Improving CMTS Physical Properties Through Potassium Doping for Enhanced Rhodamine B Degradation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. X-Ray Diffraction Analysis
3.2. Morphological Properties
3.3. Optical Properties
3.4. Photocatalytic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oladoye, P.O.; Kadhom, M.; Khan, I.; Aziz, K.H.H.; Alli, Y.A. Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions. Green Chem. Eng. 2024, 5, 440–460. [Google Scholar] [CrossRef]
- Naciri, Y.; Chennah, A.; Jaramillo-Páez, C.; Navío, J.A.; Bakiz, B.; Taoufyq, A.; Ezahri, M.; Villain, S.; Guinneton, F.; Benlhachemi, A. Preparation, characterization and photocatalytic degradation of Rhodamine B dye over a novel Zn3(PO4)2/BiPO4 catalyst. J. Environ. Chem. Eng. 2019, 7, 103075. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668. [Google Scholar] [CrossRef]
- Peiris, S.; deSilva, H.B.; Ranasinghe, K.N.; Bandara, S.V.; Perera, I.R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021, 68, 738–769. [Google Scholar] [CrossRef]
- Chang, J.S.; Strunk, J.; Chong, M.N.; Poh, P.E.; Ocon, J.D. Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: What is the fundamental factor that determines photoactivity in ZnO. J. Hazard. Mater. 2020, 381, 120958. [Google Scholar] [CrossRef]
- Luo, J.; Tilley, S.D.; Steier, L.; Schreier, M.; Mayer, M.T.; Fan, H.J.; Grätzel, M. Solution transformation of Cu2O into CuInS2 for solar water splitting. Nano Lett. 2015, 15, 1395–1402. [Google Scholar] [CrossRef]
- Hammoud, A.; Alhalaili, B.; Vidu, R.; Kamoun-Turki, N. Spray Pyrolysis Technique for Cu2MgSnS4 Thin Films; IntechOpen: London, UK, 2025. [Google Scholar]
- Hammoud, A.; Jrad, A.; Yahmadi, B.; Souli, M.; Kouki, F.; Ajili, L.; Kamoun-Turki, N. Investigation on Cu2MgSnS4 thin film prepared by spray pyrolysis for photovoltaic and humidity sensor applications. Opt. Mater. 2022, 127, 112296. [Google Scholar] [CrossRef]
- Khan, A.A.; Noman, M.; Jan, S.T. Investigating the compatibility of kesterite and zinc charge transport layers with inorganic germanium perovskite solar cells. Opt. Quantum Electron. 2025, 57, 114. [Google Scholar] [CrossRef]
- Hammoud, A.; Souli, M.; Diouani, M.F.; Alhalaili, B.; Vidu, R.; Kamoun-Turki, N. Synthesis and characterization of novel sprayed Ag-doped quaternary Cu2MgSnS4 thin film for anti-bacterial application. Nanomaterials 2022, 12, 3459. [Google Scholar] [CrossRef]
- Romanyuk, Y.E.; Haass, S.G.; Giraldo, S.; Placidi, M.; Tiwari, D.; Fermin, D.J.; Hao, X.; Xin, H.; Schnabel, T.; Kauk-Kuusik, M.; et al. Doping and alloying of kesterites. J. Phys. Energy 2019, 1, 044004. [Google Scholar] [CrossRef]
- Kangsabanik, M.; Gayen, R.N. A comprehensive review on the recent strategy of cation substitution in CZTS(Se) thin films to achieve highly efficient kesterite solar cells. Sol. RRL 2023, 7, 2300670. [Google Scholar] [CrossRef]
- Hajji, M.; Ajili, M.; Charrada, G.; Jebbari, N.; Garcia-Loureiro, A.; Kamoun, N.T. Comprehensive study on the physical properties of CuO-ZnO thin films: Insights into solar cell simulation. Opt. Mater. 2024, 155, 115887. [Google Scholar] [CrossRef]
- Mkawi, E.M. Kesterite Cu2ZnSnS4 thin films synthesized utilizing electrodeposition: Influence of metal doping on the properties. Int. J. Energy Res. 2021, 45, 1908–1917. [Google Scholar] [CrossRef]
- Sui, Y.; Zhang, Y.; Jiang, D.; He, W.; Wang, Z.; Wang, F.; Yao, B.; Yang, L. Investigation of Optimum Mg Doping Content and Annealing Parameters of Cu2MgxZn1−xSnS4 Thin. Nanomaterials 2019, 9, 955. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metaloxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Le, T.A.; Lee, H. Understanding surface modulation to improve the photo/electrocatalysts for water oxidation/reduction. Molecules 2020, 25, 1965. [Google Scholar] [CrossRef] [PubMed]
