The Impact of Interest Rate Spillover on Output Gap: A Dynamic Spatial Durbin Model
Abstract
:1. Introduction
2. Literature Review
2.1. The Impact of Interest Rate Spillover on the Output Gap
2.2. The Impact of Exchange Rate on the Output Gap
2.3. The Impact of the COVID-19 Pandemic on the Output Gap
3. Methodology
3.1. Data
3.2. Dynamic Spatial Panel Model Specifications
3.3. Dynamic Spatial Durbin Model (DSDM)
3.4. Robustness Checks
4. Empirical Results and Discussion
4.1. Descriptive Statistics
4.2. Panel Unit Root Test
4.3. Output Gap and Central Bank Interest Rate in the US and ASEAN+3
4.4. DSDM Estimation Result
4.5. Robustness Test Results
5. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abiad, Abdul, and Mody Shoka. 2004. Financial Reform: What Shakes It? What Shapes It? The American Economic Review 95: 66–88. Available online: https://www.aeaweb.org/articles?id=10.1257/0002828053828699 (accessed on 6 March 2023). [CrossRef]
- Aibai, Abuduwali, Xianjing Huang, Yu Luo, and Yuchao Peng. 2019. Foreign Direct Investment, Institutional Quality, and Financial Development along the Belt and Road: An Empirical Investigation. Emerging Markets Finance and Trade 55: 3275–94. [Google Scholar] [CrossRef]
- Albagli, Elias, Luis Ceballos, Sebastian Claro, and Damian Romero. 2019. Channels of US Monetary Policy Spillovers to International Bond Markets. Journal of Financial Economics 134: 447–73. [Google Scholar] [CrossRef]
- Alfano, Vincenzo, and Salvatore Ercolano. 2021. Social Capital, Quality of Institutions and Lockdown. Evidence from Italian Provinces. Structural Change and Economic Dynamics 59: 31–41. [Google Scholar] [CrossRef] [PubMed]
- Anh, Vo The, Le Thai, Thuong Quan, Nguyen Van Phuc, Ho Minh Chi, and Vo Hong Duc. 2018. Exchange Rate Pass-Through in ASEAN Countries: An Application of the SVAR Model. Emerging Markets Finance and Trade 57: 21–34. [Google Scholar] [CrossRef]
- Anselin, Luc. 2007. Perspectiven on Spatial Data Analysis. Berlin: Springer. Available online: http://link.springer.com/content/pdf/10.1007/978-3-662-04853-5.pdf (accessed on 2 February 2023).
- Arogundade, Sodiq, Mduduzi Biyase, and Santos Bila. 2022. Be Nice to Thy Neighbors: Spatial Impact of Foreign Direct Investment on Poverty in Africa. Economies 10: 128. [Google Scholar] [CrossRef]
- Aziz, Mukhriz Izraf Azman, Norzalina Ahmad, Jin Zichu, and Safwan Mohd Nor. 2022. The Impact of COVID-19 on the Connectedness of Stock Index in ASEAN+3 Economies. Mathematics 10: 1417. [Google Scholar] [CrossRef]
- Baldwin, Richard E., and Beatrice W. di Mauro. 2020. Economics in the Time of COVID-19. A VoxEU.org eBook. London: CEPR Press. Available online: https://voxeu.org/article/economics-time-covid-19-new-ebook (accessed on 22 February 2023).
