A Quest for Innovation Drivers with Autometrics: Do These Differ Before and After the COVID-19 Pandemic for European Economies?
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. An Overview of the Literature on Innovation Drivers
2.1.1. Research and Development
2.1.2. Technological Advances and Digitalization
2.1.3. Ecological Sustainability
2.1.4. Proximity and Networks
2.1.5. The Science Sector
2.1.6. Intellectual Property Protection
2.1.7. Management of Organizations
2.2. Measuring Innovation
3. Data and Methodology
3.1. GETS Model Selection and Autometrics
3.2. Impulse Indicator Saturation (IIS)
- Using Autometrics to obtain reduced form models for each of the GUMs (1)–(4), and possibly of the IIS versions (6)–(9) if diagnostic tests fail with non-saturated GUMs;
- Checking congruency via the residual diagnostics of the models in (1). We refer to the tests discussed in Section 3.1;
- In the event of rejection of the null in a diagnostic test of a terminal model, the representation is deemed inadequate for the LDGP. Furthermore, if a model is such that a test statistic cannot be obtained due to insufficient degrees of freedom (this might occur with the heteroscedasticity test), we disregard the model since we cannot claim that the residuals suggest valid inference is feasible;
- One might argue that a rejection of normality would still allow asymptotic inference. That is true in some cases, but to argue that . However, this would be a fallacy in our case: the number of European countries will not grow without an upper bound;
- For a terminal model satisfying the diagnostic conditions, we conduct the analysis and inference. We use such congruent models to assess the relevance of the innovation drivers selected therein.
3.3. Data Definitions
4. Results
- The level of public sector R&D expenditure would be a reduction of 0.0298% in the SII;
- The R&D expenditure of the business sector to be an increase of 0.0921% in the SII;
- The non-R&D innovation expenditure to be an increase of 0.0805% in the SII;
- The business process innovation in SMEs to be an increase of 0.0569% in the SII;
- The level of digitalization to be an increase of 0.1095% in the SII;
- The level of environmental sustainability would be a growth of 0.0976% in the SII;
- The level of linkages to be an increase of 0.1317% in the SII;
- The attractiveness of the research system would be an increase of 0.2177% in the SII;
- The country’s intellectual assets would be an increase of 0.0749% in the SII;
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Autometrics is available as part of PcGive 15.0 in the Oxmetrics 8 Professional suite. Impulse saturation-based estimators with automatic model selection are also implemented in the R package Gets version 0.38 (Pretis et al., 2018) and in Eviews (since version 12.0). This paper uses PcGive 15.0 to implement Autometrics and IIS. |
2 | |
3 | In Section 4 and Section 5, it is of relevance to know the order in which countries are in our sample to understand which country we are referring to if a dummy is retained after IIS. The number associated with the impulse indicators match the country order. Our sample follows the order: Austria, Belgium, Bulgaria, Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France, Croatia, Hungary, Ireland, Italy, Lithuania, Luxemburg, Latvia, Malta, Netherlands, Poland, Portugal, Romania, Sweden, Slovenia, and Slovakia. |
4 | Linear regression models are often represented in the matrix format where is the data matrix for independent variables, each matching a column. In models with a constant term, such as the GUMS discussed, the implication is that the first column of X, matching data for , is a column vector of ones. Therefore, . For that reason is not included when writing the extensive form, since (see, inter alia, Greene, 2003). |
5 | For all tables in this section, the encoding of Section 3.3 is valid. As such, the order of the countries in the sample matching the order i of the impulse dummies’ coefficients is: Austria, Belgium, Bulgaria, Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France, Croatia, Hungary, Ireland, Italy, Lithuania, Luxemburg, Latvia, Malta, Netherlands, Poland, Portugal, Romania, Sweden, Slovenia, and Slovakia. The encoding of the covariates is also kept: refers to R&D public sector expenditure; refers to business sector R&D expenditure; to non-R&D innovation expenditure; to ICT specialists; to SMEs’ business process innovation; to digitalization; to environmental sustainability; to linkages; to the attractiveness of the research system; to intellectual assets; to GBARD; and to GERD. |
References
- Acemoglu, D., & Robinson, J. A. (2000). Political losers as a barrier to economic development. The American Economic Review, 90(2), 126–130. [Google Scholar] [CrossRef]
- Adams, R., Bessant, J., & Phelps, R. (2006). Innovation management measurement: A review. International Journal of Management Reviews, 8(1), 21–47. [Google Scholar] [CrossRef]
- Ahmad, M., & Zheng, J. (2023). The cyclical and nonlinear impact of R&D and innovation activities on economic growth in OECD economies: A new perspective. Journal of the Knowledge Economy, 14(1), 544–593. [Google Scholar] [CrossRef]
- Al Issa, H.-E., & Omar, M. M. S. (2024). Digital innovation drivers in retail banking: The role of leadership, culture, and technostress inhibitors. International Journal of Organizational Analysis, 32(11), 19–43. [Google Scholar] [CrossRef]
- Araki, M. E., Bennett, D. L., & Wagner, G. A. (2024). Regional innovation networks & high-growth entrepreneurship. Research Policy, 53(1), 104900. [Google Scholar] [CrossRef]
- Arranz, C. F. A. (2024). A system dynamics approach to modelling eco-innovation drivers in companies: Understanding complex interactions using machine learning. Business Strategy and the Environment, 33(5), 4456–4479. [Google Scholar] [CrossRef]
