Applications of Brain Wave Classification for Controlling an Intelligent Wheelchair
Abstract
:1. Introduction
2. Background and State of the Art of BCI Brain Activity Acquisition Methods
2.1. Signal Acquisition
2.2. Signal Processing
2.2.1. Pre-Processing
2.2.2. Feature Extraction and Classification
3. Materials and Methods
3.1. Datasets
3.2. Data Processing
- Dataset A: the training data supplied by the BCI Competition IV were used as a train and the evaluation one as a test. The duration of the epochs was two seconds, as explained in [62].
- Dataset B: 100 trials of each MI were used as training data, and the remaining 20 were used as tests. Usually, each subject would do a 20-trial session, which results in 5 sessions for training and 1 session for testing. For each visual cue and motor imagery moment, as these had a duration of 5 s, two epochs of two seconds each were extracted, allowing to double the data, ending up with 240 epochs, in total, for each class.
- A subject-oriented approach was followed, requiring the model to undergo training specific to each subject before being tested. However, it should be noted that the sessions utilised for testing differed from those used for training purposes.
3.2.1. Pre-Processing and Feature Extraction
- Filter Bank Common Spatial Pattern I
- 2.
- Filter Bank Common Spatial Pattern II
- 3.
- Power Spectral Density
3.2.2. Classification
- Two classifiers: if both classifiers predict that the class is 0, then the class is 0; the same is applied for classes 1 and 2. However, if they do not agree with the classification, then the trial is classified as 2 in order to decrease the number of false positives, which in this case are the trials miss-classified as MI to the left or right;
- Two classifiers with variable probability: the idea behind this approach is the same as before; however, the output of each classifier is a probability and not a class label. Thus, a threshold is estimated for each one of the classifiers to output a label, and then the same method is applied, as explained for the two classifiers;
- Ensemble methods: these methods are already developed and are widely used to combine the different predictions so that a more generalised and robust model can be obtained. These methods can be divided into two main groups: averaging and boosting. Regarding the first one, the different classifiers are built independently and only after that are their outputs combined to reduce the variance. Concerning the boosting methods, the classifiers are built sequentially so that the next classifier can try to decrease the bias of the combined. Voting classifier: this combines the predictions of the different classifiers and outputs a final prediction as the result of a majority vote. This majority vote can be hard or soft. Hard: each classifier predicts the class, and the final prediction is the one that most of them predicted. The final prediction can be obtained using a weighted averaging procedure if the classifiers have different weights. Soft: each classifier has a weight and predicts the probability of each class, and then the final prediction is obtained using a weighted averaging procedure. AdaBoost: considers several initial classifiers, called weak learners, and combines their predictions through a weighted majority vote. This process is repeated, and at each iteration/boost the data are modified. Each sample starts with a weight, and if it is incorrectly classified its weight increases for the classifier to notice it more; on the other hand, correctly classified samples have their weights reduced. After several iterations, the overall classifier, or strong learner, is expected to be better than the individual ones.
3.2.3. Evaluation
3.3. Hardware and Software
4. Results
4.1. Filter Bank Common Spatial Pattern I—FBCSP I
4.1.1. FBCSP I Approach Using Dataset A
4.1.2. FBCSP I Approach Using Dataset B
4.2. Filter Bank Common Spatial Pattern II—FBCSP II
4.2.1. FBCSP II Approach Using Dataset A
4.2.2. FBCSP II Approach Using Dataset B
4.3. Power Spectral Density
4.3.1. Power Spectral Density Approach Using Dataset A
4.3.2. Power Spectral Density Approach Using Dataset B
4.4. Real-Time Application
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, A.; Souza, L.H.; Frank, A.O. Changes in the quality of life in severely disabled people following provision of powered indoor/outdoor chairs. Disabil. Rehabil. 2003, 25, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Koontz, A.M.; Ding, D.; Jan, Y.; Groot, S.; Hansen, A. Wheeled mobility. BioMed Res. Int. 2015, 2015, 138176. [Google Scholar] [CrossRef] [PubMed]
- Guidelines on the Provision of Manual Wheelchairs in Less Resourced Settings. Available online: https://www.who.int/publications/i/item/9789241547482 (accessed on 5 January 2024).
- Worldwide Need—Wheelchair Foundation. Available online: https://www.wheelchairfoundation.org/fth/analysis-of-wheelchair-need (accessed on 5 January 2024).
- Xin-an, F.; Luzheng, B.; Teng, T.; Ding, H.; Liu, Y. A brain–computer interface-based vehicle destination selection system using p300 and ssvep signals. IEEE Trans. Intell. Transp. Syst. 2015, 16, 274–283. [Google Scholar] [CrossRef]
- Luzheng, B.; Xin-An, F.; Liu, Y. EEG-based brain-controlled mobile robots: A survey. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 161–176. [Google Scholar] [CrossRef]
- Gürkök, H.; Nijholt, A. Brain–computer interfaces for multimodal interaction: A survey and principles. Int. J. Hum.-Comput. Interact. 2012, 28, 292–307. [Google Scholar] [CrossRef]
- Major, T.C.; Conrad, J.M. A survey of brain computer interfaces and their applications. In Proceedings of the SOUTHEASTCON 2014, Lexington, KY, USA, 13–16 March 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological investigation of the basis of the fmri signal. Nature 2001, 412, 150. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, K.; Morioka, T.; Yoshida, F.; Miyagi, Y.; Nagata, S.; Sakata, A.; Sasaki, T. Correlation between scalp-recorded electroencephalographic and electrocorticographic activities during ictal period. Seizure 2007, 16, 238–247. [Google Scholar] [CrossRef]
- Buitenweg, J.R.; Rutten, W.L.C.; Marani, E. Geometry-based finiteelement modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans. Biomed. Eng. 2003, 50, 501–509. [Google Scholar] [CrossRef]
- Trambaiolli, L.R.; Falk, T.H. Hybrid brain–computer interfaces for wheelchair control: A review of existing solutions, their advantages and open challenges. In Smart Wheelchairs and Brain-Computer Interfaces; Elsevier: Amsterdam, The Netherlands, 2018; pp. 229–256. [Google Scholar] [CrossRef]
- Hage, B.; Alwatban, M.R.; Barney, E.; Mills, M.; Dodd, M.D.; Truemper, E.J.; Bashford, G.R. Functional transcranial doppler ultrasound for measurement of hemispheric lateralization during visual memory and visual search cognitive tasks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 2001–2007. [Google Scholar] [CrossRef] [PubMed]
- Open Bci. Available online: https://openbci.com/ (accessed on 5 January 2024).
- Emotiv Epoc. Available online: https://www.emotiv.com/ (accessed on 10 January 2024).