- Baltagi, Badi H. 2005. Econometric Analysis of Panel Data. London: John Wiley & Sons Ltd. [Google Scholar]
- Bhattarai, Saroj, Arpita Chatterjee, and Woong Yong Park. 2020. Global Spillover Effects of US Uncertainty. Journal of Monetary Economics 114: 71–89. [Google Scholar] [CrossRef]
- Blanchard, Olivier. 2019. Public Debt and Low Interest Rates. American Economic Review 109: 1197–229. [Google Scholar] [CrossRef]
- Blasques, Francisco, Siem Jan Koopman, and Andre Lucas. 2016. Financial Time Series Models Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time Series Models. Journal of Econometrics 195: 211–23. [Google Scholar] [CrossRef]
- Bräuning, Falk, and Viacheslav Sheremirov. 2019. Output Spillovers from U.S. Monetary Policy: The Role of International Trade and Financial Linkages. Federal Reserve Bank of Boston Research Department Working Papers 19: 19–15. [Google Scholar] [CrossRef]
- Chong, Terence Tai Leung, Xiaoyang Li, and Cornelia Yip. 2021. The Impact of COVID-19 on ASEAN. Economic and Political Studies 9: 166–85. [Google Scholar] [CrossRef]
- Chudik, Alexander, Kamiar Mohaddes, M. Hashem Pesaran, Mehdi Raissi, and Alessandro Rebucci. 2021. A Counterfactual Economic Analysis of Covid-19 Using a Threshold Augmented Multi-Country Model. Journal of International Money and Finance 119: 102477. [Google Scholar] [CrossRef] [PubMed]
- Ciminelli, Gabriele, John Rogers, and Wenbin Wu. 2022. The Effects of U.S. Monetary Policy on International Mutual Fund Investment. Journal of International Money and Finance 127: 102676. [Google Scholar] [CrossRef]
- Cota, Boris, Nataša Erjavec, and Željko Bogdan. 2017. External Imbalances in Emerging and Advanced European Countries. Economic Research-Ekonomska Istrazivanja 30: 1553–71. [Google Scholar] [CrossRef]
- Dimitriou, Dimitrios, Dimitris Kenourgios, and Theodore Simos. 2017. Financial Crises, Exchange Rate Linkages and Uncovered Interest Parity: Evidence from G7 Markets. Economic Modelling 66: 112–20. [Google Scholar] [CrossRef]
- Eck, Katharina, and Stephan Huber. 2016. Product Sophistication and Spillovers from Foreign Direct Investment. Canadian Journal of Economics/Revue Canadienne D’economique 49: 1658–84. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/caje.12247 (accessed on 15 March 2023). [CrossRef]
- Elhorst, J. Paul. 2021. The Dynamic General Nesting Spatial Econometric Model for Spatial Panels with Common Factors: Further Raising the Bar. Review of Regional Research 42: 249–67. [Google Scholar] [CrossRef]
- Elhorst, Paul, Eelco Zandberg, and Jakob De Haan. 2013. The Impact of Interaction Effects among Neighbouring Countries on Financial Liberalization and Reform: A Dynamic Spatial Panel Data Approach. Spatial Economic Analysis 8: 293–313. [Google Scholar] [CrossRef]
- Elhorst, Paul, Rodolphe Devillers, Francis Group, Determinantes Del, Turismo Internacional, and Marcio José. 2014. Spatial Econometrics from Cross-Sectional Data to Spatial Panels. New York: Springer Briefs in Regional Science, vol. 16. [Google Scholar]
- Ezcurra, Roberto, and Vicente Rios. 2015. Volatility and Regional Growth in Europe: Does Space Matter? Spatial Economic Analysis 10: 344–68. [Google Scholar] [CrossRef]
- Fasanya, Ismail O., Oluwatomisin Oyewole, Oluwasegun B. Adekoya, and Jones Odei-Mensah. 2021. Dynamic Spillovers and Connectedness between COVID-19 Pandemic and Global Foreign Exchange Markets. Economic Research-Ekonomska Istrazivanja 34: 2059–84. [Google Scholar] [CrossRef]