- Barba-Aragón, M. I., & Jiménez-Jiménez, D. (2024). Is training a green innovation driver? The mediating role of knowledge acquisition. Journal of Knowledge Management, 28(2), 463–483. [Google Scholar] [CrossRef]
- Basberg, B. L. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2–4), 131–141. [Google Scholar] [CrossRef]
- Beynon, M. J., Jones, P., & Pickernell, D. (2023). Evaluating EU-Region level innovation readiness: A longitudinal analysis using principal component analysis and a constellation graph index approach. Journal of Business Research, 159, 113703. [Google Scholar] [CrossRef]
- Boin, A., & Rhinard, M. (2022). Crisis management performance and the European Union: The case of COVID-19. Journal of European Public Policy, 30(4), 655–675. [Google Scholar] [CrossRef]
- Boschma, R. (2005). Proximity and innovation: A critical assessment. Regional Studies, 39(1), 61–74. [Google Scholar] [CrossRef]
- Bowman, K. O., & Shenton, L. R. (1975). Omnibus test contours for departures from normality based on √b1 and b2. Biometrika, 62(2), 243–250. [Google Scholar] [CrossRef]
- Brancati, E., Brancati, R., Guarascio, D., & Zanfei, A. (2022). Innovation drivers of external competitiveness in the great recession. Small Business Economics, 58(3), 1497–1516. [Google Scholar] [CrossRef]
- Brooks, E., de Ruijter, A., Greer, S. L., & Rozenblum, S. (2022). EU health policy in the aftermath of COVID-19: Neofunctionalism and crisis-driven integration. Journal of European Public Policy, 30(4), 721–739. [Google Scholar] [CrossRef]
- Campos, J., Hendry, D. F., & Krolzig, H.-M. (2003). Consistent model selection by an automatic Gets approach. Oxford Bulletin of Economics and Statistics, 65, 803–819. [Google Scholar] [CrossRef]
- Castellano, R., Punzo, G., & Scandurra, G. (2022). Exploring antecedents of innovations for small-and medium-sized enterprises’ environmental sustainability: An interpretative framework. Business Strategy and the Environment, 31(4), 1730–1748. [Google Scholar] [CrossRef]
- Castle, J. L. (2005). Evaluating PcGets and RETINA as automatic model selection algorithms. Oxford Bulletin of Economics and Statistics, 67(s1), 837–880. [Google Scholar] [CrossRef]
- Castle, J. L., Doornik, J. A., & Hendry, D. F. (2012). Model selection when there are multiple breaks. Journal of Econometrics, 169(2), 239–246. [Google Scholar] [CrossRef]
- Castle, J. L., Doornik, J. A., & Hendry, D. F. (2019a). Multiplicative-indicator saturation [Working paper]. Nuffield College. [Google Scholar]
- Castle, J. L., Doornik, J. A., Hendry, D. F., & Pretis, F. (2015). Detecting location shifts during model selection by step-indicator saturation. Econometrics, 3(2), 240–264. [Google Scholar] [CrossRef]
- Castle, J. L., Doornik, J. A., Hendry, D. F., & Pretis, F. (2019b). Trend-indicator saturation [Working paper]. Nuffield College. [Google Scholar]
- Costa, V., Oliveira, M. A., & Santos, C. (2024). Assessing the pandemic aviation crisis: Speculative behavior, government bail outs, and accommodative monetary policy. Economies, 12(10), 258. [Google Scholar] [CrossRef]
- Doornik, J. A. (1994, August 22–29). Testing vector error autocorrelation and heteroscedasticity. Econometric Society 7th World Congress, Tokio, Japan. [Google Scholar]
- Doornik, J. A. (2009). Autometrics. In J. L. Castle, & N. Shephard (Eds.), The methodology and practice of econometrics (pp. 88–121). Oxford University Press. [Google Scholar] [CrossRef]
- Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70(s1), 927–939. [Google Scholar] [CrossRef]
- Doornik, J. A., & Hendry, D. F. (1994). PcGive 8: An interactive econometric modelling system. International Thomson Publishing and Duxbury Press. [Google Scholar]
- Doornik, J. A., & Hendry, D. F. (2016). Outliers and model selection: Discussion of the paper by Søren Johansen and Bent Nielsen. Scandinavian Journal of Statistics, 43(2), 360–365. [Google Scholar] [CrossRef]
- Dworak, E. (2024). The innovativeness of the economies of european union candidate countries—An assessment of their innovation gap in relation to the EU average. Comparative Economic Research. Central and Eastern Europe, 27(3). [Google Scholar] [CrossRef]
- El-Kassar, A.-N., & Singh, S. K. (2019). Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technological Forecasting and Social Change, 144, 483–498. [Google Scholar] [CrossRef]
- European Commission. (2023). European innovation scoreboard. European Commission. [Google Scholar]
- Faurel, L., Li, Q., Shanthikumar, D., & Teoh, S. H. (2024). Bringing innovation to fruition: Insights from new trademarks. Journal of Financial and Quantitative Analysis, 59(2), 474–520. [Google Scholar] [CrossRef]
- Favero, C. A. (2001). Applied Macroeconometrics. Oxford University Press. [Google Scholar]
- Fernández-Sastre, J., & Montalvo-Quizhpi, F. (2019). The effect of developing countries’ innovation policies on firms’ decisions to invest in R&D. Technological Forecasting and Social Change, 143, 214–223. [Google Scholar] [CrossRef]
- Ferreira, J. J. M., Fernandes, C. I., & Veiga, P. M. (2024). Institutions, the entrepreneurial orientation and innovative capabilities of countries: The moderating effect of technological development. International Journal of Entrepreneurial Behavior & Research. [Google Scholar] [CrossRef]
- Fontana, R., Nuvolari, A., Shimizu, H., & Vezzulli, A. (2013). Reassessing patent propensity: Evidence from a dataset of R&D awards, 1977–2004. Research Policy, 42(10), 1780–1792. [Google Scholar] [CrossRef]
- Francois, J. N., Konte, M., & Ruch, F. U. (2024). “Crowding in” effect of public investment on private investment revisited. In Policy research working paper, 10881. World Bank. Available online: http://hdl.handle.net/10986/42097 (accessed on 10 January 2025).
