Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,258)

Search Parameters:
Keywords = electronic materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2315 KB  
Review
Progress in NiO Based Materials for Electrochemical Sensing Applications
by Praveen Kumar, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(10), 678; https://doi.org/10.3390/bios15100678 (registering DOI) - 9 Oct 2025
Abstract
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental [...] Read more.
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental pollutants, and biomolecules. Advances in nanotechnology have enabled the development of NiO-based nanostructures such as nanoparticles, nanowires, and nanoflakes, which offer enhanced surface area and improved electron transfer. Integration with conductive materials like graphene, carbon nanotubes, and metal–organic frameworks (MOFs) further enhance sensor performance through synergistic effects. Innovations in synthesis techniques, including hydrothermal, sol–gel, and green approaches, have expanded the applicability of NiO in next-generation sensing platforms. This review summarizes recent progress in the structural engineering, composite formation, and electrochemical mechanisms of NiO-based materials for advanced electrochemical sensing applications. Full article
Show Figures

Figure 1

29 pages, 2358 KB  
Review
Research Progress on the Preparation and Properties of Graphene–Copper Composites
by Wenjie Liu, Xingyu Zhao, Hongliang Li and Yi Ding
Metals 2025, 15(10), 1117; https://doi.org/10.3390/met15101117 (registering DOI) - 8 Oct 2025
Abstract
The persistent conflict between strength and electrical conductivity in copper-based materials presents a fundamental limitation for next-generation high-performance applications. Graphene, with its unique two-dimensional architecture and exceptional intrinsic characteristics, has become a promising reinforcement phase for copper matrices. This comprehensive review synthesizes recent [...] Read more.
The persistent conflict between strength and electrical conductivity in copper-based materials presents a fundamental limitation for next-generation high-performance applications. Graphene, with its unique two-dimensional architecture and exceptional intrinsic characteristics, has become a promising reinforcement phase for copper matrices. This comprehensive review synthesizes recent advancements in graphene–copper composites (CGCs), focusing particularly on structural design innovations and scalable manufacturing approaches such as powder metallurgy, molecular-level mixing, electrochemical deposition, and chemical vapor deposition. The analysis examines pathways for optimizing key properties—including mechanical strength, thermal conduction, and electrical performance—while investigating the fundamental reinforcement mechanisms and charge/heat transport phenomena. Special consideration is given to how graphene morphology, concentration, structural quality, interfacial chemistry, and processing conditions collectively determine composite behavior. Significant emphasis is placed on interface engineering strategies, graphene alignment, consolidation control, and defect management to minimize electron and phonon scattering while improving stress transfer efficiency. The review concludes by proposing research directions to resolve the strength–conductivity paradox and broaden practical implementation domains, thereby offering both methodological frameworks and theoretical foundations to support the industrial adoption of high-performance CGCs. Full article
(This article belongs to the Special Issue Study on the Preparation and Properties of Metal Functional Materials)
Show Figures

Figure 1

17 pages, 2611 KB  
Article
The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials
by Julia Płatkiewicz, Robert Frankowski, Tomasz Grześkowiak, Włodzimierz Urbaniak and Agnieszka Zgoła-Grześkowiak
Processes 2025, 13(10), 3197; https://doi.org/10.3390/pr13103197 (registering DOI) - 8 Oct 2025
Abstract
The objective of this study was to investigate the adsorption of 11 azoles (tebuconazole, ketoconazole, econazole, miconazole, fluconazole, clotrimazole, climbazole, flutriafol, epoxiconazole, tiabendazole, and imazalil) on natural and waste-derived sorbents such as ceramsite, perlite, pumice, sawdust, coconut fibers, heavy oil fly ash (HOFA), [...] Read more.
The objective of this study was to investigate the adsorption of 11 azoles (tebuconazole, ketoconazole, econazole, miconazole, fluconazole, clotrimazole, climbazole, flutriafol, epoxiconazole, tiabendazole, and imazalil) on natural and waste-derived sorbents such as ceramsite, perlite, pumice, sawdust, coconut fibers, heavy oil fly ash (HOFA), activated carbon, and silica gel. The results of adsorption efficiency for most sorbents varied depending on the azole compounds and their concentration. The highest adsorption for all tested compounds was obtained for activated carbon and heavy oil fly ash, reaching about 100% in both tested concentrations (0.2 mg L−1 and 0.02 mg L−1). The HOFA material was characterized in terms of elemental analysis (CHNS), confirming the elemental contents of 52% C, 0.65% H, 0.4% N, and 2.3% S. The specific surface area of HOFA was 11.2 m2 g−1, and scanning electron microscopy (SEM) results showed the spherical yet porous nature of the particles. Furthermore, the calculated adsorption isotherms demonstrated that for most tested azoles, the Dubinin–Radushkevich (D-R) isotherm best fits the data, with R2 = 0.93 or more, which is characteristic of porous carbon materials. The results highlight the significant potential of the tested HOFA sorbent for effectively removing azoles, as the tests performed showed that it was possible to remove these compounds with a concentration of up to 0.2 mg L−1 within an hour. This is particularly important because HOFA is an easily accessible waste material. Furthermore, the adsorption of azoles will not increase the cost of HOFA disposal when using the standard procedures currently applied to this waste. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