- Feldkircher, Martin, Florian Huber, and Michael Pfarrhofer. 2021. Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession. Scottish Journal of Political Economy 68: 287–97. [Google Scholar] [CrossRef]
- Francois, Joseph, and Miriam Manchin. 2013. Institutions, Infrastructure, and Trade. World Development 46: 165–75. [Google Scholar] [CrossRef]
- Georgiadis, Georgios. 2016. Determinants of Global Spillovers from US Monetary Policy. Journal of International Money and Finance 67: 41–61. [Google Scholar] [CrossRef]
- González, Javier Lopez, and Przemyslaw Kowalski. 2017. Global Value Chain Participation in Southeast Asia: Trade and Related Policy Implications. In Production Networks in Southeast Asia. Edited by Lili Yan Ing and Fukunari Kimura. New York: Routledge. [Google Scholar]
- Goschin, Zizi, Mihai Antonia, and Horia Tigau. 2021. Entrepreneurship Recovery in Romania after the Great Recession. A Dynamic Spatial Panel Approach. Sustainability 13: 10702. [Google Scholar] [CrossRef]
- Hardi, Amirullah Setya, Ken-ichi Kawai, Sangyeol Lee, and Koichi Maekawa. 2015. Change Point Analysis of Exchange Rates Using Bootstrapping Methods: An Application to the Indonesian Rupiah 2000–2008. Asia-Pacific Financial Markets 22: 429–44. [Google Scholar] [CrossRef]
- Huang, Hao Chen, Chen Lin Yuan, and Ting Hsiu Liao. 2022a. The Spatial Spillover Effects of Fiscal Expenditures and Household Characteristics on Household Consumption Spending: Evidence from Taiwan. Economies 10: 227. [Google Scholar] [CrossRef]
- Huang, Hao Chen, Hsin Hung Liu, Chi Lu Peng, and Ting Hsiu Liao. 2022b. Do Local Fiscal Expenditures Promote the Growth of Profit-Seeking Enterprise Numbers in Neighboring Areas? Economies 10: 34. [Google Scholar] [CrossRef]
- Huang, Youxing, and Yan Zhang. 2020. The Innovation Spillovers from Outward and Inward Foreign Direct Investment: A Firm-Level Spatial Analysis. Spatial Economic Analysis 15: 43–59. [Google Scholar] [CrossRef]
- Hubbard, R. Glenn, Anthony P. O’Brien, Matthew Rafferty, and Robert J. Gordon. 2014. Macroeconomics. Harlow: Pearson Education Limited. [Google Scholar]
- Iacoviello, Matteo, and Gaston Navarro. 2019. Foreign Effects of Higher U.S. Interest Rates. Journal of International Money and Finance 95: 232–50. [Google Scholar] [CrossRef]
- Ing, Lili Yan, and Yessy Vadila. 2022. COVID-19: Impacts on Indonesia’s Trade. ERIA Discussion Paper Series, no. 415. Jakarta: Economic Research Institute for ASEAN and East Asia (ERIA). Available online: https://www.eria.org/publications/covid-19-impacts-of-indonesias-trade/ (accessed on 25 April 2023).
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2010. The Worldwide Governance Indicators: Methodology and Analytical Issues. Hague Journal on the Rule of Law 3: WPS5430. [Google Scholar] [CrossRef]
- Kazunobu, Hayakawa, and Mukunoki Hiroshi. 2021. The Impact of COVID-19 on International Trade: Evidence from the First Shock. Journal of the Japanese and International Economies 60: 101135. [Google Scholar] [CrossRef]
- Kiley, Michael T. 2020. What Can the Data Tell Us about the Equilibrium Real Interest Rate? International Journal of Central Banking 16: 181–209. [Google Scholar] [CrossRef]
- Koepke, Robin. 2018. Fed Policy Expectations and Portfolio Flows to Emerging Markets. Journal of International Financial Markets, Institutions and Money 55: 170–94. [Google Scholar] [CrossRef]