- Ganau, R., & Grandinetti, R. (2021). Disentangling regional innovation capability: What really matters? Industry and Innovation, 28(6), 749–772. [Google Scholar] [CrossRef]
- Gault, F. (2018). Defining and measuring innovation in all sectors of the economy. Research Policy, 47(3), 617–622. [Google Scholar] [CrossRef]
- Gillen, D., & Lall, A. (2003). International transmission of shocks in the airline industry. Journal of Air Transport Management, 9(1), 37–49. [Google Scholar] [CrossRef]
- Godfrey, L. G., & Orme, C. D. (1994). The sensitivity of some general checks to omitted variables in the linear model. International Economic Review, 35(2), 489–506. [Google Scholar] [CrossRef]
- Godil, D. I., Yu, Z., Sharif, A., Usman, R., & Khan, S. A. R. (2021). Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development. Sustainable Development, 29(4), 694–707. [Google Scholar] [CrossRef]
- Gong, Z., Wang, Y., & Li, M. (2024). Determining the drivers of global innovation under COVID-19: An FSQCA approach. PLoS ONE, 19(2), e0295403. [Google Scholar] [CrossRef] [PubMed]
- Greene, W. H. (2003). Econometric analysis (5th ed.). Prentice Hall. [Google Scholar]
- Greenhalgh, C., & Longland, M. (2005). Running to stand still?—The value of R&D, patents and trade marks in innovating manufacturing firms. International Journal of the Economics of Business, 12(3), 307–328. [Google Scholar] [CrossRef]
- Grossman, G. M., & Helpman, E. (1991). Quality ladders in the theory of growth. The Review of Economic Studies, 58(1), 43–61. [Google Scholar] [CrossRef]
- Hagedoorn, J., & Cloodt, M. (2003). Measuring innovative performance: Is there an advantage in using multiple indicators? Research Policy, 32(8), 1365–1379. [Google Scholar] [CrossRef]
- Harris, M., Bhatti, Y., Buckley, J., & Sharma, D. (2020). Fast and frugal innovations in response to the COVID-19 pandemic. Nature Medicine, 26(6), 814–817. [Google Scholar] [CrossRef]
- Hauser, C., Siller, M., Schatzer, T., Walde, J., & Tappeiner, G. (2018). Measuring regional innovation: A critical inspection of the ability of single indicators to shape technological change. Technological Forecasting and Social Change, 129, 43–55. [Google Scholar] [CrossRef]
- Hendry, D. F. (1985). Monetary economic myth and econometric reality. Oxford Review of Economic Policy, 1(1), 72–84. [Google Scholar] [CrossRef]
- Hendry, D. F. (1995). Dynamic econometrics. Oxford University Press. [Google Scholar]
- Hendry, D. F. (Ed.). (2000). Epilogue: The success of general-to-specific model selection. In Econometrics: Alchemy or science? New edition (pp. 467–490). Oxford University Press. [Google Scholar] [CrossRef]
- Hendry, D. F. (2001). Modelling UK inflation, 1875–1991. Journal of Applied Econometrics, 16(3), 255–275. [Google Scholar] [CrossRef]
- Hendry, D. F. (2024). A brief history of general-to-specific modelling. Oxford Bulletin of Economics and Statistics, 86(1), 1–20. [Google Scholar] [CrossRef]
- Hendry, D. F., & Krolzig, H.-M. (1999). Improving on ‘Data mining reconsidered’ by K. D. Hoover and S. J. Perez. Econometrics Journal, 2(2), 202–219. [Google Scholar] [CrossRef]
- Hendry, D. F., & Krolzig, H.-M. (2001). Automatic econometric model selection. Timberlake Consultants Press. [Google Scholar]
- Hendry, D. F., & Richard, J.-F. (1982). On the formulation of empirical models in dynamic econometrics. Journal of Econometrics, 20(1), 3–33. [Google Scholar] [CrossRef]
- Hendry, D. F., & Santos, C. (2005). Regression models with data-based indicator variables. Oxford Bulletin of Economics and Statistics, 67(5), 571–595. [Google Scholar] [CrossRef]
- Hendry, D. F., & Santos, C. (2010). An automatic test of super exogeneity. In T. Bollerslev, J. Russell, & M. Watson (Eds.), Volatility and time series econometrics: Essays in honor of robert engle (pp. 164–193). Oxford University Press. [Google Scholar] [CrossRef]
- Hermundsdottir, F., & Aspelund, A. (2021). Sustainability innovations and firm competitiveness: A review. Journal of Cleaner Production, 280, 124715. [Google Scholar] [CrossRef]
- Huber, P. J. (1964). Robust estimation of a location parameter. Annals of mathematical statistics, 35(1), 73–101. [Google Scholar] [CrossRef]
- Janoskova, K., & Kral, P. (2019). An in-depth analysis of the summary innovation index in the V4 countries. Journal of Competitiveness, 11(2), 68–83. [Google Scholar] [CrossRef]
- Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals. International Statistical Review, 55(2), 163–172. [Google Scholar] [CrossRef]
- Johansen, S., & Nielsen, B. (2009). An analysis of the indicator saturation estimator as a robust regression estimator. In J. L. Castle, & N. Shephard (Eds.), The methodology and practice of econometrics (pp. 1–36). Oxford University Press. [Google Scholar] [CrossRef]
- Katuščáková, M., Capková, E., & Grečnár, J. (2023). How to measure knowledge economy. The Electronic Journal of Knowledge Management, 21(2), 87–102. [Google Scholar] [CrossRef]
- Kim, Y. K., Lee, K., Park, W. G., & Choo, K. (2012). Appropriate intellectual property protection and economic growth in countries at different levels of development. Research Policy, 41(2), 358–375. [Google Scholar] [CrossRef]