- Tuama, A.N.; Alzubaidi, L.H.; Jameel, M.H.; Abass, K.H.; binMayzan, M.Z.H.; Salman, Z.N. Impact of electron–hole recombination mechanism on the photocatalytic performance of ZnO in water treatment: A review. J. Sol-Gel Sci. Technol. 2024, 110, 792–806. [Google Scholar] [CrossRef]
- Saxena, S.; Dixit, F.; Dalapathi, G.K.; Krishnamurthy, S.; Kandasubramanian, B. Bioengineered solar harvesting systems for next generation applications. Sol. Energy 2022, 231, 857–879. [Google Scholar] [CrossRef]
- Guan, S.; Cheng, Y.; Hao, L.; Yoshida, H.; Tarashima, C.; Zhan, T.; Itoi, T.; Qiu, T.; Lu, Y. Oxygen vacancies induced bandgap narrowing for efficient visible-light response in carbon-dopedTiO2. Sci. Rep. 2023, 13, 14105. [Google Scholar] [CrossRef]
- Khatun, M.; Mitra, P.; Mukherjee, S. Effect of band gap and particle size on photocatalytic degradation of NiSnO3 nanopowder for some conventional organic dyes. Hybrid Adv. 2023, 4, 100079. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, D.; Bastia, S.; Chaudhary, Y.S. Band-structure tunability via the modulation of excitons in semiconductor nanostructures: Manifestation in photocatalytic fuel generation. Nanoscale 2023, 15, 10939–10974. [Google Scholar] [CrossRef]
- Boudaya, R.; Hajji, M.; Fehri, H.E.; Aloui, M.A.; Kouki, F.; Lang, P. Formamidinium’s (FAI) Impact on α-CsPbI3 Perovskite Stability in Ambient Air: A Path for Highly Efficient Perovskite–Perovskite Tandem Solar Cells. Sol. RRL 2025, 9, 202500186. [Google Scholar] [CrossRef]
- Hajji, M.; Ajili, M.; Jebbari, N.; Dabbabi, S.; Garcia-Loureiro, A.; Kamoun, N.T. First investigation into the physical characteristics of GO-Doped CuO-ZnO thin films as a secondary absorption layer in CIGS solar cells. Mater. Lett. 2024, 357, 135806. [Google Scholar] [CrossRef]
- Naseem, K.; Abrar, E.; Khalid, A.; Ismail, M.A. Inorganic nanoparticles as a potential catalyst for the reduction of rhodamine B dye: A critical review. Inorg. Chem. Commun. 2024, 163, 112367. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Azhar, Q.M.; Kumar, P.S.; Yusuf, A.A.; Al-Buriahi, A.K.; Mohamed, R.M.S.R.; Al-Shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.D.; Nguyen, D.Q.; Do, P.T.; Tran, U.N. Kinetics of photocatalytic degradation of organic compounds: A mini-review and new approach. RSC Adv. 2023, 13, 16915–16925. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, X.; Zhu, R.; Dong, X.; Xu, J.; Wang, B. Facile synthesis of visible light-induced g-C3N4/rectorite composite for efficient photodegradation of ciprofloxacin. Materials 2018, 11, 2452. [Google Scholar] [CrossRef]
- Song, Y.; Tian, J.; Gao, S.; Shao, P.; Qi, J.; Cui, F. Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways. Appl. Catal. B Environ. 2017, 210, 88–96. [Google Scholar] [CrossRef]
- Suyana, P.; Ganguly, P.; Nair, B.N.; Pillai, S.C.; Hareesh, U.S. Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation. Chem. Eng. J. Adv. 2021, 8, 100148. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Huang, C.P.; Doong, R.-A.; Chen, C.W.; Dong, C. Di Visible light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water. Chem. Eng. J. 2020, 384, 123383. [Google Scholar] [CrossRef]
- Li, G.; Nie, X.; Gao, Y.; An, T. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?—Implications of persistent toxic intermediates. Appl. Catal. B Environ. 2016, 180, 726–732. [Google Scholar] [CrossRef]
- Mohamed, R.M. Synthesis and characterization of AgCl@graphitic carbon nitride hybrid materials for the photocatalytic degradation of atrazine. Ceram. Int. 2015, 41, 1197–1204. [Google Scholar] [CrossRef]
- Geng, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2021, 280, 119409. [Google Scholar] [CrossRef]