- Pires, G.; Castelo-Branco, M.; Nunes, U. Visual p300-based bci to steer a wheelchair: A bayesian approach. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 658–661. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Q.; Li, K.; He, S.; Qin, S.; Feng, Z.; Chen, Y.; Song, P.; Yang, T.; Zhang, Y. A bci-based environmental control system for patients with severe spinal cord injuries. IEEE Trans. Biomed. Eng. 2017, 64, 1959–1971. [Google Scholar] [CrossRef]
- Rebsamen, B.; Burdet, E.; Guan, C.; Teo, C.L.; Zeng, Q.; Ang, M.; Laugier, C. Controlling a wheelchair using a bci with low information transfer rate. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 1003–1008. [Google Scholar] [CrossRef]
- Iturrate, I.; Antelis, J.M.; Kubler, A.; Minguez, J. A noninvasive brainactuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 2009, 25, 614–627. [Google Scholar] [CrossRef]
- Alqasemi, R.; Dubey, R. A 9-dof wheelchair-mounted robotic arm system: Design, control, brain-computer interfacing, and testing. In Advances in Robot Manipulators; InTech: Rijeka, Croatia, 2010. [Google Scholar] [CrossRef]
- Shin, B.; Kim, T.; Jo, S. Non-invasive brain signal interface for a wheelchair navigation. In Proceedings of the International Conference on Control Automation and Systems, Gyeonggi-do, Republic of Korea, 27–30 October 2010. [Google Scholar] [CrossRef]
- Lopes, A.C.; Pires, G.; Nunes, U. Assisted navigation for a brain-actuated intelligent wheelchair. Robot. Auton. Syst. 2013, 61, 245–258. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Yan, Y.; Zhang, H.; Wu, S.; Yu, T.; Gu, Z. Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, R.; Gao, X.; Hong, B.; Gao, S. A practical vepbased brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Fanton, M.; Pham, J.; Willard, M.; Nezamfar, H.; Shafai, B.; Erdogmus, D. Brain controlled robotic platform using steady state visual evoked potentials acquired by eeg. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 7–10 November 2010; pp. 1371–1374. [Google Scholar] [CrossRef]
- Prueckl, R.; Guger, C. Controlling a robot with a brain-computer interface based on steady state visual evoked potentials. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Mandel, C.; Lüth, T.; Laue, T.; Röfer, T.; Gräser, A.; KriegBrückner, B. Navigating a smart wheelchair with a brain-computer interface interpreting steady-state visual evoked potentials. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1118–1125. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Gu, R.; Xia, B. Steady-state visually evoked potential (ssvep)-based brain-computer interface (bci): A low-delayed asynchronous wheelchair control system. In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 305–314. [Google Scholar] [CrossRef]
- Müller, S.M.; Bastos, T.F.; Filho, M.S. Proposal of a ssvep-bci to command a robotic wheelchair. J. Control. Autom. Electr. Syst. 2013, 24, 97–105. [Google Scholar] [CrossRef]
- Diez, P.F.; Müller, S.M.; Mut, V.A.; Laciar, E.; Avila, E.; Bastos, T.F.; Filho, M.S. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface. Med. Eng. Phys. 2013, 35, 1155–1164. [Google Scholar] [CrossRef]
- Duan, J.; Li, Z.; Yang, C.; Xu, P. Shared control of a brain-actuated intelligent wheelchair. In Proceedings of the 11th World Congress on Intelligent Control and Automation (WCICA), Shenyang, China, 29 June–4 July 2014; pp. 341–346. [Google Scholar] [CrossRef]
- Larsen, E.A. Classification of Eeg Signals in a Brain-Computer Interface System. Master’s Thesis, Institutt for Datateknikk og Informasjonsvitenskap, Trondheim, Norway, 2011. [Google Scholar]
- Khare, V.; Santhosh, J.; Anand, S.; Bhatia, M. Brain computer interface based real time control of wheelchair using electroencephalogram. Int. J. Soft Comput. Eng. IJSCE 2011, 1, 41–45. [Google Scholar]
- Choi, K. Control of a vehicle with eeg signals in real-time and system evaluation. Eur. J. Appl. Physiol. 2012, 112, 755–766. [Google Scholar] [CrossRef]
- Barbosa, A.O.; Achanccaray, D.R.; Meggiolaro, M.A. Activation of a mobile robot through a brain computer interface. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 4815–4821. [Google Scholar] [CrossRef]
- Tsui, C.S.; Gan, J.Q.; Roberts, S.J. A self-paced brain–computer interface for controlling a robot simulator: An online event labelling paradigm and an extended kalman filter based algorithm for online training. Med. Biol. Eng. Comput. 2009, 47, 257–265. [Google Scholar] [CrossRef]
- Tang, Z.; Sun, S.; Zhang, S.; Chen, Y.; Li, C.; Chen, S. A brain-machine interface based on erd/ers for an upper-limb exoskeleton control. Sensors 2016, 16, 2050. [Google Scholar] [CrossRef]
- Bahri, Z.; Abdulaal, S.; Buallay, M. Sub-band-power-based efficient brain computer interface for wheelchair control. In Proceedings of the 2014 World Symposium on Computer Applications & Research (WSCAR), Sousse, Tunisia, 18–20 January 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Zhang, H.; Hu, S. An eeg based control system for intelligent wheelchair. In Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2013; Volume 300, pp. 1540–1545. [Google Scholar] [CrossRef]
- Dharmasena, S.; Lalitharathne, K.; Dissanayake, K.; Sampath, A.; Pasqual, A. Online classification of imagined hand movement using a consumer grade eeg device. In Proceedings of the 2013 8th IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 17–20 December 2013; pp. 537–541. [Google Scholar] [CrossRef]
- Batres-Mendoza, P.; Ibarra-Manzano, M.; Guerra-Hernandez, E.; Almanza-Ojeda, D.; Montoro-Sanjose, C.; Romero-Troncoso, R.; Rostro-Gonzalez, H. Improving eeg-based motor imagery classification for real-time applications using the qsa method. Comput. Intell. Neurosci. 2017, 2017, 9817305. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Ji, H.; Jiang, C. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control. J. Neurosci. Methods 2014, 229, 33–43. [Google Scholar] [CrossRef]
- Li, J.; Ji, H.; Cao, L.; Zang, D.; Gu, R.; Xia, B.; Wu, Q. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom. Int. J. Neural Syst. 2014, 24, 1450014. [Google Scholar] [CrossRef]
- Allison, B.Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G.; Neuper, C.; Pfurtscheller, G. Toward a hybrid brain–computer interface based on imagined movement and visual attention. J. Neural Eng. 2010, 7, 026007. [Google Scholar] [CrossRef]
- Long, J.; Li, Y.; Wang, H.; Yu, T.; Pan, J. Control of a simulated wheelchair based on a hybrid brain computer interface. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 6727–6730. [Google Scholar] [CrossRef]
- Rani, B.J.; Umamakeswari, A. Electroencephalogram-based brain controlled robotic wheelchair. Indian J. Sci. Technol. 2015, 8 (Suppl. 9), 188–197. [Google Scholar] [CrossRef]
- Almeida, P.; Faria, B.M.; Reis, L.P. Brain Waves Classification Using a Single-Channel Dry EEG Headset: An Application for Controlling an Intelligent Wheelchair. In Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics; The PAAMS Collection; Lecture Notes in Computer Science; Mathieu, P., Dignum, F., Novais, P., De la Prieta, F., Eds.; Springer: Cham, Switzerland, 2023; Volume 13955. [Google Scholar] [CrossRef]
- Open Bci-Publicly Available EEG Datasets. Available online: https://openbci.com/community/publicly-available-eeg-datasets/ (accessed on 5 February 2024).