- Kiviet, J. F. (1986). On the rigor of some mis-specification tests for modelling dynamic relationships. Review of Economic Studies, 53(2), 241–261. [Google Scholar] [CrossRef]
- Koh, P.-S., Reeb, D. M., Sojli, E., Tham, W. W., & Wang, W. (2022). Deleting unreported innovation. Journal of Financial and Quantitative Analysis, 57(6), 2324–2354. [Google Scholar] [CrossRef]
- Kroll, H., Horvat, D., & Jäger, A. (2018). Effects of automatisation and digitalisation on manufacturing companies’ production efficiency and innovation performance. In Fraunhofer ISI discussion papers—Innovation systems and policy analysis, (No. 58). Fraunhofer Institute for Systems and Innovation Research (ISI). Available online: https://hdl.handle.net/10419/176701 (accessed on 12 February 2024).
- Liu, W., Beltagui, A., & Ye, S. (2021). Accelerated innovation through repurposing: Exaptation of design and manufacturing in response to COVID-19. R&D Management, 51(4), 410–426. [Google Scholar] [CrossRef]
- Lyu, T., & Xu, Z. W. (2024). Taking the road less traveled? Market misreaction and firm innovation directions. Available at SSRN. Available online: https://ssrn.com/abstract=4758236 (accessed on 6 April 2025). [CrossRef]
- Malthus, T. R. (1817). An essay on the principle of population. John Murray. [Google Scholar]
- Marino, M., Lhuillery, S., Parrotta, P., & Sala, D. (2016). Additionality or crowding-out? An overall evaluation of public R&D subsidy on private R&D expenditure. Research Policy, 45(9), 1715–1730. [Google Scholar] [CrossRef]
- Marshall, A. (1890). Principles of economics. Macmillan and Co. [Google Scholar]
- Meroño-Cerdan, A. L., & López-Nicolas, C. (2013). Understanding the drivers of organizational innovations. Service Industries Journal, 33(13–14), 1312–1325. [Google Scholar] [CrossRef]
- Muhammadullah, S., Urooj, A., Mengal, M. H., Khan, S. A., & Khalaj, F. (2022). Cross-sectional analysis of impulse indicator saturation method for outlier detection estimated via regularization techniques with application of COVID-19 data. Computational and Mathematical Methods in Medicine, 2022(1), 2588534. [Google Scholar] [CrossRef]
- Musella, G., Castellano, R., & Bruno, E. (2023). Evaluating the spatial heterogeneity of innovation drivers: A comparison between GWR and GWPR. Metron, 81(3), 343–365. [Google Scholar] [CrossRef]
- Nguyen, T. P. T., Huang, F., & Tian, X. (2023). Intellectual property protection need as a driver for open innovation: Empirical evidence from Vietnam. Technovation, 123, 102714. [Google Scholar] [CrossRef]
- Nidumolu, R., Prahalad, C. K., & Rangaswami, M. R. (2009). Why sustainability is now the key driver of innovation. Harvard Business Review, 87(9), 56–64. [Google Scholar]
- OECD. (2015). Frascati manual 2015: Guidelines for collecting and reporting data on research and experimental development, the measurement of scientific, technological and innovation activities. OECD Publishing. [Google Scholar] [CrossRef]
- Oliveira, M. A., & Santos, C. (2010). Looking for a change point in french monetary policy in the early eighties. Applied Economics Letters, 17(4), 387–392. [Google Scholar] [CrossRef]
- Oliveira, M. A., & Santos, C. (2015). Market exuberance in sovereign credit default swaps: Assessing the EU regulatory framework and trading profit opportunities. Investment Management and Financial Innovations, 12(4), 70–80. [Google Scholar]
- Oliveira, M. A., & Santos, C. (2018). Determinants of credit default swaps implied ratings during the crisis: Was sovereign risk mispriced? Investment Management and Financial Innovations, 15(3), 1–14. [Google Scholar] [CrossRef]
- Oliveira, M. A., & Santos, C. (2022). Unveiling trading patterns: iTraxx Europe financials from the great financial crisis to ECB monetary easing. Banks and Bank Systems, 17(3), 188–200. [Google Scholar] [CrossRef]
- Omidi, V., Shahabadi, A., & Mehregan, N. (2020). Innovation drivers in developing countries. Journal of the Knowledge Economy, 11(2), 707–720. [Google Scholar] [CrossRef]
- Oyadomari, J. C. T., Mendonça Neto, O. R., Cardoso, R. L., & Dultra-de-Lima, R. G. (2013). Fatores indutores de inovação e manutenção de práticas de controle gerencial: Um estudo exploratório. Revista Universo Contábil, 9(2), 125–141. [Google Scholar] [CrossRef]
- Pagan, A. R. (1987). Three econometric methodologies: A critical appraisal. Journal of Economic Surveys, 1(1–2), 3–23. [Google Scholar] [CrossRef]
- Park, W. G. (2005). Do intellectual property rights stimulate R&D and productivity growth? Evidence from cross national and manufacturing industries data. In Proceedings of the conference on intellectual property and innovation: Intellectual property and innovation in the knowledge-based economy, 23–24 May 2001, Toronto, Canada. University of British Columbia. [Google Scholar]
- Parrilli, M. D., & Radicic, D. (2021). STI and DUI innovation modes in micro-, small-, medium-and large-sized firms: Distinctive patterns across Europe and the U.S. European Planning Studies, 29(2), 346–368. [Google Scholar] [CrossRef]
- Pepe, C. G. E., Fonseca, M. V. A., & Marques, C. F. S. (2024). International collaboration towards innovation management: A network perspective and the Global Innovation Index. Journal of Innovation and Entrepreneurship, 13, 32. [Google Scholar] [CrossRef]