- Krista, Danielle S. Yu, Kathleen B. Aviso, Joost R. Santos, and Raymond R. Tan. 2020. The Economic Impact of Lockdowns: A Persistent Inoperability Input-Output Approach. Economies 8: 109. [Google Scholar] [CrossRef]
- Krugman, Paul R., Maurice Obstfeld, and Marc J. Melitz. 2018. International Economics: Theory and Policy, 11th ed. Global Edition. Edinburgh: Pearson. [Google Scholar]
- LeSage, James. 2015. Spatial Econometrics. In Handbook of Research Methods and Applications in Economic Geography. Cheltenham: Edward Elgar Publishing, pp. 23–40. [Google Scholar] [CrossRef]
- Li, Mu-chen, Si-xian Feng, and Xing Xie. 2023. Spatial Effect of Digital Financial Inclusion on the Urban–Rural Income Gap in China—Analysis Based on Path Dependence. Economic Research-Ekonomska Istraživanja 36: 2999–3020. [Google Scholar] [CrossRef]
- Liu, Clark, Ben Zhe Wang, Huanhuan Wang, and Ji Zhang. 2019. What Drives Fluctuations in Exchange Rate Growth in Emerging Markets—A Multi-Level Dynamic Factor Approach. Economic Systems 43: 100696. [Google Scholar] [CrossRef]
- Meier, Matthias, and Eugenio Pinto. 2020. COVID-19 Supply Chain Disruptions. Covid Economics 48: 139–70. [Google Scholar] [CrossRef]
- Miller, Harvey J. 2004. Tobler’s First Law and Spatial Analysis. Annals of the Association of American Geographers 94: 284–89. Available online: http://www.jstor.org/stable/3693985 (accessed on 31 January 2023). [CrossRef]
- Miranda-Agrippino, Silvia, and Hélène Rey. 2020. U.S. Monetary Policy and the Global Financial Cycle. Review of Economic Studies 87: 2754–76. [Google Scholar] [CrossRef]
- Nguyen, Trung Duc, Anh Hoang Le, Eleftherios I. Thalassinos, and Lanh Kim Trieu. 2022. The Impact of the COVID-19 Pandemic on Economic Growth and Monetary Policy: An Analysis from the DSGE Model in Vietnam. Economies 10: 159. [Google Scholar] [CrossRef]
- Ntshangase, Lwazi Senzo, Sheunesu Zhou, and Irrshad Kaseeram. 2023. The Spillover Effects of US Unconventional Monetary Policy on Inflation and Non-Inflation Targeting Emerging Markets. Economies 11: 138. [Google Scholar] [CrossRef]
- Omay, Tolga, Ayşegül Çorakcı, and Furkan Emirmahmutoglu. 2017. Real Interest Rates: Nonlinearity and Structural Breaks. Empirical Economics 52: 283–307. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem. 2021. General Diagnostic Tests for Cross-Sectional Dependence in Panels. Empirical Economics 60: 13–50. [Google Scholar] [CrossRef]
- Qian, Meirui, and Jianli Jiang. 2020. COVID-19 and Social Distancing. Canadian Journal of Addiction 11: 4–6. [Google Scholar] [CrossRef] [PubMed]
- Rios, Vicente, Pedro Pascual, and Fermín Cabases. 2017. What Drives Local Government Spending in Spain? A Dynamic Spatial Panel Approach. Spatial Economic Analysis 12: 230–50. [Google Scholar] [CrossRef]
- Sanfilippo-Azofra, Sergio, Begona Torre-Olmo, Maria Cantero-Saiz, and Carlos Lopez-Gutierrez. 2017. Financial Development and Banks’Loan Supply in Developing Countries. Journal of Macroeconomics. [Google Scholar] [CrossRef]
- Spiegel, Mark M. 2022. Monetary Policy Spillovers under COVID-19: Evidence from Lending by U.S. Foreign Bank Subsidiaries. Journal of International Money and Finance 122: 102550. [Google Scholar] [CrossRef]
- Tang, Xuexue. 2022. A Study of the Spatial Effects of Financial Support and Economic Growth under Optimal Control of Nonlinear Generalized Complex Systems. Discrete Dynamics in Nature and Society 2022. [Google Scholar] [CrossRef]