18 pages, 2806 KB  
Article
Polylactide (PLA) Composites Reinforced with Natural Fibrous Filler Recovered from the Biomass of Sorghum Leaves or Stems
by Ryszard Gąsiorowski, Danuta Matykiewicz and Dominika Janiszewska-Latterini
Materials 2025, 18(19), 4634; https://doi.org/10.3390/ma18194634 - 8 Oct 2025
Abstract
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim [...] Read more.
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim was to assess the effect of filler type and content (5, 10, and 15 wt.%) on the physicochemical properties of the composites. Sorghum was manually harvested in Greater Poland, separated, dried, milled, and fractionated to particles <0.25 mm. Composites were produced via extrusion and injection molding, followed by characterization using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile and impact testing, density measurements, optical microscopy, and scanning electron microscopy (SEM). Results showed that stem-based fillers provided a better balance between stiffness and ductility, along with improved dispersion and interfacial adhesion. In contrast, leaf-based fillers led to higher stiffness but greater brittleness and agglomeration. All composites exhibited decreased impact strength and thermal stability compared to neat PLA, with the extent of these decreases depending on the filler type and loading. The study highlights the potential of sorghum stems as a viable, renewable reinforcement in biopolymer composites, aligning with circular economy and bioeconomy strategies. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

19 pages, 6635 KB  
Article
Improving Poly(3-Hydroxybutyrate) Properties Using Nanocellulose in Biomedical Applications: Thermal, Mechanical and Biological Studies
by Karolina Maternia-Dudzik, Łukasz Ożóg, Zuzanna Bober, Rafał Oliwa, Mariusz Oleksy, Angelika Kamizela, Agnieszka Szyszkowska, Katarzyna Rafińska, Weronika Gonciarz, Kamil Gancarczyk and Anna Czerniecka-Kubicka
Int. J. Mol. Sci. 2025, 26(19), 9795; https://doi.org/10.3390/ijms26199795 - 8 Oct 2025
Abstract
Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including Ralstonia eutropha H16. P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal [...] Read more.
Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including Ralstonia eutropha H16. P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal properties, as determined by differential scanning calorimetry measurements, were established. The crystallinity of nanocomposites and polymeric matrix was investigated using DSC analyses. The morphology of the nanocomposites was evaluated using scanning electron microscopy. The Food and Drug Administration and the European Medicines Agency confirmed the immunosafety of the tested nanocomposites and noted they had either no or very low levels of endotoxin contamination. Some mechanical properties of the investigated materials were also measured and are presented here. It was estimated that the addition of 1% by mass of nanocrystalline cellulose to P3HB causes the greatest improvement in the plasticization of the material, characterised by the best processing and utility properties. The processing window of nanobiocomposites was extended by approximately 25 °C in reference to the unfilled poly(3-hydroxybutyrate). Mechanical and thermal tests revealed that the most desirable properties oscillate around the addition of 0.5% and 1% nanocrystalline cellulose by mass in the nanobiocomposites. Biological studies on implant applications have shown that the addition of only 0.5% nanofiller to a nanobiocomposite can be of key importance. Full article
Show Figures