- Pieroni, M. P. P., McAloone, T. C., & Pigosso, D. C. A. (2019). Business model innovation for circular economy and sustainability: A review of approaches. Journal of Cleaner Production, 215, 198–216. [Google Scholar] [CrossRef]
- Popescu, N. E. (2014). Entrepreneurship and SMEs innovation in Romania. Procedia Economics and Finance, 16, 512–520. [Google Scholar] [CrossRef]
- Porter, M. E., & Stern, S. (2001). Innovation: Location matters. MIT Sloan Management Review, 42(4), 28–36. [Google Scholar]
- Pretis, F., Reade, J. J., & Sucarrat, G. (2018). Automated general-to-specific (gets) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3), 1–44. [Google Scholar] [CrossRef]
- Quaglia, L., & Verdun, A. (2022). Explaining the response of the ECB to the COVID-19 related economic crisis: Inter-crisis and intra-crisis learning. Journal of European Public Policy, 30(4), 635–654. [Google Scholar] [CrossRef]
- Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society, 31(2), 350–371. [Google Scholar] [CrossRef]
- Rishi, N., Sharma, V., Das Gupta, D., Singh, Y. P., & Agnihotri, R. (2024). Crisis-driven innovations in marketing. Industrial Marketing Management, 119, 135–146. [Google Scholar] [CrossRef]
- Rochina-Barrachina, M. E., & Rodríguez, J. A. (2019). Innovation drivers in Ecuadorian manufacturing. Management Research: Journal of the Iberoamerican Academy of Management, 17(4), 510–539. [Google Scholar] [CrossRef]
- Román, S., Bodenstab, S., & Sanchez-Siles, L. M. (2021). Corporate tensions and drivers of sustainable innovation: A qualitative study in the food industry. European Journal of Innovation Management, 25(4), 925–947. [Google Scholar] [CrossRef]
- Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), S71–S102. [Google Scholar] [CrossRef]
- Rose, J., Jones, M., & Furneaux, B. (2016). An integrated model of innovation drivers for smaller software firms. Information and Management, 53(3), 307–323. [Google Scholar] [CrossRef]
- Sampat, B. N., & Shadlen, K. C. (2021). The COVID-19 innovation system. Health Affairs, 40(3), 400–409. [Google Scholar] [CrossRef]
- Santos, C. (2008). Impulse saturation break tests. Economics Letters, 98(2), 136–143. [Google Scholar] [CrossRef]
- Santos, C., & Hendry, D. F. (2006). Saturation in Autoregressive Models. Notas Económicas, 24, 8–19. [Google Scholar] [CrossRef]
- Santos, C., Hendry, D. F., & Johansen, S. (2008). Automatic selection of indicators in a fully saturated regression. Computational Statistics, 23, 317–335. [Google Scholar] [CrossRef]
- Santos, C., & Oliveira, M. A. (2010). Assessing french inflation persistence with impulse saturation break tests and automatic general-to-specific modeling. Applied Economics, 42(12), 1577–1589. [Google Scholar] [CrossRef]
- Sargan, J. D. (1957). The danger of over-simplification. Oxford Bulletin of Economics and Statistics, 19(2), 171–178. [Google Scholar] [CrossRef]
- Sargan, J. D. (2001). Model building and data mining. Econometric Reviews, 20(2), 159–170. [Google Scholar] [CrossRef]
- Schumpeter, J. A. (1911). The theory of economic development. Harvard University Press. [Google Scholar]
- Schumpeter, J. A. (1942). Capitalism, socialism and democracy. Harper & Brothers Publishers. [Google Scholar]
- Shefer, D., & Frenkel, A. (2005). R&D, firm size and innovation: An empirical analysis. Technovation, 25(1), 25–32. [Google Scholar] [CrossRef]
- Silveira, A. S., Rosa, C. B., & Siluk, J. C. M. (2024). Strategic drivers of innovation as a lever for the competitiveness of agribusiness to face COVID-19. International Journal of Productivity and Performance Management, 73(9), 2858–2882. [Google Scholar] [CrossRef]
- Simioni, F. J., Hoff, D. N., & Binotto, E. (2015). Fatores indutores à inovação tecnológica da indústria madeireira da região de Lages/SC. RAI Revista de Administração e Inovação, 12(1), 248–270. [Google Scholar] [CrossRef]
- Solow, R. M. (1957). Technical change and the aggregate production function. The Review of Economics and Statistics, 39(3), 312–320. [Google Scholar] [CrossRef]
- Timmons, J. A., & Spinelli, S. (2004). New venture creation: Entrepreneurship for the 21st century. McGraw-Hill/Irwin. [Google Scholar]
- Tunzelmann, G. N. von. (1991). Malthus’s evolutionary model, expectations, and innovation. Journal of Evolutionary Economics, 1, 273–291. [Google Scholar] [CrossRef]
- Veza, O., Arifin, N. Y., & Setyabudhi, A. L. (2022). The economy in the time of Covid-19 and the impact on technology and digitization. Economic and Business Management International Journal, 4(3), 200–205. [Google Scholar]
- White, H. (1980). A heteroskedastic-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838. [Google Scholar] [CrossRef]
- White, H. (1990). A consistent model selection procedure based on M-testing. In C. W. J. Granger (Ed.), Modelling economic series (pp. 369–383). Clarendon Press. [Google Scholar]
- WHO. (2022). The european union and WHO further enhance their partnership for stronger pandemic preparedness and response. Word Health Organization. Available online: https://www.who.int/news/item/08-12-2022-the-european-union-and-who-further-enhance-their-partnership-for-stronger-pandemic-preparedness-and-response (accessed on 21 March 2025).