- Alduhaish, O.; Ubaidullah, M.; Al-Enizi, A.M.; Alhokbany, N.; Alshehri, S.M.; Ahmed, J. Facile Synthesis of Mesoporous α-Fe2O3@g-C3N4-NCs for Efficient Bifunctional Electro-catalytic Activity (OER/ORR). Sci. Rep. 2019, 9, 14139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fan, Y.; Wu, R.; Huo, Y.; Wu, H.; Wang, F.; Xu, X. Novel magnetic g-C3N4/α-Fe2O3/Fe3O4 composite for the very effective visible-light-fenton degradation of Orange II. RSC Adv. 2018, 8, 5180–5188. [Google Scholar] [CrossRef] [PubMed]
- Vesborg, P.C.K.; Jaramillo, T.F. Addressing the tera watt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947. [Google Scholar] [CrossRef]
- ausder Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef]
- Edla, R.; Tonezzer, A.; Orlandi, M.; Patel, N.; Fernandes, R.; Bazzanella, N.; Date, K.; Kothari, D.C.; Miotello, A. 3 D hierarchical nanostructures of iron oxides coatings prepared by pulsed laser deposition for photocatalytic water purification. Appl. Catal. B Environ. 2017, 219, 401–411. [Google Scholar] [CrossRef]
- Orlandi, M.; Patel, N.; Edla, R.; Bazzanella, N.; Gupta, S.; Yadav, M.; Pillai, S.; Patel, M.K.; Miotello, A. Pulsed laser deposition of CoFe2O4/CoO hierarchical-type nanostructured heterojunction forming a Z-scheme for efficient spatial separation of photo induced electron-hole pairs and highly active surface area. Appl. Surf. Sci. 2019, 489, 584–594. [Google Scholar]
- Chieregato, F.; Molinari, A.; Milani, M.; Fendrich, M.; Orlandi, M.; Miotello, A. Colloids and Surfaces A: Physicochemical and Engineering Aspects an immobilized iron-oxides catalytic platform for photocatalysis and photosynthesis: Visible light induced hydroxylation reactions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129428. [Google Scholar] [CrossRef]
- Orlandi, M.; Filosa, N.; Bettonte, M.; Fendrich, M.; Girardini, M.; Battistini, T.; Miotello, A. Treatment of surfactant-rich industrial waste waters with concentrated sunlight: Toward solar wastewater remediation. Int. J. Environ. Sci. Technol. 2019, 16, 2109–2114. [Google Scholar] [CrossRef]
- Phillips, G.; Johnson, B.E.; Ferguson, J. The loss of antibiotic activity of ciprofloxacin by photodegradation. J. Antimicrob. Chemother. 1990, 26, 783–789. [Google Scholar] [CrossRef]
- Karim, A.V.; Shriwastav, A. Degradation of ciprofloxacin using photo, sono, and sono-photocatalytic oxidation with visible light and low-frequency ultrasound: Degradation kinetics and pathways. Chem. Eng. J. 2020, 392, 124853. [Google Scholar] [CrossRef]
- Rashid, J.; Abbas, A.; Chang, L.C.; Iqbal, A.; Haq, I.U.; Rehman, A.; Awan, S.U.; Arshad, M.; Rafique, M.; Barakat, M.A. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Sci. Total Environ. 2019, 665, 668–677. [Google Scholar] [CrossRef]
- Wagner, D.R.; Ament, K.; Mayr, L.; Martin, T.; Bloesser, A.; Schmalz, H.; Marschall, R.; Wagner, F.E.; Breu, J. Terrestrial solar radiation driven photodecomposition of ciprofloxacin in clinical wastewater applying mesostructured iron(III) oxide. Environ. Sci. Pollut. Res. 2021, 28, 6222–6231. [Google Scholar] [CrossRef]
- Rajiv, P.; Mengelizadeh, N.; McKay, G.; Balarak, D. Photocatalytic degradation of ciprofloxacin withFe2O3 nanoparticles loaded on graphitic carbon nitride: Mineralization, degradation mechanism and toxicity assessment. Int. J. Environ. Anal. Chem. 2023, 103, 2193–2207. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Lei, W.; Zhu, B.; Yang, J. Novel carbon quantum dot modified g-C3N4 nanotubes on carbon cloth for efficient degradation of ciprofloxacin. Appl. Surf. Sci. 2021, 559, 149967. [Google Scholar] [CrossRef]
- Bonelli, M.; Cestari, C.; Miotello, A. Pulsed laser deposition apparatus for applied research. Meas. Sci. Technol. 1999, 10, 27–30. [Google Scholar] [CrossRef]