- Tang, Zefeng. 2022. Local Government Debt, Financial Circle, and Sustainable Economic Development. Sustainability 14: 11967. [Google Scholar] [CrossRef]
- Tian, Suhua, Dihai Wang, and Li Wang. 2023. Spillover Impact of the U.S. Monetary Policy Shock on China’s Economy: Capital Flow Channel. Economic Research-Ekonomska Istrazivanja 36: 3328–50. [Google Scholar] [CrossRef]
- Utama, Chandra, Insukindro, and Ardyanto Fitrady. 2022. Fiscal and Monetary Policy Interactions in Indonesia during Periods of Economic Turmoil in the US: 2001Q1-2014Q4. Bulletin of Monetary Economics and Banking 25: 1619. [Google Scholar] [CrossRef]
- Vidya, C. T., and K. P. Prabheesh. 2020. Implications of COVID-19 Pandemic on the Global Trade Networks. Emerging Markets Finance and Trade 56: 2408–21. [Google Scholar] [CrossRef]
- Wang, Ziyi, Debin Ma, Jingxiang Zhang, Yu Wang, and Dongqi Sun. 2023. Does Urbanization Have Spatial Spillover Effect on Poverty Reduction: Empirical Evidence from Rural China. Economic Research-Ekonomska Istrazivanja 36: 2167730. [Google Scholar] [CrossRef]
- Warjiyo, Perry, and Solikin M. Juhro. 2019. Central Bank Policy: Theory and Practice. Cheltenham: Emerald Publishing Limited. [Google Scholar] [CrossRef]
- Wuri, Josephine, Tri Widodo, and Amirullah Setya Hardi. 2022. Global Value Chains Participation during the COVID-19 Pandemic: A Dynamic Panel Approach. Economies 10: 121. [Google Scholar] [CrossRef]
- Wuri, Josephine, Tri Widodo, and Amirullah Setya Hardi. 2023. Speed of Convergence in Global Value Chains: Forward or Backward Linkage. Heliyon 9: e18070. [Google Scholar] [CrossRef]
- Zergawu, Y. Zewdu, Yabibal M. Walle, and José M. G. Gómez. 2020. The Joint Impact of Infrastructure and Institutions on Economic Growth. Journal of Institutional Economics 16: 481–502. [Google Scholar] [CrossRef]
Variable | Definition | Measurement | Unit | Sources |
---|---|---|---|---|
y | Output gap | Percentage deviation of real Gross Domestic Product (GDP) from potential GDP (constant 2015). | US$ | WDI-World Bank |
r | Interest rate | Real Central Bank policy rate. | % | IFS |
er | Exchange rate | Domestic currency’s representative exchange rate per U.S. dollar at market rates. | Rate | IFS |
COVID-19 | COVID-19 pandemic shocks | Gross export gap (the difference between the real and potential value of high technology exports). | US$ | WDI-World Bank |
ins | Institutional index | The average of six institutional indices of the World Bank, including voice and accountability, political stability and absence of violence/terrorism, government effectiveness, regulatory quality, the rule of law, and control of corruption. | Index lies between −2.5 and 2.5 | WGI-World Bank |
Group | Statistics | y | r | er | Covid19 | ins |
---|---|---|---|---|---|---|
ASEAN | Mean | 1.15 × 10−6 | 0.2762 | 5110.77 | 0.0012 | −0.0338 |
SD | 0.0234 | 1.8870 | 7224.41 | 0.4129 | 0.7297 | |
Maximum | 0.0553 | 5.8688 | 23,208.4 | 2.1011 | 1.6394 | |
Minimum | −0.0858 | −5.0678 | 1.2496 | −1.4167 | −1.0013 | |
East Asia | Mean | 0.00003 | −0.1363 | 412.088 | 4.52 ×10−6 | 0.5654 |
SD | 0.0122 | 0.9505 | 516.056 | 0.0695 | 0.7585 | |
Maximum | 0.0190 | 1.1987 | 1180.27 | 0.1869 | 1.3760 | |
Minimum | −0.0436 | −3.3039 | 6.1434 | −0.1213 | −0.5758 | |
United States | Mean | −0.00001 | −1.0752 | 1.0000 | −0.0001 | 1.2162 |
SD | 0.0118 | 0.9433 | 0.0000 | 0.0493 | 0.0893 | |