- WIPO. (2024). PCT yearly review 2024: The international patent system. World Intellectual Property Organization (WIPO). [Google Scholar] [CrossRef]
Equation (1) | Equation (6) | Equation (2) | Equation (7) | Equation (3) | Equation (8) | Equation (4) | Equation (9) | |
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
(p-value) | 3.1622 (0.0000) | 3.69472 (0.0000) | −216.9 (0.0000) | −164.64 (0.0000) | ||||
(p-value) | ||||||||
(p-value) | 0.1238 (0.0002) | 0.1338 (0.0000) | 0.0009 (0.0655) | 6.2576 (0.0032) | 4.6742 (0.0000) | 0.04013 (0.0162) | ||
(p-value) | 0.1658 (0.0000) | 0.0849 (0.0013) | 0.0035 (0.0001) | 0.17816 (0.0000) | 0.26009 (0.0000) | |||
(p-value) | ||||||||
(p-value) | 0.0483 (0.0371) | 0.0641 (0.0003) | 0.0009 (0.0254) | 0.0007 (0.0073) | 2.0942 (0.3096) | 2.3063 (0.0028) | ||
(p-value) | 0.1476 (0.0012) | 0.1213 (0.0000) | 0.0014 (0.069) | 0.0025 (0.0000) | 15.2648 (0.0044) | 40.1848 (0.0000) | 0.19109 (0.0000) | 0.0668 (0.0012) |
(p-value) | 0.1835 (0.0001) | 0.1718 (0.0000) | 0.0033 (0.0002) | 0.0009 (0.097) | 8.9119 (0.0292) | −9.7932 (0.0012) | 0.18103 (0.0000) | 0.22114 (0.0000) |
(p-value) | 0.0836 (0.0000) | 9.9645 (0.0159) | −6.7458 (0.0091) | 0.0631 (0.0187) | ||||
(p-value) | 0.3053 (0.0000) | 0.1719 (0.0001) | 0.0037 (0.0000) | 17.624 (0.0011) | 27.728 (0.0000) | 0.34497 (0.0000) | 0.43022 (0.0000) | |
(p-value) | 0.1172 (0.0045) | 0.0047 (0.0000) | 9.3461 (0.0342) | |||||
(p-value) | −4.4 × 10−5 (0.0107) | −0.0905 (0.0010) | ||||||
(p-value) | 1.5 × 10−5 (0.0072) | 0.0921 (0.0001) | ||||||
−9.9024 (0.0072) | 9.0803 (0.0003) | |||||||
0.1609 (0.0082) | ||||||||
−0.4242 (0.0000) | 10.417 (0.0004) | |||||||
−0.0813 (0.0178) | ||||||||
22.845 (0.0000) | ||||||||
−14.047 (0.0005) | ||||||||
−22.351 (0.0000) | ||||||||
0.11464 (0.0003) | ||||||||
−7.1267 (0.0004) | ||||||||
−5.9887 (0.0656) | −0.0994 (0.0042) | |||||||
−6.4776 (0.0026) | −0.1661 (0.0000) | |||||||
16.3389 (0.0001) | 0.2609 (0.0002) | |||||||
−0.9271 (0.755) | −0.1135 (0.0007) | |||||||
−5.9277 (0.1264) | 8.03282 (0.0044) | |||||||
0.07289 (0.0494) | ||||||||
5.2906 (0.0545) | −0.2173 (0.0019) | −14.861 (0.0004) | ||||||
−0.2971 (0.0001) | ||||||||
0.15661 (0.0001) | ||||||||
−0.2411 (0.0011) | ||||||||
−35.915 (0.0000) | ||||||||
−0.6049 (0.0000) | ||||||||
0.1156 (0.0292) | ||||||||
6.7067 (0.0305) | 7.8341 (0.0004) | |||||||
0.9573 | 0.9935 | 0.9727 | 0.9941 | |||||
F-Global (p-value) | 74.75 (0.000) | 132.4 (0.000) | 91.7 (0.000) | 946.9 (0.000) | ||||
Normality (p-value) | 1.0488 (0.5919) | 3.4881 (0.1754) | 0.80351 (0.6691) | 0.71151 (0.7006) | 0.72034 (0.6976) | 17.145 (0.0002) | 4.9721 (0.0832) | 1.6269 (0.4433) |
Hetero (p-value) | 0.4357 (0.9216) | 0.85891 (0.5999) | 0.6311 (0.7935) | 0.6764 (0.748) | 0.35725 (0.9436) | |||
Hetero-X (p-value) | ||||||||
RESET (p-value) | 2.803 (0.0858) | 15.303 (0.0013) | 15.78 (0.0001) | 0.23082 (0.798) | 5.69 (0.0136) | 0.06677 (0.936) | 0.44086 (0.6499) | 0.07951 (0.9240) |
Equation (1) | Equation (6) | Equation (2) | Equation (3) | Equation (8) | Equation (4) | Equation (9) | |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
