (a) Market capitalization of listed domestic companies as a percentage of GDP, (b) total value of stocks traded as a percentage of GDP, (c) total listed domestic companies, and (d) turnover ratio of domestic shares to total traded stocks. |
Group 2: a proxy for relative country potentials () | The MPI provides a ranking to each country over years. The country rankings are used in this paper as a proxy for the relative potential of a country that are classified into three levels, namely, low, medium, and high market potentials. The three levels (thus, variables) are created by sorting countries’ rankings in an ascending order, before classification into quartiles. The first quartile corresponds to low country potentials, the second and third quartiles correspond to medium country potentials, and the fourth quartile corresponds to high country potentials. |
Group 3: duration of ERP () | This dummy variable is a proxy for the effect of time. The authors in this paper argue that an examination of the effect of time is a reasonable and relevant consideration which has been an ongoing concern in economic and financial studies (DeSerpa 1971; Chang and Lee 1977; Aruoba et al. 2009; Olsen and Khaki 1998). In this paper, the authors treat the effect of time in a convenient and simple manner that benefits from the country ranking in the market potential index (MPI) to create conditional dummy variables with the understanding that an increase in country ranking is associated with better aggregate economic conditions and, thus, lower country economic risk. In this paper, duration of ERP measures the number of years it takes until ERP decreases and the country ranking in MPI increases simultaneously, which implies an encouragement of equity financing. The dummy variable is binary, taking the value of 1 for a decrease in ERP and 0 otherwise. |
Group 4: a proxy for the country effect () | This variable is a dummy that takes a binary value of 1 for a respective country and 0 otherwise. |
Model 1: Low Competitiveness | Model 2: Medium Competitiveness | Model 3: High Competitiveness | |
---|---|---|---|
F stat. | 1.7749 | 4.8254 | 0.1120 |
Right critical values | 3.0564 | 3.0250 | 3.0556 |
p-value | 0.17305 | 0.00864 | 0.89415 |
Test Period Random Effect Test Summary | Chi-Sq. Statistic | Chi-Sq. d.f. | Prob. |
---|---|---|---|
Model 1: low stock market competitiveness | 8.42 | 4 | 0.0772 |
Model 2: med stock market competitiveness | 0.500 | 4 | 0.9734 |
Model 3: high stock market competitiveness | 12.56 | 4 | 0.0136 |
Variable | Coefficients | ||
---|---|---|---|
Model 1: Low Stock Market Competitiveness | Model 2: Medium Stock Market Competitiveness | Model 3: High Stock Market Competitiveness | |
(Constant) | 0.204 (5.420) *** | ---- | 0.036 (0.373) |
Percentage of market capitalization of listed domestic companies to GDP | ---- | ---- | −0.045 (−2.630) *** |
Percentage of total value of trading stocks to GDP | −0.495 (−6.110) *** | 0.079 (2.806) *** | 0.047 (1.654) * |
Natural log of total number of listed domestic companies | ---- | 0.125 (41.843) *** | 0.048 (2.977) *** |
Turnover ratio of domestic shares to stocks traded | ---- | −0.089 (−2.237) ** | −0.058 (−2.088) ** |
Country low ranking in MPI | ---- | −0.095 (−7.318) *** | −0.130 (−2.535) ** |
Country high ranking in MPI | 0.273 (3.958) *** | 0.058 (3.563) *** | ---- |
Duration | 7, 10, 13, 15, years | 1, 4, 15, 17,18, 20, 21 | 2, 6, 10, 11, 12, 14, 16, 17, 18, 20, 21 |
Country effect (dummies) | Significant (1) | Significant (2) | Significant (3) |
N | 152 | 288 | 155 |
Adjusted R-squared | 0.6074 | 0.9895 | 0.6484 |
S.E. of regression | 0.2269 | 0.0750 | 0.1687 |
Durbin–Watson stat | 1.667 | 1.670 | 1.4884 |
Variable | Coefficients | |
---|---|---|
Model 1: Positively Skewed ERP | Model 2: Negative Skewed ERP | |
(Constant) | 0.522078 (1.734818) * | 0.645082 (3.995692) *** |
Percentage of market capitalization of listed domestic companies to GDP | −0.00571 (−0.474264) | 0.001206 (0.621098) |
Percentage of total value of stocks traded to GDP | −0.046296 (−1.231177) | −0.042621 (−1.791193) * |
Natural log of total number of listed domestic companies | −0.007018 (−0.226272) | 0.021418 (1.408832) |
Turnover ratio of domestic shares to stocks traded | −0.174078 (−1.944899) ** | −0.00127 (−0.038381) |
Country low ranking in MPI | −0.013897 (−0.20967) | −0.175634 (−4.638399) *** |
Country high ranking in MPI | 0.199222 (2.400061) ** | 0.050278 (1.241913) |
Duration effect | 10 years | Years 1, 4, 7, 18, 21 |
Country effect (dummies) | Significant (1) | Significant (2) |
N | 199 | 310 |
Adjusted R-squared | 0.315275 | 0.693996 |
S.E. of regression | 0.288745 | 0.249915 |
Durbin–Watson stat | 1.709797 | 1.89455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldomiaty, T.; Apaydin, M.; Yusuf, M.; Rashwan, M. How Do Stock Market Development and Competitiveness Affect Equity Risk Premium? Implications from World Economies. Int. J. Financial Stud. 2023, 11, 30. https://doi.org/10.3390/ijfs11010030
Eldomiaty T, Apaydin M, Yusuf M, Rashwan M. How Do Stock Market Development and Competitiveness Affect Equity Risk Premium? Implications from World Economies. International Journal of Financial Studies. 2023; 11(1):30. https://doi.org/10.3390/ijfs11010030
Chicago/Turabian StyleEldomiaty, Tarek, Marina Apaydin, Mona Yusuf, and Mohamed Rashwan. 2023. "How Do Stock Market Development and Competitiveness Affect Equity Risk Premium? Implications from World Economies" International Journal of Financial Studies 11, no. 1: 30. https://doi.org/10.3390/ijfs11010030
APA StyleEldomiaty, T., Apaydin, M., Yusuf, M., & Rashwan, M. (2023). How Do Stock Market Development and Competitiveness Affect Equity Risk Premium? Implications from World Economies. International Journal of Financial Studies, 11(1), 30. https://doi.org/10.3390/ijfs11010030