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for eeg-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef]
- Bzdok, D.; Krzywinski, M.; Altman, N. Points of significance: Machine learning: A primer. Nat. Methods 2017, 14, 1119–1120. [Google Scholar] [CrossRef]
- Johansson, M. Novel cluster-based svm to reduce classification error in noisy eeg data: Towards real-time brain-robot interfaces. Comput. Biol. Med. 2018, 148, 105931. [Google Scholar] [CrossRef]
- Singh, A.; Lal, S.; Guesgen, H.W. Architectural review of co-adaptive brain computer interface. In Proceedings of the 2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Mana Island, Fiji, 11–13 December 2017; pp. 200–207. [Google Scholar] [CrossRef]
- Pejas, J.; El Fray, I.; Hyla, T.; Kacprzyk, J. (Eds.) Advances in Soft and Hard Computing; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, A.; Álvarez, F.; Angevin, R. Review of real brain-controlled wheelchairs. J. Neural Eng. 2016, 13, 061001. [Google Scholar] [CrossRef] [PubMed]
- Abiyev, A.H.; Akkaya, N.; Aytac, E.; Günsel, I.; Çagman, A. Brain based control of wheelchair. In Proceedings of the International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, 27–30 July 2015; p. 542. Available online: https://api.semanticscholar.org/CorpusID:13468342 (accessed on 9 April 2024).
- Carrino, F.; Dumoulin, J.; Mugellini, E.; Khaled, O.A.; Ingold, R. A self-paced bci system to control an electric wheelchair: Evaluation of a commercial, lowcost eeg device. In Proceedings of the 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), Manaus, Brazil, 9–11 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Rincon, J.; Jaramillo, S.; Cespedes, Y.; Meza, A.M.; Domínguez, G. Motor imagery classification using feature relevance analysis: An emotiv-based bci system. In Proceedings of the 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, Armenia, Colombia, 17–19 September 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Lin, J.; Lo, C. Mental commands recognition on motor imagery-based brain computer interface. Int. J. Comput. Consum. Control. 2016, 25, 18–25. [Google Scholar]
- Muñoz, J.; Ríos, L.H.; Henao, O. Low cost implementation of a motor imagery experiment with bci system and its use in neurorehabilitation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA; 2014. [Google Scholar] [CrossRef]
- Ang, K.; Chin, Z.; Wang, C.; Guan, C.; Zhang, H. Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Stock, V.; Balbinot, A. Movement imagery classification in emotiv cap based system by naïve bayes. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4435–4438. [Google Scholar] [CrossRef]
- Kim, P.; Kim, K.; Kim, S. Using common spatial pattern algorithm for unsupervised real-time estimation of fingertip forces from semg signals. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5039–5045. [Google Scholar] [CrossRef]
- Siemens PLM Community. Spectral Leakage. Available online: https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Windows-and-Spectral-Leakage/ta-p/432760 (accessed on 5 December 2023).
- Fakhruzzaman, M.N.; Riksakomara, E.; Suryotrisongko, H. Eeg wave identification in human brain with Emotiv EPOC for motor imagery. Procedia Comput. Sci. 2016, 72, 269–276. [Google Scholar] [CrossRef]
- Siribunyaphat, N.; Punsawad, Y. Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control. Sensors 2023, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Arias, F.J.; García-Guerrero, E.E.; Tlelo-Cuautle, E.; Colores-Vargas, J.M.; García-Canseco, E.; López-Bonilla, O.R.; Galindo-Aldana, G.M.; Inzunza-González, E. Evaluation of Machine Learning Algorithms for Classification of EEG Signals. Technologies 2022, 10, 79. [Google Scholar] [CrossRef]
- Sabio, J.; Williams, N.S.; McArthur, G.M.; Badcock, N.A. A scoping review on the use of consumer-grade EEG devices for research. PLoS ONE 2024, 19, e0291186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
EEG | MEG | NIRS | fMRI | ECoG | MEA | fTCD | |
---|---|---|---|---|---|---|---|
Deployment | Non-invasive | Non-invasive | Non-invasive | Non-invasive | Invasive | Invasive | Non-invasive |
Measured Activity | Electrical | Magnetic | Hemodynamic | Hemodynamic | Electrical | Electrical | Hemodynamic |
Temporal Resolution | Good | Good | Low | Low | High | High | High |
Spatial Resolution | Low | Low | Low | Good | Good | High | Low |
Portability | High | Low | High | Low | High | High | High |
Cost | Low | High | Low | High | High | High |
Article | EEG Headset | Principle | Article | EEG Headset | Principle |
---|---|---|---|---|---|
[18] | 12 Ag/Cl electrodes | ERP—P300 | [19] | NuAmps and 12 electrodes | ERP—P300 |
[20] | NuAmps and 15 electrodes | ERP—P300 | [21] | gTec EEG (16 electrodes and g.USBamp amplifier) | ERP—P300 |
[22] | 16-channel electrode cap | ERP—P300 | [23] | Biopac MP150 EEG system | ERP—P300 |
[24] | gTec EEG (12 electrodes and g.USBamp amplifier) | ERP—P300 | [25] | Neuroscan (15 electrodes’ cap) | ERP—P300 |