(p-value) | −16.0846 (0.0299) | 0.4781 (0.0840) | 2.78478 (0.0000) | −183.28 (0.0002) | −239.85 (0.0000) | ||
(p-value) | −12.9771 (0.0260) | −12.821 (0.000) | −0.17722 (0.0098) | ||||
(p-value) | 0.4952 (0.0000) | 0.4622 (0.0000) | 0.00751 (0.0000) | 31.1658 (0.0000) | 31.761 (0.0000) | 0.4513 (0.0000) | 0.4364 (0.0000) |
(p-value) | |||||||
(p-value) | 0.0136 (0.0324) | 0.02524 (0.0000) | |||||
(p-value) | 6.6913 (0.1157) | 8.5533 (0.0000) | |||||
(p-value) | 0.2518 (0.0019) | 0.00346 (0.0108) | 0.29936 (0.0126) | ||||
(p-value) | 16.1576 (0.0008) | ||||||
(p-value) | |||||||
(p-value) | 0.1934 (0.0000) | ||||||
(p-value) | 0.2042 (0.0272) | 0.2638 (0.0000) | 0.004238 (0.0102) | 34.1277 (0.1157) | 27.32 (0.0000) | 0.3684 (0.0036) | 0.1859 (0.0000) |
(p-value) | |||||||
(p-value) | 0.07534 (0.0000) | ||||||
−0.2069 (0.0009) | |||||||
0.23196 (0.0030) | |||||||
−15.195 (0.0012) | −24.9154 (0.0001) | −0.3204 (0.0000) | |||||
−18.920 (0.0044) | |||||||
24.40 (0.0001) | 21.885 (0.0006) | ||||||
−0.2619 (0.0001) | |||||||
39.4247 (0.0000) | 35.7756 (0.0000) | 0.26227 (0.0001) | |||||
8.9372 (0.0565) | |||||||
12.5192 (0.0265) | |||||||
16.0890 (0.0008) | |||||||
−7.89649 (0.0862) | |||||||
−27.4002 (0.0001) | |||||||
23.0678 (0.0000) | 49.5019 (0.0000) | 1.0224 (0.0000) | |||||
0.4119 (0.0000) | |||||||
34.7911 (0.0000) | 26.5583 (0.0001) | 0.1647 (0.0033) | |||||
−17.696 (0.0004) | −0.1768 (0.0052) | ||||||
−0.1912 (0.0012) | |||||||
−0.112 (0.0292) | |||||||
16.6524 (0.0019) | |||||||
−20.2581 (0.0006 | |||||||
0.9331 | 0.9953 | 0.903952 | 0.818367 | 0.996 | |||
F-Global (p-value) | 76.72 (0.000) | 248.4 (0.000) | 72.15 (0.000) | 23.65 (0.000) | 167 (0.000) | ||
Normality (p-value) | 2.3919 (0.3024) | 5.6700 (0.0587) | 0.83158 (0.6598) | 1.5129 (0.4693) | 2.5017 (0.2863) | 1.6286 (0.4430) | 5.9487 (0.0511) |
Hetero (p-value) | 0.50168 (0.8393) | 0.7038 (0.6534) | 0.51263 (0.7917) | 1.021 (0.4573) | 2.2377 (0.0743) | ||
Hetero-X (p-value) | 0.73502 (7117) | 0.85243 (0.5946) | 0.5934 (0.7853) | 0.57516 (0.8362) | 2.5813 (0.0537) | ||
RESET (p-value) | 5.0968 (0.0163) | 0.90262 (0.4313) | 1.9686 (0.1646) | 8.7087 (0.0021) | 2.4121 (0.1514) | 1.1239 (0.3438) | 0.03276 (0.7281) |
Equation (1) | Equation (6) | Equation (2) | Equation (7) | Equation (3) | Equation (8) | Equation (4) | Equation (9) | |
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
(p-value) | 7.8285 (0.0434) | 10.7328 (0.0071) | 3.4804 (0.0000) | 3.6079 (0.0000) | −243.93 (0.0000) | −270.242 (0.0000) | 0.745222 (0.0000) | 0.08926 (0.0000) |
(p-value) | −4.6832 (0.0416) | −4.3014 (0.0002) | −0.0298 (0.0116) | −0.0403 (0.0000) | ||||
(p-value) | 0.1542 (0.0000) | 0.1229 (0.0000) | 0.0015 (0.0034) | 0.00088 (0.0001) | 11.5622 (0.0002) | 14.4127 (0.0000) | 0.0921 (0.0000) | 0.1055 (0.0000) |
(p-value) | 0.1290 (0.0008) | 0.0918 (0.0125) | 0.0023 (0.0044) | 6.7790 (0.0823) | 17.3193 (0.0000) | 0.0805 (0.0007) | 0.0507 (0.0000) | |
(p-value) | 9.65 × 10−5 (0.0000) | |||||||
(p-value) | 0.0564 (0.0071) | 0.0469 (0.0149) | 7.0002 (0.0084) | 2.3729 (0.0000) | 0.0569 (0.0003) | 0.0652 (0.0000) | ||