Maximum | 0.0181 | 0.2564 | 1.0000 | 0.0772 | 1.2771 | |
Minimum | −0.0278 | −3.0318 | 1.0000 | −0.0692 | 0.9746 | |
Total | Mean | 6.24 × 10−6 | 0.0770 | 3633.40 | 0.0008 | 0.2007 |
SD | 0.0205 | 1.6826 | 6405.88 | 0.3449 | 0.8043 | |
Maximum | 0.0553 | 5.8688 | 23,208.4 | 2.1011 | 1.6394 | |
Minimum | −0.0858 | −5.0678 | 1.0000 | −1.4167 | −1.0013 |
Variables | T Statistics | p-Value |
---|---|---|
y | −2.6919 | 0.0036 |
r | −2.2174 | 0.0133 |
er | −3.5217 | 0.0002 |
Covid19 | −3.4581 | 0.0003 |
ins | −15.6805 | 0.0000 |
Variables | Coefficient | ||
---|---|---|---|
(1) | (2) | (3) | |
y(−1) | 19.107 *** | 12.913 *** | 11.271 *** |
(0.000) | (0.000) | (0.000) | |
Wy (−1) | 75.867 *** | 80.792 *** | 87.594 *** |
(0.000) | (0.000) | (0.000) | |
r | −0.105 *** | −0.122 *** | −0.035 *** |
(0.000) | (0.000) | (0.000) | |
er | −0.001 *** | −0.001 *** | −0.00006 ** |
(0.000) | (0.000) | (0.026) | |
Covid19 | −0.584 *** | −0.071 *** | |
(0.000) | (0.004) | ||
ins | 0.627 *** | ||
(0.000) | |||
W. r | −0.424 *** | −0.539 *** | −0.203 *** |
(0.000) | (0.000) | (0.000) | |
W. er | −0.009 *** | −0.011 *** | −0.002 *** |
(0.000) | (0.000) | (0.000) | |
W. Covid19 | −1.794 *** | −0.474 *** | |
(0.000) | (0.000) | ||
W. ins | 2.557 *** | ||
(0.000) | |||
2.889 *** | 1.427 *** | 0.670 *** | |
(0.000) | (0.000) | (0.000) | |
No. of observations | 65 | 52 | 26 |
No. of countries | 13 | 13 | 13 |
Sigma2_e | 0.0006 *** | 0.0005 *** | 0.00002 *** |
(0.000) | (0.000) | (0.000) |
Effects | Variables | Coefficient | |||
---|---|---|---|---|---|
(4) | (5) | (6) | |||
Short-run | Direct effects | r | −0.052 *** | −0.082 *** | −0.025 *** |
(0.000) | (0.000) | (0.000) | |||
er | 0.002 *** | −0.0004 *** | 0.0003 | ||
(0.002) | (0.000) | (0.342) | |||
Covid19 | −0.477 *** | −0.048 * | |||
(0.000) | (0.088) | ||||
ins | 0.510 *** | ||||
(0.000) | |||||
Indirect effects | r | −0.084 *** | −0.191 *** | −0.119 *** | |
(0.000) | (0.000) | (0.000) | |||
er | −0.004 *** | −0.005 *** | −0.001 *** | ||
(0.000) | (0.000) | (0.000) | |||
Covid19 | −0.506 *** | −0.284 *** | |||
(0.000) | (0.000) | ||||
ins | 1.440 *** | ||||
(0.000) | |||||
Total effects | r | −0.136 *** | −0.273 *** | −0.144 *** | |
(0.000) | (0.000) | (0.000) | |||
er | −0.003 *** | −0.005 *** | −0.001 *** | ||
(0.000) | (0.000) | (0.000) | |||
Covid19 | −0.983 *** | −0.332 *** | |||
(0.000) | (0.000) | ||||
ins | 1.950 *** | ||||
(0.000) | |||||
Long-run | Direct effects | r | 0.006 *** | 0.005 *** | 0.119 |
(0.000) | (0.000) | (0.816) | |||
er | 0.0004 *** | 0.0001 *** | 0.0007 | ||
(0.000) | (0.000) | (0.875) | |||
Covid19 | 0.009 *** | 0.268 | |||
(0.000) | (0.824) | ||||
ins | −1.707 | ||||
(0.771) | |||||
Indirect effects | r | −0.0001 | 0.002 *** | 1.145 | |
(0.840) | (0.000) | (0.852) | |||
er | −0.0003 *** | −0.00001 *** | 0.009 | ||
(0.000) | (0.000) | (0.868) | |||
Covid19 | 0.017 *** | 2.665 | |||
(0.000) | (0.855) | ||||
ins | −14.522 | ||||
(0.837) | |||||
Total effects | r | 0.006 *** | 0.007 *** | 1.264 | |
(0.000) | (0.000) | (0.850) | |||
er | 0.0001 *** | 0.0001 *** | 0.009 | ||
(0.000) | (0.000) | (0.868) | |||
Covid19 | 0.026 *** | 2.933 | |||
(0.000) | (0.852) | ||||
ins | −16.229 | ||||
(0.832) |
Variables | Coefficient | ||
---|---|---|---|
(7) | (8) | (9) | |
y(−1) | 3.359 *** | 9.474 *** | 2.622 *** |
(0.000) | (0.000) | (0.000) | |
Wy (−1) | 16.493 *** | 60.639 *** | −1.276 |
(0.000) | (0.000) | (0.727) | |