[26] | BioSemi ActiveTwo system 32 channels | SSVEP | [27] | g.USBamp amplifier with g.Butterfly active electrodes | SSVEP |
[28] | 8 gold electrodes connected to the g.USBamp amplifier | SSVEP | [29] | gTec EEG with g.USBamp amplifier | SSVEP |
[30] | EEG Cap and g.USBamp amplifier | SSVEP | [31] | BrainNet-36 with 12 channels | SSVEP |
[32] | BrainNet BNT-36 with 3 channels | SSVEP | [33] | 6 channels EEG cap | SSVEP |
[34] | NeuroSky mindset | ERD/ERS | [35] | Grass Telefactor EEG Twin3 Machine | ERD/ERS |
[36] | G-TEC system with 5 Ag/AgCl electrodes | ERD/ERS | [37] | 8 channels EEG cap | ERD/ERS |
[38] | 5 bipolar EEG channels and a g.tec amplifier | ERD/ERS | [39] | ActiveTwo 64-channel EEG system | ERD/ERS |
[40] | Emotiv EPOC | ERD/ERS | [41] | Emotiv EPOC | ERD/ERS |
[42] | Emotiv EPOC | ERD/ERS | [43] | Emotiv EPOC | ERD/ERS |
[44] | EEG Cap—15 electrodes | ERD/ERS and SSVEP | [45] | Gtec Amplifier (15 channels) | ERD/ERS and SSVEP |
[46] | g.BSamp amplifier (5 channels) | ERD/ERS and SSVEP | [47] | NuAmps device (15 channels) | ERD/ERS and ERP—P300 |
[48,49] | NeuroSky | ERP—P300; Eye Blinking (EMG) | [5] | SYMPTOM amplifier with 10 electrodes | ERP—P300 and SSVEP |
Article | EEG Headset | Principle | Features | Classifier | Control | Accuracy |
---|---|---|---|---|---|---|
[18] | 12 Ag/Cl electrodes | ERP—P300 | Signal averaging and standard deviation | 2 class Bayesian | L/R/F/B (45° or 90°)/S | 95% |
[19] | NuAmps and 12 electrodes | ERP—P300 | Data vectors of concatenated epochs | BLDA (Bayesian) | 9 destinations | 89.6% |
[20] | NuAmps and 15 electrodes | ERP—P300 | Raw signal | SVM | 7 locations, an ‘application button’ and lock | 90% |
[21] | gTec EEG (16 electrodes and g.USBamp amplifier) | ERP—P300 | Moving average technique | LDA | 15 locations, L/R and validate selection | 94% |
[22] | 16-channel electrode cap | ERP—P300 | Signal averaging | Linear classifier | 6 for the IW (not specified) | 92% |
[23] | Biopac MP150 EEG system | ERP—P300 | Signal averaging | Linear classifier | F/B/L/R | — |
[24] | gTec EEG (12 electrodes and g.USBamp amplifier) | ERP—P300 | Optimal statistical spatial filter | Binary Bayesian | F/B/L/R (45° or 90°/S | 88% |
[25] | Neuroscan (15 electrodes’ cap) | ERP—P300 | Signal averaging | SVM | 37 locations, validate or delete selection, stop and show extra locations | — |
[26] | BioSemi ActiveTwo system 32 channels | SSVEP | Peaks in the frequency magnitude | — | L/R | >95% |
[27] | g.USBamp amplifier with g.Butterfly active electrodes | SSVEP | Frequency band power (PSD) | SVM | L/R/F/S | 95% |
[28] | 8 gold electrodes connected to the g.USBamp amplifier | SSVEP | — | LDA | L/R/B/F/S | 90% |
[29] | gTec EEG with g.USBamp amplifier | SSVEP | Frequency band power (PSD) | Threshold method not specified | L/R/B/F | 93.6% |
[30] | EEG Cap and g.USBamp amplifier | SSVEP | CCA | Bayesian | F/L/R/turn on/off | 87% |
[31] | BrainNet-36 with 12 channels | SSVEP | Frequency band power (PSD) | Decision trees | L/R/F/S | Qualitative evaluation |
[32] | BrainNet BNT-36 with 3 channels | SSVEP | Frequency band power (PSD) | Statistical maximum | L/R/F/B | 95% |
[33] | 6 channels EEG cap | SSVEP | FFT and CCA | CCA coefficient | L/R/F/B/S | >90% |
[34] | NeuroSky mindset | ERD/ERS | Frequency band power (PSD) | NN | Game | 91% |
[35] | Grass Telefactor EEG Twin3 Machine | ERD/ERS | Coefficients from the wavelets | Radial basis function NN | L/R/F/B/rest | 100% |
[36] | G-TEC system with 5 Ag/AgCl electrodes | ERD/ERS | Common spatial frequency subspace decomposition (CSFSD) | SVM | L/R/F | 91–95% |
[37] | 8 channels EEG cap | ERD/ERS | Mean, zero-crossing and energy from different levels of the DWT | ANN | L/R/F/S | 91% |
[38] | 5 bipolar EEG channels and a g.tec amplifier | ERD/ERS | Logarithmic frequency band power | LDA | L/R | 75% |
[39] | ActiveTwo 64-channel EEG system | ERD/ERS | Frequency band power (PSD) and CSP | SVM | Exoskeleton control LH/LF/RH/RF | 84% |
[40] | Emotiv EPOC | ERD/ERS | PCA and average power of the wavelets’ sub-bands | NN w/BP | L/R/F/B | 91% |
[42] | Emotiv EPOC | ERD/ERS | —– | Emotiv program | L/R/F/S | 70% |
[56] | Emotiv EPOC | ERD/ERS | Frequency components | SVM | L/R/F/B/S | 100% |
[56] | Emotiv EPOC | ERD/ERS | Frequency components | NN | L/R/F/B/S | 100% |
[56] | Emotiv EPOC | ERD/ERS | Frequency components | Bayesian | L/R/F/B/S | 94% |
[56] | Emotiv EPOC | ERD/ERS | Frequency components | Decision trees | L/R/F/B/S | 74% |
[42] | Emotiv EPOC | ERD/ERS | Frequency band power (PSD) | LDA | L/R | 70% |
[43] | Emotiv EPOC | ERD/ERS | Metrics from the EEG signal | Decision trees | L/R | 82% |
[57] | Emotiv EPOC | ERD/ERS | CSP | SVM | L/R | 60% |
[58] | Emotiv EPOC | ERD/ERS | — | LDA | L/R | 60% |
[59] | Emotiv EPOC | ERD/ERS | PSD, Hjort parameters, CWT and DWT—PCA for feature reduction | K-NN | L/R | 86–92% |
[60] | Emotiv EPOC | ERD/ERS | Energy distribution from the DWT | SVM | L/R/T/N | 97% |
[61] | Emotiv EPOC | ERD/ERS | CSP | LDA | L/R | 68% |
[61] | Emotiv EPOC | ERD/ERS | CSP | SVM | L/R | 68% |
[61] | Emotiv EPOC | ERD/ERS | CSP | Nu-SVC RBF Kernel | L/R | 68% |