- Svoboda, L.; Praus, P.; Lima, M.J.; Sampaio, M.J.; Matýsek, D.; Ritz, M.; Dvorský, R.; Faria, J.L.; Silva, C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018, 100, 322–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Q.; Chai, G.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Synthesis and luminescence mechanism of multicolor-emittingg-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943. [Google Scholar]
- Vadivel, S.; Maruthamani, D.; Paul, B.; Dhar, S.S.; Habibi-Yangjeh, A.; Balachandran, S.; Saravanakumar, B.; Selvakumar, A.; Selvam, K. Biomolecule-assisted solvothermal synthesis of Cu2SnS3 flowers/RGO nanocomposites and their visible-light-driven photocatalytic activities. RSC Adv. 2016, 6, 74177–74185. [Google Scholar] [CrossRef]
- da Silveira Salla, J.; da Boit Martinello, K.; Dotto, G.L.; García-Díaz, E.; Javed, H.; Alvarez, P.J.; Foletto, E.L. Synthesis of citrate–modified CuFeS2 catalyst with significant effect on the photo–Fenton degradation efficiency of bisphenol A under visible light and near–neutral pH. Colloids Surf. A Physicochem. Eng. Asp. 2020, 595, 124679. [Google Scholar] [CrossRef]
- Mukurala, N.; Mishra, R.K.; Jin, S.H.; Kushwaha, A.K. Sulphur precursor dependent crystallinity and optical properties of solution grown Cu2FeSnS4 particles. Mater. Res. Express 2019, 6, 085099. [Google Scholar] [CrossRef]
- Manjula, S.; Sarathkumar, A.; Sivakumar, G. Hydrothermally synthesized Cu2ZnSnS4 nanoparticles for photocatalytic degradation of Rhodamine B dye. J. Nano Res. 2023, 79, 25–36. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, S.; Wang, Y.; Wang, P.; Yu, H.; Yu, J.; Hu, C. Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. J. Colloid Interface Sci. 2014, 422, 30–37. [Google Scholar] [CrossRef]
Samples | 2 θ (°) | D (nm) | δ × 1014 (lines/m2) | ε (10−3) |
---|---|---|---|---|
CMTS undoped | 29.1 | 25 | 8.3 | 10.2 |
CMTS–K2.5% | 29.1 | 28 | 4.2 | 5.8 |
CMTS–K5% | 29.2 | 32 | 0.6 | 3.2 |
CMTS–K7.5% | 29.2 | 41 | 0.4 | 2.9 |
CMTS–K10% | 29.3 | 35 | 1.8 | 3.9 |
Sample | Eg (eV) |
---|---|
CMTS undoped | 2.40 |
CMTS–K 2.5 at.% | 2.20 |
CMTS–K 5 at.% | 1.61 |
CMTS–K 7.5 at.% | 1.45 |
CMTS–K 10 at.% | 1.69 |
No. | Catalyst Type | Material | Pollutant | Light Source | Time (min) | Efficiency (%) | References |
---|---|---|---|---|---|---|---|
1 | Ternary | Citrate-CuFeS2 | Bisphenol A | 6 × 4 W Fluorescent | 60 | 97.4 | [53] |
2 | Ternary | Cu2SnS3/rGO | Rhodamine B | Xe lamp (300 W) | 240 | 96.3 | [54] |
3 | Quaternary | Cu2FeSnS4 | Methylene blue | Sun & Xe lamp | — | 81 | [55] |
4 | Quaternary | Cu2ZnSnSe4 | Rhodamine B | Xe lamp (300 W) | 120 | 90 | [56] |
5 | Heterostructure | Ag2S/AgInS2 | Methyl orange | Visible light | — | 80 | [57] |
6 | This work | 7.5% K-doped CMTS | Methylene blue | Visible light | 120 | 98 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouali, A.; Kamoun, O.; Hajji, M.; Popescu, I.N.; Vidu, R.; Turki Kamoun, N. Improving CMTS Physical Properties Through Potassium Doping for Enhanced Rhodamine B Degradation. Technologies 2025, 13, 301. https://doi.org/10.3390/technologies13070301
Bouali A, Kamoun O, Hajji M, Popescu IN, Vidu R, Turki Kamoun N. Improving CMTS Physical Properties Through Potassium Doping for Enhanced Rhodamine B Degradation. Technologies. 2025; 13(7):301. https://doi.org/10.3390/technologies13070301
Chicago/Turabian StyleBouali, Amira, Olfa Kamoun, Moez Hajji, Ileana Nicoleta Popescu, Ruxandra Vidu, and Najoua Turki Kamoun. 2025. "Improving CMTS Physical Properties Through Potassium Doping for Enhanced Rhodamine B Degradation" Technologies 13, no. 7: 301. https://doi.org/10.3390/technologies13070301
APA StyleBouali, A., Kamoun, O., Hajji, M., Popescu, I. N., Vidu, R., & Turki Kamoun, N. (2025). Improving CMTS Physical Properties Through Potassium Doping for Enhanced Rhodamine B Degradation. Technologies, 13(7), 301. https://doi.org/10.3390/technologies13070301