Figure 1

22 pages, 3922 KB  
Article
Silicon Oxycarbide Coatings Produced by Remote Hydrogen Plasma CVD Process from Cyclic Tetramethylcyclotetrasiloxane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznański
Coatings 2025, 15(10), 1179; https://doi.org/10.3390/coatings15101179 - 8 Oct 2025
Abstract
The development of high-speed computers and electronic memories, high-frequency communication networks, electroluminescent and photovoltaic devices, flexible displays, and more requires new materials with unique properties, such as a low dielectric constant, an adjustable refractive index, high hardness, thermal resistance, and processability. SiOC coatings [...] Read more.
The development of high-speed computers and electronic memories, high-frequency communication networks, electroluminescent and photovoltaic devices, flexible displays, and more requires new materials with unique properties, such as a low dielectric constant, an adjustable refractive index, high hardness, thermal resistance, and processability. SiOC coatings possess a number of desirable properties required by modern technologies, including good heat and UV resistance, transparency, high electrical insulation, flexibility, and solubility in commonly used organic solvents. Chemical vapor deposition (CVD) is a very useful and convenient method to produce this type of layer. In this article we present the results of studies on SiOC coatings obtained from tetramethylcyclotetrasiloxane in a remote hydrogen plasma CVD process. The elemental composition (XPS, EDS) and chemical structure (FTIR and NMR spectroscopy-13C, 29Si) of the obtained coatings were investigated. Photoluminescence analyses and ellipsometric and thermogravimetric measurements were also performed. The surface morphology was characterized using AFM and SEM. The obtained results allowed us to propose a mechanism for the initiation and growth of the SiOC layer. Full article
Show Figures

Figure 1

26 pages, 21665 KB  
Article
Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications
by Syed Hammad Mian, Abdulrahman bin Jumah, Mustafa Saleh and Jabair Ali Mohammed
Polymers 2025, 17(19), 2707; https://doi.org/10.3390/polym17192707 - 8 Oct 2025
Abstract
Biocomposites incorporating bio-based polymers and natural fibers hold great promise due to their environmental and economic benefits, though their commercial use is still limited by production challenges. This study reports the development of polylactic acid (PLA) composite filament reinforced with 5 wt% date [...] Read more.
Biocomposites incorporating bio-based polymers and natural fibers hold great promise due to their environmental and economic benefits, though their commercial use is still limited by production challenges. This study reports the development of polylactic acid (PLA) composite filament reinforced with 5 wt% date palm fibers for fused deposition modeling (FDM)-based 3D Printing. The biocomposite is fabricated through extrusion and 3D Printing, and its mechanical, thermal, and water absorption properties are characterized in this work. Fiber dispersion is examined using a scanning electron microscope (SEM), while tensile testing evaluates yield strength, tensile strength, and elongation at break. Fracture behavior and failure mechanisms are further analyzed through optical microscopy and SEM. The biocomposite shows higher yield strength (36.75 MPa) and tensile strength (53.69 MPa), representing improvements of 10.12% and 6.53%, respectively, compared to in-house extruded pure PLA. However, it exhibits lower ductility, as indicated by reduced elongation at break. Water absorption is also higher in the biocomposite (0.58%) than in pure PLA (0.10%). Both materials display similar thermal behavior and brittle fracture characteristics. These results highlight the reinforcing effect of date palm fibers and the role of processing on the behavior/performance of the biocomposite. Reinforcing PLA with a small fraction of date palm fibers, an abundant natural resource, offers a cost-effective and eco-friendly material, particularly suited for single-use plastic products where biodegradability and sustainability are essential. This study also confirms the suitability of PLA/date palm fiber filament for FDM-based 3D Printing. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Development and Characterization of Sustainable Antimicrobial Food Packaging Films with Incorporated Silver Nanoparticles Synthesized from Olive Oil Mill By-Products
by Christina M. Gkaliouri, Nikolas Rigopoulos, Zacharias Ioannou, Efstathios Giaouris, Konstantinos P. Giannakopoulos and Kosmas Ellinas
Sustainability 2025, 17(19), 8916; https://doi.org/10.3390/su17198916 - 8 Oct 2025
Abstract
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation [...] Read more.
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation of this work is the synthesis of novel agar–starch–silver nanoparticle coatings, where the contained nanoparticles were produced via green methods using two agro-industrial by-products of Greek olive oil production—olive stone extract and olive mill wastewater—as reducing agents. The morphology of the novel coatings was confirmed using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, revealing nanoscale particles with variable sizes. Additional film characterization was performed through Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy, and surface profilometry. Infrared spectroscopy analysis suggested the presence of functional groups responsible for nanoparticle stabilization, while energy-dispersive X-ray spectroscopy revealed silver aggregation in both olive stone extract and olive mill wastewater-derived films. Profilometry showed that films with olive mill wastewater-based nanoparticles had a rougher surface than those synthesized from olive stone extract. Antibacterial efficacy was tested against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) using a spot-on-film assay with high (106 CFU/film) and low (103 CFU/film) bacterial loads. After 72 h of incubation at 4 °C, both film types showed strong antibacterial activity at high bacterial concentrations, demonstrating their potential for active food packaging. These findings highlight a promising approach to sustainable food packaging within the circular economy, utilizing agricultural waste to create biodegradable materials with effective antimicrobial functionality. Full article
Show Figures