[44] | EEG Cap—15 electrodes | ERD/ERS— (L/R) and SSVEP | CSP (ERD/ERS); CCA (SSVEP) | SVM (ERD/ERS); Canonical correlation coefficient (SSVEP) | L/R/A/DA, maintain an uniform velocity and turn on/off | — |
[45] | Gtec Amplifier (15 channels) | ERD/ERS— (L/R) SSVEP- (Des)accelerate | CSP (ERD/ERS); CCA (SSVEP) | SVM | L/R/A/DA | — |
[46] | g.BSamp amplifier (5 channels) | ERD/ERS and SSVEP | Frequency band power (PSD) | LDA | L/R | 81% |
[47,48] | NuAmps device (15 channels) | ERD/ERS and ERP—P300 | CSP | LDA | L/R/A/DA | 100% |
[48,49] | NeuroSky | ERP—P300 and Eye Blinking (EMG) | Changes in the level | Threshold | L/R/F/B/S | — |
[5] | SYMPTOM amplifier with 10 electrodes | ERP—P300 and SSVEP | PCA (ERP); PSD (SSVEP) | LDA | ERP—9 destinations SSVEP—confirm | 99% |
Number of Classifiers | Type | Number of Classifiers | |
---|---|---|---|
1 | Non-probabilistic | 2—Ensemble | Voting Hard |
Probabilistic—F1 | Voting Soft | ||
2 | Non-probabilistic | AdaBoost | |
Probabilistic—F1 |
Supervised Classifier | Hyper-Parameter | Grid Search Space | Description |
---|---|---|---|
LR | C | logspace −4 to 6, step size 1 | Regularisation parameter, which has a significant effect on the generalisation performance of the classifier |
K-NN | n_neighbors | 1 to 50, step size 10 | Number of neighbours to use |
SVM | Kernel | rbf—Gaussian kernel function | Function used to compute the kernel matrix for classification |
gamma | logspace −3 to 6, step size 1 | Regularisation parameter used in RBF kernel, which has significant impact on the performance of the kernel | |
C | logspace −3 to 7, step size 1 | Regularisation parameter, which has a significant effect on the generalisation performance of the classifier | |
DT | max_depth | 1 to 20, step size 2 | The maximum depth of the tree. If none, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. |
min_samples_split | 10 to 500, step size 20 | Minimum number of samples required to split a node | |
min_samples_leaf | 1 to 10, step size 2 | Minimum number of samples required in a newly created leaf after the split | |
NN | hidden_layers | 5 to 55, step 10 | The i element represents the number of neurons in the i hidden layer |
activation | relu—rectified linear unit function | Activation function for the hidden layer | |
solver | adam—stochastic gradient-based optimiser | The solver for weight optimisation | |
learning_rate | constant | Learning rate schedule for weight updates. If ‘constant’, the learning rate is given by learning_rate_init | |
learning_rate_init | logspace −4 to 4, step 1 | The initial learning rate used. It controls the step size in updating the weights. | |
alpha | logspace −4 to 4, step 1 | L2 penalty (regularisation term) parameter. | |
RF | n_estimators | 10 to 100, step 20 | Number of trees in the forest |
max_depth | None or 2 to 10, step size 2 | The maximum depth of the tree. If none, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. | |
min_samples_split | 10 to 500, step size 20 | The minimum number of samples required to split a node | |
min_samples_leaf | 1 to 10, step size 2 | The minimum number of samples required in a newly created leaf after the split |
Number | Name |
---|---|
0 | Gaussian Naive Bayes (GNB) |
1 | Linear discriminant analysis (LDA) |
2 | Linear support vector machines (LSVMs) |
3 | Logistic regression (LR) |
4 | K-nearest neighbours (K-NNs) |
5 | Kernel support vector machines (KSVMs) |
6 | Decision trees (DTs) |
7 | Neural networks (NNs) |
8 | Random forest (RF) |
Average | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1-score | 1 Classifier | 0.729 | 0.763 | 0.560 | 0.906 | 0.708 | 0.615 | 0.601 | 0.903 | 0.774 | 0.733 |
Prob. F1 | 0.729 | 0.797 | 0.663 | 0.883 | 0.714 | 0.603 | 0.575 | 0.896 | 0.662 | 0.768 | |
2 Classifiers | 0.712 | 0.782 | 0.496 | 0.920 | 0.679 | 0.610 | 0.546 | 0.848 | 0.776 | 0.751 | |
Prob. F1 | 0.738 | 0.792 | 0.623 | 0.932 | 0.689 | 0.634 | 0.567 | 0.874 | 0.768 | 0.760 | |
Soft | 0.730 | 0.843 | 0.597 | 0.950 | 0.692 | 0.563 | 0.592 | 0.848 | 0.749 | 0.735 | |
Hard | 0.748 | 0.801 | 0.632 | 0.928 | 0.719 | 0.647 | 0.615 | 0.869 | 0.759 | 0.758 | |
Ada | 0.682 | 0.694 | 0.588 | 0.856 | 0.616 | 0.551 | 0.509 | 0.894 | 0.676 | 0.750 | |
Best | 0.765 | 0.843 | 0.663 | 0.950 | 0.719 | 0.647 | 0.615 | 0.903 | 0.776 | 0.768 | |
Kappa | 1 Classifier | 0.587 | 0.632 | 0.333 | 0.854 | 0.556 | 0.410 | 0.396 | 0.847 | 0.660 | 0.597 |
Prob. F1 | 0.573 | 0.694 | 0.493 | 0.819 | 0.556 | 0.299 | 0.354 | 0.840 | 0.472 | 0.632 | |
2 Classifiers | 0.583 | 0.653 | 0.236 | 0.875 | 0.500 | 0.403 | 0.546 | 0.764 | 0.660 | 0.611 | |
Prob. F1 | 0.590 | 0.674 | 0.438 | 0.896 | 0.535 | 0.382 | 0.347 | 0.792 | 0.646 | 0.604 | |
Soft | 0.586 | 0.764 | 0.389 | 0.924 | 0.521 | 0.347 | 0.354 | 0.771 | 0.618 | 0.590 | |
Hard | 0.607 | 0.701 | 0.361 | 0.889 | 0.569 | 0.472 | 0.417 | 0.785 | 0.639 | 0.632 | |
Ada | 0.535 | 0.542 | 0.493 | 0.785 | 0.424 | 0.326 | 0.264 | 0.840 | 0.514 | 0.625 | |
Best | 0.656 | 0.764 | 0.493 | 0.924 | 0.569 | 0.472 | 0.546 | 0.847 | 0.660 | 0.632 | |