r | −0.032 *** | −0.036 *** | −0.042 *** |
(0.000) | (0.000) | (0.000) | |
er | −0.0002 *** | −0.001 *** | −0.0003 *** |
(0.000) | (0.000) | (0.000) | |
Covid19 | −0.114 *** | −0.118 *** | |
(0.000) | (0.003) | ||
ins | 0.457 *** | ||
(0.000) | |||
W. r | −0.157 *** | −0.539 *** | −0.130 *** |
(0.000) | (0.000) | (0.000) | |
W. er | −0.001 *** | −0.008 *** | −0.002 *** |
(0.000) | (0.000) | (0.000) | |
W. Covid19 | −1.502 *** | −0.375 *** | |
(0.000) | (0.000) | ||
W. ins | 3.674 *** | ||
(0.000) | |||
2.062 *** | 3.754*** | 2.700 *** | |
(0.000) | (0.000) | (0.000) | |
No. of observations | 26 | 26 | 26 |
No. of countries | 13 | 13 | 13 |
Sigma2_e | 0.00009 *** | 0.00003 *** | 0.00003 *** |
(0.000) | (0.004) | (0.000) |
Effects | Variables | Coefficient | |||
---|---|---|---|---|---|
(10) | (11) | (12) | |||
Short-run | Direct effects | r | −0.017 ** | −0.033 | −0.040 |
(0.029) | (0.743) | (0.215) | |||
er | 0.00004 | −0.0002 | 0.00001 | ||
(0.315) | (0.989) | (0.997) | |||
Covid19 | 0.116 | −0.100 | |||
(0.980) | (0.673) | ||||
ins | −0.189 | ||||
(0.969) | |||||
Indirect effects | r | −0.046 *** | −0.007 | −0.006 | |
(0.000) | (0.942) | (0.852) | |||
er | −0.0005 *** | −0.002 | −0.0007 | ||
(0.000) | (0.919) | (0.805) | |||
Covid19 | −0.460 | −0.033 | |||
(0.920) | (0.889) | ||||
ins | 1.314 | ||||
(0.789) | |||||
Total effects | r | −0.063 *** | −0.041 *** | −0.046 *** | |
(0.000) | (0.000) | (0.000) | |||
er | −0.0005 *** | −0.002 *** | −0.0007 *** | ||
(0.000) | (0.000) | (0.000) | |||
Covid19 | −0.344 *** | −0.132 *** | |||
(0.000) | (0.000) | ||||
ins | 1.125 *** | ||||
(0.000) | |||||
Long-run | Direct effects | r | −0.055 | 0.003 *** | 0.006 |
(0.979) | (0.000) | (0.858) | |||
er | −0.0004 | 0.0001 *** | −0.00007 | ||
(0.975) | (0.000) | (0.895) | |||
Covid19 | 0.027 *** | 0.020 | |||
(0.001) | (0.834) | ||||
ins | 0.190 | ||||
(0.857) | |||||
Indirect effects | r | −0.076 | 0.0002 | −0.224 | |
(0.970) | (0.762) | (0.580) | |||
er | −0.0007 | −3.61 × 10−6 | −0.003 | ||
(0.958) | (0.672) | (0.602) | |||
Covid19 | −0.003 | −2.610 | |||
(0.700) | (0.548) | ||||
ins | 5.339 | ||||
(0.667) | |||||
Total effects | r | −0.132 *** | 0.003 *** | −1.218 | |
(0.000) | (0.000) | (0.621) | |||
er | −0.001 *** | 0.0001 *** | −0.003 | ||
(0.000) | (0.000) | (0.624) | |||
Covid19 | 0.025 *** | −0.590 | |||
(0.000) | (0.594) | ||||
ins | 5.530 | ||||
(0.681) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuri, J.; Hardanti, Y.R.; Harnoto, L.B.; Rahayu, C.W.E.; Rahmawati, C.H.T. The Impact of Interest Rate Spillover on Output Gap: A Dynamic Spatial Durbin Model. Economies 2024, 12, 22. https://doi.org/10.3390/economies12010022
Wuri J, Hardanti YR, Harnoto LB, Rahayu CWE, Rahmawati CHT. The Impact of Interest Rate Spillover on Output Gap: A Dynamic Spatial Durbin Model. Economies. 2024; 12(1):22. https://doi.org/10.3390/economies12010022
Chicago/Turabian StyleWuri, Josephine, Yuliana Rini Hardanti, Laurentius Bambang Harnoto, Caecilia Wahyu Estining Rahayu, and Christina Heti Tri Rahmawati. 2024. "The Impact of Interest Rate Spillover on Output Gap: A Dynamic Spatial Durbin Model" Economies 12, no. 1: 22. https://doi.org/10.3390/economies12010022
APA StyleWuri, J., Hardanti, Y. R., Harnoto, L. B., Rahayu, C. W. E., & Rahmawati, C. H. T. (2024). The Impact of Interest Rate Spillover on Output Gap: A Dynamic Spatial Durbin Model. Economies, 12(1), 22. https://doi.org/10.3390/economies12010022