Figure 1

33 pages, 781 KB  
Review
Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review
by Gisele Afonso Bento Mello, Stephen Rathinaraj Benjamin, Fábio de Lima and Rosa F. Dutra
Biosensors 2025, 15(10), 676; https://doi.org/10.3390/bios15100676 - 8 Oct 2025
Abstract
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, [...] Read more.
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, and signal amplification approaches for quantifying nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotic classes, including sulfonamides, tetracyclines, macrolides, and quinolones. Particular attention is given to nanostructured carbon-based materials, metal nanoparticles, and polymer composites that enhance electron transfer, improve selectivity, and lower limits of detection (LODs). The analytical performance of different electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry is critically compared across various drug targets. Trends indicate that hybrid nanomaterial-modified electrodes consistently achieve sub-micromolar detection limits in biological and environmental samples, offering potential for point-of-care diagnostics and environmental monitoring. Current challenges include improving sensor stability, mitigating fouling effects, and ensuring reproducibility in complex matrices. Future research should focus on integrated, miniaturized sensing platforms capable of multiplex detection, paving the way for rapid, portable, and sustainable analytical solutions in pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

29 pages, 2258 KB  
Review
Powder Bed Fabrication of Copper: A Comprehensive Literature Review
by Vi Ho, Leila Ladani, Jafar Razmi, Samira Gruber, Anthony Bruce Murphy, Cherry Chen, Daniel East and Elena Lopez
Metals 2025, 15(10), 1114; https://doi.org/10.3390/met15101114 - 8 Oct 2025
Abstract
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper [...] Read more.
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper limits energy absorption, thereby resulting in a narrow processing window. Although optimized parameters can yield relative densities above 97%, issues such as keyhole porosity, incomplete melting, and anisotropy remain concerns. Green lasers, with higher absorptivity in copper, offer broader process windows and enable more consistent fabrication of high-density parts with superior electrical conductivity, often reaching or exceeding 99% relative density and 100% International Annealed Copper Standard (IACS). Mechanical properties, including tensile and yield strength, are also improved, though challenges remain in surface finish and geometrical resolution. In contrast, Electron Beam Powder Bed Fusion (EB-PBF) uses high-energy electron beams in a vacuum, eliminating oxidation and leveraging copper’s high conductivity to achieve high energy absorption at lower volumetric energy densities (~80 J/mm3). This results in consistently high relative densities (>99.5%) and excellent electrical and thermal conductivity, with additional benefits including faster scanning speeds and in situ monitoring capabilities. However, EB-PBF faces its own limitations, such as surface roughness and powder smoking. This paper provides a comprehensive review of the current state of laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) powder bed fusion processes for the additive manufacturing of copper, summarizing key trends, material properties, and process innovations. Both approaches continue to evolve, with ongoing research aimed at refining these technologies to enable the reliable and efficient additive manufacturing of high-performance copper components. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