Winner | 0.570 | 0.680 | 0.420 | 0.750 | 0.480 | 0.400 | 0.270 | 0.770 | 0.750 | 0.610 | |
FP rate | 1 Classifier | 0.295 | 0.206 | 0.475 | 0.092 | 0.355 | 0.565 | 0.527 | 0.031 | 0.228 | 0.177 |
Prob. F1 | 0.271 | 0.134 | 0.294 | 0.111 | 0.178 | 0.878 | 0.423 | 0.123 | 0.200 | 0.098 | |
2 Classifiers | 0.264 | 0.090 | 0.613 | 0.071 | 0.250 | 0.415 | 0.607 | 0.066 | 0.144 | 0.119 | |
Prob. F1 | 0.195 | 0.095 | 0.415 | 0.045 | 0.282 | 0.165 | 0.516 | 0.027 | 0.145 | 0.063 | |
Soft | 0.334 | 0.126 | 0.578 | 0.044 | 0.361 | 0.582 | 0.699 | 0.098 | 0.280 | 0.242 | |
Hard | 0.271 | 0.145 | 0.734 | 0.060 | 0.188 | 0.414 | 0.500 | 0.038 | 0.189 | 0.172 | |
Ada | 0.386 | 0.307 | 0.685 | 0.157 | 0.474 | 0.571 | 0.755 | 0.109 | 0.260 | 0.154 | |
Best | 0.159 | 0.090 | 0.294 | 0.044 | 0.178 | 0.165 | 0.423 | 0.027 | 0.144 | 0.063 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Classifier | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||
Prob. F1 | 0 | 3 | 3 | 3 | 3 | 0 | 0 | 1 | 3 | |||||||||
2 Classifiers | 3 | 0 | 3 | 1 | 3 | 1 | 1 | 3 | 0 | 1 | 3 | 0 | 0 | 1 | 3 | 0 | 3 | 1 |
Prob. F1 | 0 | 1 | 3 | 1 | 0 | 3 | 3 | 1 | 0 | 3 | 0 | 3 | 3 | 0 | 1 | 3 | 1 | 0 |
Soft | 0 | 3 | 3 | 1 | 3 | 1 | 3 | 0 | 3 | 1 | 0 | 3 | 0 | 3 | 3 | 0 | 1 | 3 |
Hard | 3 | 0 | 0 | 1 | 0 | 3 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 1 | 3 | 3 | 1 |
Average | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1-score | 1 Classifier | 0.444 | 0.507 | 0.386 | 0.636 | 0.400 | 0.375 | 0.405 | 0.456 | 0.390 | 0.439 |
Prob. F1 | 0.438 | 0.470 | 0.416 | 0.662 | 0.316 | 0.492 | 0.334 | 0.437 | 0.361 | 0.452 | |
2 Classifiers | 0.448 | 0.442 | 0.456 | 0.622 | 0.391 | 0.419 | 0.361 | 0.442 | 0.404 | 0.496 | |
Prob. F1 | 0.427 | 0.427 | 0.353 | 0.640 | 0.444 | 0.403 | 0.333 | 0.442 | 0.303 | 0.496 | |
Soft | 0.435 | 0.485 | 0.358 | 0.592 | 0.430 | 0.455 | 0.401 | 0.406 | 0.330 | 0.453 | |
Hard | 0.484 | 0.597 | 0.401 | 0.626 | 0.410 | 0.547 | 0.386 | 0.470 | 0.483 | 0.440 | |
Ada | 0.428 | 0.417 | 0.375 | 0.625 | 0.392 | 0.433 | 0.383 | 0.358 | 0.375 | 0.492 | |
Best | 0.507 | 0.597 | 0.456 | 0.662 | 0.444 | 0.547 | 0.405 | 0.470 | 0.483 | 0.496 | |
Kappa | 1 Classifier | 0.160 | 0.262 | 0.075 | 0.450 | 0.075 | 0.063 | 0.100 | 0.175 | 0.075 | 0.162 |
Prob. F1 | 0.150 | 0.175 | 0.000 | 0.488 | 0.075 | 0.250 | 0.012 | 0.125 | 0.050 | 0.175 | |
2 Classifiers | 0.133 | 0.162 | 0.188 | 0.438 | 0.037 | 0.125 | 0.050 | 0.000 | 0.137 | 0.063 | |
Prob. F1 | 0.121 | 0.137 | −0.012 | 0.438 | 0.037 | 0.150 | 0.000 | 0.137 | −0.038 | 0.238 | |
Soft | 0.146 | 0.225 | 0.037 | 0.387 | 0.137 | 0.175 | 0.113 | 0.075 | −0.012 | 0.175 | |
Hard | 0.218 | 0.387 | 0.100 | 0.438 | 0.088 | 0.325 | 0.063 | 0.200 | 0.200 | 0.162 | |
Ada | 0.142 | 0.125 | 0.063 | 0.438 | 0.088 | 0.150 | 0.075 | 0.037 | 0.063 | 0.238 | |
Best | 0.253 | 0.387 | 0.188 | 0.488 | 0.137 | 0.325 | 0.113 | 0.200 | 0.200 | 0.238 | |
FP rate | 1 Classifier | 0.908 | 0.672 | 1.239 | 0.355 | 1.370 | 0.867 | 0.646 | 0.852 | 1.435 | 0.736 |
Prob. F1 | 1.202 | 1.056 | 2.000 | 0.380 | 1.587 | 0.767 | 1.610 | 1.240 | 1.273 | 0.907 | |
2 Classifiers | 0.796 | 0.811 | 0.727 | 0.373 | 0.744 | 0.680 | 0.955 | 1.250 | 1.000 | 0.622 | |
Prob. F1 | 0.888 | 0.804 | 1.949 | 0.240 | 0.209 | 0.596 | 0.975 | 1.176 | 1.486 | 0.559 | |
Soft | 0.918 | 0.793 | 1.116 | 0.451 | 1.059 | 0.611 | 0.857 | 1.043 | 1.590 | 0.741 | |
Hard | 0.730 | 0.521 | 1.125 | 0.440 | 0.511 | 0.439 | 1.156 | 0.839 | 0.821 | 0.717 | |
Ada | 0.916 | 0.720 | 1.222 | 0.373 | 1.426 | 0.692 | 1.065 | 1.302 | 1.000 | 0.441 | |
Best | 0.543 | 0.521 | 0.727 | 0.240 | 0.209 | 0.439 | 0.646 | 0.839 | 0.821 | 0.441 |
Classifiers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Classifier | 3 | 1 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | |||||||||
Prob. F1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||
2 Classifiers | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 3 |
Prob. F1 | 3 | 1 | 3 | 1 | 3 | 1 | 0 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 |
Soft | 3 | 1 | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | 1 | 3 | 1 | 3 | 3 | 1 |
Hard | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 3 |
Average | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1-score | 1 Classifier | 0.793 | 0.856 | 0.697 | 0.950 | 0.838 | 0.606 | 0.668 | 0.898 | 0.782 | 0.846 |
Prob. F1 | 0.792 | 0.854 | 0.643 | 0.928 | 0.849 | 0.629 | 0.663 | 0.923 | 0.788 | 0.855 | |
2 Classifiers | 0.785 | 0.840 | 0.643 | 0.933 | 0.840 | 0.604 | 0.686 | 0.859 | 0.842 | 0.817 | |
Prob. F1 | 0.783 | 0.840 | 0.643 | 0.930 | 0.840 | 0.644 | 0.686 | 0.859 | 0.793 | 0.817 | |
Soft | 0.787 | 0.878 | 0.682 | 0.921 | 0.825 | 0.662 | 0.608 | 0.888 | 0.805 | 0.818 | |
Hard | 0.797 | 0.829 | 0.698 | 0.949 | 0.833 | 0.618 | 0.679 | 0.924 | 0.774 | 0.871 | |
Ada | 0.724 | 0.801 | 0.620 | 0.894 | 0.769 | 0.616 | 0.542 | 0.819 | 0.745 | 0.713 | |
Best | 0.818 | 0.878 | 0.698 | 0.950 | 0.849 | 0.662 | 0.686 | 0.924 | 0.842 | 0.871 | |
Kappa | 1 Classifier | 0.683 | 0.785 | 0.535 | 0.924 | 0.757 | 0.382 | 0.500 | 0.833 | 0.667 | 0.764 |
Prob. F1 | 0.685 | 0.764 | 0.465 | 0.928 | 0.764 | 0.431 | 0.479 | 0.882 | 0.674 | 0.778 | |
2 Classifiers | 0.596 | 0.681 | 0.361 | 0.896 | 0.611 | 0.292 | 0.382 | 0.639 | 0.764 | 0.743 | |
Prob. F1 | 0.658 | 0.757 | 0.458 | 0.889 | 0.750 | 0.396 | 0.521 | 0.757 | 0.681 | 0.715 | |
Soft | 0.623 | 0.757 | 0.472 | 0.875 | 0.736 | 0.493 | 0.306 | 0.826 | 0.701 | 0.438 | |
Hard | 0.693 | 0.743 | 0.542 | 0.924 | 0.750 | 0.424 | 0.514 | 0.882 | 0.653 | 0.806 | |
Ada | 0.586 | 0.701 | 0.431 | 0.840 | 0.653 | 0.424 | 0.313 | 0.729 | 0.618 | 0.569 | |
Best | 0.720 | 0.785 | 0.542 | 0.928 | 0.764 | 0.493 | 0.521 | 0.882 | 0.764 | 0.806 | |
Winner | 0.570 | 0.680 | 0.420 | 0.750 | 0.480 | 0.400 | 0.270 | 0.770 | 0.750 | 0.610 | |
FP rate | 1 Classifier | 0.218 | 0.108 | 0.383 | 0.029 | 0.127 | 0.646 | 0.347 | 0.016 | 0.238 | 0.071 |
Prob. F1 | 0.161 | 0.038 | 0.317 | 0.040 | 0.066 | 0.403 | 0.255 | 0.025 | 0.237 | 0.065 | |
2 Classifiers | 0.192 | 0.153 | 0.532 | 0.035 | 0.131 | 0.395 | 0.276 | 0.024 | 0.132 | 0.050 | |
Prob. F1 | 0.150 | 0.083 | 0.370 | 0.080 | 0.067 | 0.186 | 0.279 | 0.011 | 0.194 | 0.080 | |
Soft | 0.238 | 0.127 | 0.529 | 0.081 | 0.152 | 0.336 | 0.581 | 0.042 | 0.197 | 0.097 | |
Hard | 0.195 | 0.145 | 0.340 | 0.044 | 0.156 | 0.429 | 0.295 | 0.020 | 0.247 | 0.080 | |
Ada | 0.260 | 0.116 | 0.463 | 0.109 | 0.229 | 0.474 | 0.624 | 0.068 | 0.118 | 0.136 | |
Best | 0.121 | 0.038 | 0.317 | 0.029 | 0.066 | 0.186 | 0.255 | 0.011 | 0.132 | 0.050 |
Classifiers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Classifier | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||
Prob. F1 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||
2 Classifiers | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 |
Prob. F1 | 3 | 0 | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 |
Soft | 0 | 3 | 3 | 0 | 3 | 1 | 3 | 0 | 3 | 0 | 3 | 1 | 3 | 1 | 3 | 0 | 3 | 0 |
Hard | 3 | 0 | 3 | 1 | 3 | 1 | 3 | 0 | 3 | 0 | 3 | 1 | 3 | 1 | 3 | 0 | 3 | 1 |
Average | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1-score | 1 Classifier | 0.461 | 0.612 | 0.451 | 0.712 | 0.438 | 0.515 | 0.479 | 0.472 | 0.000 | 0.471 |
Prob. F1 | 0.478 | 0.556 | 0.431 | 0.710 | 0.394 | 0.506 | 0.467 | 0.456 | 0.316 | 0.463 | |
2 Classifiers | 0.454 | 0.606 | 0.435 | 0.697 | 0.431 | 0.527 | 0.471 | 0.468 | 0.000 | 0.455 | |
Prob. F1 | 0.457 | 0.605 | 0.433 | 0.700 | 0.437 | 0.506 | 0.490 | 0.456 | 0.000 | 0.489 | |
Soft | 0.497 | 0.624 | 0.425 | 0.716 | 0.414 | 0.526 | 0.481 | 0.481 | 0.337 | 0.471 | |
Hard | 0.486 | 0.612 | 0.433 | 0.705 | 0.408 | 0.515 | 0.422 | 0.472 | 0.332 | 0.471 | |
Ada | 0.504 | 0.517 | 0.417 | 0.742 | 0.475 | 0.500 | 0.508 | 0.467 | 0.342 | 0.567 | |
Best | 0.524 | 0.624 | 0.451 | 0.742 | 0.475 | 0.527 | 0.508 | 0.481 | 0.342 | 0.567 | |
Kappa | 1 Classifier | 0.243 | 0.400 | 0.175 | 0.550 | 0.137 | 0.275 | 0.225 | 0.200 | 0.000 | 0.225 |
Prob. F1 | 0.200 | 0.262 | 0.100 | 0.513 | 0.088 | 0.225 | 0.200 | 0.188 | 0.000 | 0.225 | |
2 Classifiers | 0.232 | 0.387 | 0.150 | 0.513 | 0.125 | 0.288 | 0.213 | 0.200 | 0.012 | 0.200 | |
Prob. F1 | 0.233 | 0.375 | 0.150 | 0.513 | 0.137 | 0.225 | 0.238 | 0.188 | 0.025 | 0.250 | |
Soft | 0.244 | 0.425 | 0.137 | 0.563 | 0.113 | 0.288 | 0.225 | 0.213 | 0.013 | 0.225 | |
Hard | 0.224 | 0.400 | 0.150 | 0.538 | 0.100 | 0.275 | 0.125 | 0.200 | 0.000 | 0.225 | |
Ada | 0.256 | 0.275 | 0.125 | 0.613 | 0.213 | 0.250 | 0.262 | 0.200 | 0.012 | 0.350 | |
Best | 0.285 | 0.425 | 0.175 | 0.613 | 0.213 | 0.288 | 0.262 | 0.213 | 0.025 | 0.350 | |
FP rate | 1 Classifier | 0.515 | 0.306 | 0.741 | 0.167 | 0.51 | 0.597 | 0.69 | 0.804 | 0.05 | 0.776 |
Prob. F1 | 0.459 | 0.361 | 0.563 | 0.136 | 0.511 | 0.241 | 0.804 | 0.727 | 0.15 | 0.638 | |
2 Classifiers | 0.49 | 0.296 | 0.731 | 0.148 | 0.5 | 0.524 | 0.667 | 0.714 | 0.024 | 0.804 | |
Prob. F1 | 0.444 | 0.373 | 0.563 | 0.173 | 0.549 | 0.241 | 0.695 | 0.618 | 0.071 | 0.717 | |
Soft | 0.544 | 0.311 | 0.882 | 0.188 | 0.592 | 0.556 | 0.724 | 0.772 | 0.098 | 0.776 | |
Hard | 0.561 | 0.306 | 0.827 | 0.169 | 0.646 | 0.597 | 0.8 | 0.804 | 0.125 | 0.776 | |
Ada | 0.513 | 0.468 | 0.68 | 0.124 | 0.404 | 0.55 | 0.77 | 0.804 | 0.293 | 0.529 | |
Best | 0.385 | 0.296 | 0.563 | 0.124 | 0.404 | 0.241 | 0.667 | 0.618 | 0.024 | 0.529 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Classifier | 3 | 1 | 2 | 3 | 1 | 3 | 1 | 1 | 3 | |||||||||
Prob. F1 | 3 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 3 | |||||||||
2 Classifiers | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 1 | 3 | 3 | 1 |
Prob. F1 | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 3 | 1 | 3 | 3 | 1 |
Soft | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 1 | 3 | 3 | 1 |
Hard | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 3 | 1 |
Average | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1-score | 1 Classifier | 0.651 | 0.747 | 0.595 | 0.911 | 0.604 | 0.660 | 0.706 | 0.604 | 0.517 | 0.515 |
Prob. F1 | 0.648 | 0.718 | 0.631 | 0.912 | 0.628 | 0.667 | 0.737 | 0.642 | 0.450 | 0.447 | |