18 pages, 3996 KB  
Article
Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications
by Danilo Ramos, María Jesús Aguirre and Francisco Armijo
Polymers 2025, 17(19), 2702; https://doi.org/10.3390/polym17192702 - 8 Oct 2025
Abstract
Poly(5-indolylboronic acid) was synthesized electrochemically via cyclic voltammetry using various electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, highly oriented pyrolytic graphite, and 304 stainless steel. This study provides a thorough analysis of the resulting conducting polymer’s electrochemical behavior, morphological and structural characteristics, [...] Read more.
Poly(5-indolylboronic acid) was synthesized electrochemically via cyclic voltammetry using various electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, highly oriented pyrolytic graphite, and 304 stainless steel. This study provides a thorough analysis of the resulting conducting polymer’s electrochemical behavior, morphological and structural characteristics, and potential applications. The following techniques were employed: cyclic voltammetry, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and field-emission scanning electron microscopy. The polymer exhibits pH-dependent redox activity within the pH range of 4–10, displaying Nernstian behavior and achieving a specific areal capacitance of 0.234 mF∙cm−2 on an SPCE electrode. This result highlights the electrode’s efficiency in terms of charge storage. Impedance data indicate that the modified electrodes demonstrate a substantial decrease in charge transfer resistance and improved interfacial conductivity compared to bare electrodes. Contact angle measurements show that the presence of boronic acid groups makes the polymer hydrophilic. However, when 5PIBA was incubated in the presence of molecules containing hydroxyl groups or certain proteins, such as casein, no adsorption was observed. This suggests limited interaction with functional groups such as amino, hydroxide, and carboxyl groups present in these molecules, indicating the potential application of the polymer in biocorrosion. 5PIBA forms homogeneous, stable, and electroactive coatings on various substrates, making it a promising and versatile material for electrochemical technologies, and paving the way for future functionalization strategies. Full article
(This article belongs to the Special Issue Advanced Electrically Conductive Polymers and Composites)
Show Figures

Figure 1

14 pages, 2088 KB  
Article
Analysis of Stator Material Influence on BLDC Motor Performance
by Daniel Ziemiański, Gabriela Chwalik-Pilszyk and Grzegorz Dudzik
Materials 2025, 18(19), 4630; https://doi.org/10.3390/ma18194630 - 7 Oct 2025
Abstract
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials [...] Read more.
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials such as M19 electrical steel, 1010 low-carbon steel, magnetic PLA, and ABS, and analyzes their impact using FEMM 4.2 finite element simulations. Key electromagnetic characteristics—including flux linkage, Back-EMF, torque, and torque ripple—were compared across configurations. The reference motor with M19 steel stator and 1010 steel rotor achieved ~7 mWb flux linkage, ~39 V pk–pk Back-EMF, and 1.44 Nm torque with ~49% ripple, confirming the suitability of laminated steels for high-power-density designs. Substituting M19 with 1010 steel in the stator reduced torque by less than 10%, indicating material interchangeability with minimal performance loss. By contrast, polymer-based designs exhibited drastic degradation: magnetic PLA yielded only 3.5% of the baseline torque with sixfold ripple increase, while ABS delivered nearly zero torque and >700% ripple. Hybrid configurations improved PLA-based results by 15–20%, though they remained far below ferromagnetic cores. Overall, results demonstrate a nearly linear relationship between material permeability and both flux linkage and Back-EMF, alongside a sharp rise in torque ripple at low permeability. The findings highlight the advantages of ferromagnetic and laminated steel cores for efficiency and stability, while polymer and hybrid cores are limited to lightweight demonstrator applications. Full article
17 pages, 11740 KB  
Article
Structural Characterization of Ordered Mesoporous Silica Prepared by a Sol–Gel Process Using Urea-Based Cationic Gemini Surfactants
by Sarvarjon Kurbonov, Zsolt Czigány, Zoltán Kovács, László Péter, Martin Pisárčik, Miloš Lukáč, Manfred Kriechbaum, Vasyl Ryukhtin, Ana-Maria Lacrămă and László Almásy
Gels 2025, 11(10), 804; https://doi.org/10.3390/gels11100804 - 7 Oct 2025
Abstract
Mesoporous silica nanoparticles have been synthesized through sol–gel synthesis in basic conditions. Gemini surfactants having urea in the headgroups were used as pore-forming agents. The effect of the spacer length of the surfactant on the particle morphology was studied on the sub-micrometer and [...] Read more.
Mesoporous silica nanoparticles have been synthesized through sol–gel synthesis in basic conditions. Gemini surfactants having urea in the headgroups were used as pore-forming agents. The effect of the spacer length of the surfactant on the particle morphology was studied on the sub-micrometer and nanometer scales using nitrogen porosimetry, small-angle X-ray scattering (SAXS), ultra-small-angle neutron scattering, and scanning and transmission electron microscopy (SEM, TEM). Depending on the spacer, spherical and/or cylindrical nanoparticles formed in different proportions, as revealed by statistical analysis of SEM micrographs. All prepared materials showed the hexagonal pore structure characteristic of the MCM-41 molecular sieves, with the exception of the sample prepared using the gemini surfactant with the shortest spacer length. The influence of the spacer length on the lattice parameter of the pore network, as well as the average size of the ordered domains, has been assessed by SAXS and TEM. Detailed analysis of the TEM images revealed a spread of the lattice parameter in a range of 10–20%. The broadening of the diffraction peaks was shown to be due to the combination of the effects of the finite domain size and the variance of the lattice parameter across the crystalline domains. The structural differences between the silica gels synthesized with the different surfactants were related to the variation of the micelle morphologies, reported in previous light scattering and small-angle scattering experiments. No connection could be revealed between the micelle shape and size and the pore sizes, showing that surfactants with a broad range of spacer lengths can equally well be used for the preparation of MCM-41 materials. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