2 Classifiers | 0.588 | 0.712 | 0.586 | 0.773 | 0.582 | 0.601 | 0.613 | 0.545 | 0.460 | 0.418 | |
Prob. F1 | 0.599 | 0.712 | 0.560 | 0.771 | 0.619 | 0.650 | 0.658 | 0.623 | 0.374 | 0.418 | |
Soft | 0.646 | 0.758 | 0.626 | 0.892 | 0.589 | 0.644 | 0.678 | 0.622 | 0.485 | 0.519 | |
Hard | 0.651 | 0.747 | 0.595 | 0.911 | 0.604 | 0.660 | 0.706 | 0.604 | 0.517 | 0.515 | |
Ada | 0.668 | 0.758 | 0.631 | 0.912 | 0.628 | 0.667 | 0.737 | 0.642 | 0.517 | 0.519 | |
Best | 0.651 | 0.747 | 0.595 | 0.911 | 0.604 | 0.660 | 0.706 | 0.604 | 0.517 | 0.515 | |
Kappa | 1 Classifier | 0.426 | 0.463 | 0.375 | 0.863 | 0.387 | 0.488 | 0.525 | 0.387 | 0.125 | 0.225 |
Prob. F1 | 0.433 | 0.625 | 0.175 | 0.863 | 0.425 | 0.488 | 0.563 | 0.463 | 0.100 | 0.200 | |
2 Classifiers | 0.359 | 0.550 | 0.313 | 0.625 | 0.400 | 0.390 | 0.413 | 0.325 | 0.050 | 0.162 | |
Prob. F1 | 0.413 | 0.575 | 0.325 | 0.638 | 0.413 | 0.475 | 0.488 | 0.438 | 0.175 | 0.188 | |
Soft | 0.447 | 0.625 | 0.450 | 0.838 | 0.375 | 0.463 | 0.450 | 0.425 | 0.150 | 0.250 | |
Hard | 0.443 | 0.600 | 0.375 | 0.863 | 0.387 | 0.488 | 0.538 | 0.387 | 0.125 | 0.225 | |
Ada | 0.478 | 0.625 | 0.450 | 0.863 | 0.425 | 0.488 | 0.563 | 0.463 | 0.175 | 0.250 | |
Best | 0.426 | 0.463 | 0.375 | 0.863 | 0.387 | 0.488 | 0.525 | 0.387 | 0.125 | 0.225 | |
FP rate | 1 Classifier | 0.471 | 0.519 | 0.314 | 0.101 | 0.690 | 0.468 | 0.422 | 0.648 | 0.080 | 1.000 |
Prob. F1 | 0.411 | 0.322 | 0.111 | 0.101 | 0.595 | 0.506 | 0.400 | 0.506 | 0.125 | 1.036 | |
2 Classifiers | 0.314 | 0.190 | 0.200 | 0.078 | 0.486 | 0.178 | 0.288 | 0.561 | 0.068 | 0.774 | |
Prob. F1 | 0.399 | 0.370 | 0.364 | 0.110 | 0.534 | 0.397 | 0.466 | 0.440 | 0.071 | 0.836 | |
Soft | 0.471 | 0.300 | 0.461 | 0.121 | 0.700 | 0.506 | 0.500 | 0.581 | 0.135 | 0.933 | |
Hard | 0.471 | 0.519 | 0.314 | 0.101 | 0.690 | 0.468 | 0.422 | 0.648 | 0.080 | 1.000 | |
Ada | 0.290 | 0.190 | 0.111 | 0.078 | 0.486 | 0.178 | 0.288 | 0.440 | 0.068 | 0.774 | |
Best | 0.471 | 0.519 | 0.314 | 0.101 | 0.690 | 0.468 | 0.422 | 0.648 | 0.080 | 1.000 |
Individual (I) | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Classifier | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |||||||||
Prob. F1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |||||||||
2 Classifiers | 5 | 7 | 5 | 7 | 5 | 4 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 7 |
Prob. F1 | 5 | 7 | 5 | 4 | 5 | 4 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 4 | 5 | 7 |
Soft | 5 | 7 | 5 | 4 | 5 | 4 | 5 | 8 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 4 | 5 | 4 |
Hard | 5 | 7 | 5 | 7 | 5 | 4 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 7 | 5 | 4 | 5 | 7 |
MI | Output | Majority | % | MI | Output | Majority | % | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 2 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 60% | R | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 90% |
R | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 60% | N | 2 | 2 | 2 | 2 | 1 | 2 | 0 | 0 | 2 | 2 | 2 | 70% |
N | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 70% | L | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 30% |
L | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 50% | N | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 90% |
L | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 50% | R | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 70% |
N | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 70% | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 100% |
R | 1 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 1 | 60% | L | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 50% |
L | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 60% | N | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 80% |
N | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 0 | 2 | 2 | 70% | R | 1 | 2 | 1 | 2 | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 30% |
R | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 70% | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 100% |
N | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 60% | L | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avelar, M.C.; Almeida, P.; Faria, B.M.; Reis, L.P. Applications of Brain Wave Classification for Controlling an Intelligent Wheelchair. Technologies 2024, 12, 80. https://doi.org/10.3390/technologies12060080
Avelar MC, Almeida P, Faria BM, Reis LP. Applications of Brain Wave Classification for Controlling an Intelligent Wheelchair. Technologies. 2024; 12(6):80. https://doi.org/10.3390/technologies12060080
Chicago/Turabian StyleAvelar, Maria Carolina, Patricia Almeida, Brigida Monica Faria, and Luis Paulo Reis. 2024. "Applications of Brain Wave Classification for Controlling an Intelligent Wheelchair" Technologies 12, no. 6: 80. https://doi.org/10.3390/technologies12060080
APA StyleAvelar, M. C., Almeida, P., Faria, B. M., & Reis, L. P. (2024). Applications of Brain Wave Classification for Controlling an Intelligent Wheelchair. Technologies, 12(6), 80. https://doi.org/10.3390/technologies12060080