29 pages, 1231 KB  
Review
X-Ray Absorption and Emission Spectroscopy in Pharmaceutical Applications: From Local Atomic Structure Elucidation to Protein-Metal Complex Analysis—A Review
by Klaudia Wojtaszek, Krzysztof Tyrała and Ewelina Błońska-Sikora
Appl. Sci. 2025, 15(19), 10784; https://doi.org/10.3390/app151910784 - 7 Oct 2025
Abstract
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, [...] Read more.
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, redox processes, and metal speciation. A key advantage of both techniques is element selectivity, allowing the analysis of specific elements without matrix interference. Their high sensitivity to chemical state and coordination enables determination of oxidation states, electronic configuration, and local geometry. These methods are applicable to solids, liquids, and gases without special sample preparation. Modern XAS and XES studies are typically performed using synchrotron radiation, which provides an intense, monochromatic X-ray source and allows advanced in situ and operando experiments. Sub-techniques such as XANES (X-ray absorption near-edge structure), EXAFS (Extended X-ray Absorption Fine Structure), and RIXS (resonant inelastic X-ray scattering) offer enhanced insights into oxidation states, local structure, and electronic excitations. Despite their broad scientific use, applications in pharmaceutical research remain limited. Nevertheless, recent studies highlight their potential in analyzing crystalline active pharmaceutical ingredients (APIs), drug–biomolecule interactions, and differences in drug activity. This review introduces the fundamental aspects of XAS and XES, with an emphasis on practical considerations for pharmaceutical applications, including experimental design and basic spectral interpretation. Full article
(This article belongs to the Special Issue Contemporary Pharmacy: Advances and Challenges)
18 pages, 3170 KB  
Article
Synthesis and Characterisation of Metal–Glass Composite Materials Fabricated by Liquid Phase Sintering
by Vladimir Pavkov, Gordana Bakić, Vesna Maksimović and Srećko Stopić
Materials 2025, 18(19), 4622; https://doi.org/10.3390/ma18194622 - 7 Oct 2025
Abstract
In recent years, there has been a global increase in environmental awareness, which has driven the application of natural materials or the synthesis of novel, environmentally compatible materials. Composite materials hold a prominent position among modern materials and are typically developed to achieve [...] Read more.
In recent years, there has been a global increase in environmental awareness, which has driven the application of natural materials or the synthesis of novel, environmentally compatible materials. Composite materials hold a prominent position among modern materials and are typically developed to achieve resistance to various damage mechanisms, thereby extending the service life of structures. This study presents the synthesis and characterisation of high-density metal–glass composite materials. The commercially available 316L stainless steel powder was used as the matrix material, while andesite basalt powder was used as the reinforcement phase. Andesite basalt aggregate, ground into powder, is a cost-effective, widely available, and environmentally friendly natural raw material. Powder metallurgy was employed to produce the composite materials. Sintering was performed at 1250 °C for 30 min in a vacuum. The density of the sintered composite samples was analysed as a function of andesite basalt content, with sintering conducted in the presence of a liquid phase. Composite materials were characterised using optical and scanning electron microscopy, X-ray structural analysis, and hardness testing. This study confirmed that the optimal combination of properties was achieved in the composite with 20 wt.% andesite basalt, present as a glass phase within the 316L steel matrix. Full article
(This article belongs to the Special Issue Synthesis, Sintering, and Characterization of Composites)
Show Figures

Figure 1

Back to TopTop