(p-value) | 0.1249 (0.0007) | 0.1131 (0.0011) | 14.1513 (0.0231) | 22.6931 (0.0000) | 0.1095 (0.0016) | 0.15337 (0.0000) | ||
(p-value) | 0.1112 (0.0028) | 0.1305 (0.0012) | 0.0023 (0.0072) | 0.0032 (0.0000) | 5.7903 (0.1112) | 0.0976 (0.0000) | 0.1321 (0.0000) | |
(p-value) | 0.0647 (0.300) | 0.1109 (0.0024) | 0.0015 (0.0222) | 0.0032 (0.0000) | 0.1317 (0.0003) | 0.1173 (0.0000) | ||
(p-value) | 0.2204 (0.0000) | 0.1757 (0.0002) | 0.0025 (0.0071) | 17.624 (0.0011) | 33.5316 (0.0000) | 0.2177 (0.0000) | 0.1769 (0.0000) | |
(p-value) | 11.3045 (0.0072) | 0.0749 (0.0031) | 0.00376 (0.0086) | |||||
(p-value) | 0.00017 (0.0983) | |||||||
(p-value) | ||||||||
−0.1321 (0.0011) | 16.2207 (0.0000) | |||||||
−0.0706 (0.0044) | ||||||||
0.1045 (0.0028) | −7.02551 (0.0013) | |||||||
−0.0893 (0.0108) | ||||||||
0.1189 (0.0000) | ||||||||
−15.257 (0.0000) | −0.0288 (0.0000) | |||||||
0.0347 (0.0000) | ||||||||
−4.7636 (0.0125) | ||||||||
−0.0563 (0.0000) | ||||||||
−14.1835 (0.0000 | −0.04896 (0.0239) | |||||||
0.0512 (0.0047) | ||||||||
0.0857 (0.0094) | ||||||||
−0.0880 (0.0063) | ||||||||
5.70837 (0.0160) | ||||||||
−0.0694 (0.0376) | ||||||||
0.1921 (0.0000) | −24.3279 (0.0000) | |||||||
−0.2583 (0.0000) | ||||||||
9.7604 (0.0438) | 0.3321 (0.0000) | −6.21512 (0.0166) | ||||||
0.0837 (0.0083) | ||||||||
0.9904 | 0.9929 | 0.953 | 0.9977 | 0.9733 | 0.9988 | 0.9948 | 0.9996 | |
F-Global (p-value) | 279.8 (0.000) | 267 (0.000) | 85.16 (0.000) | 373.1 (0.000) | 77.46 (0.000) | 674.9 (0.000) | 337.6 (0.000) | 1337 (0.0000) |
Normality (p-value) | 5.21 (0.0743) | 4.8 (0.0907) | 0.5214 (0.7705) | 4.1628 (0.1248) | 0.76972 (0.6805) | 1.488 (0.475) | 0.26671 (0.8752) | 7.594 (0.0224) |
Hetero (p-value) | 0.7344 (0.7097) | 0.6370 (0.7933) | 1.9078 (0.1202) | 1.3033 (0.7935) | 0.96971 (0.5562) | |||
Hetero-X (p-value) | ||||||||
RESET (p-value) | 1.4256 (0.2677) | 1–537 (0.2471) | 22.184 (0.0000) | 1.2392 (0.3305) | 5.8543 (0.0132) | 0.17868 (0.8393) | 2.3765 (0.1292) | 0.94399 (0.4335) |
Equation (1) | Equation (6) | Equation (2) | Equation (3) | Equation (8) | Equation (4) | Equation (9) | |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
(p-value) | −24.658 (0.0048) | 2.8157 (0.0000) | −291.29 (0.0000) | −196.56 (0.0002) | −2.1951 (0.0000) | ||
(p-value) | −12.4911 (0.0391) | ||||||
(p-value) | 0.39818 (0.0000) | 0.4208 (0.0000) | 0.0056 (0.0001) | 33.872 (0.0000) | 27.188 (0.0000) | 0.4418 (0.0000) | 0.5651 (0.0000) |
(p-value) | −0.14096 (0.0037) | −9.0879 (0.1023) | |||||
(p-value) | |||||||
(p-value) | 2.7355 (0.5508) | 2.2148 (0.3565) | |||||
(p-value) | 0.2511 (0.0037) | 0.1432 (0.0144) | 25.0515 (0.0495) | 0.1072 (0.030) | |||
(p-value) | 15.671 (0.0026) | 0.3056 (0.0000) | |||||
(p-value) | |||||||
(p-value) | 0.0028 (0.0164) | 0.07275 (0.053) | |||||
(p-value) | 0.3206 (0.0046) | 0.30801 (0.0022) | 0.00442 (0.0536) | 31.727 (0.0148) | 22.414 (0.0001) | 0.4967 (0.0001) | 0.3943 (0.0000) |
(p-value) | 0.00075 (0.0188) | 0.0037 (0.0304) | 1.08 × 10−5 (0.0669) | 0.9919 (0.4599) | |||
(p-value) | −0.00103 (0.0834) | ||||||
−0.2513 (0.0003) | |||||||
−0.2811 (0.0001) | |||||||
−26.698 (0.0016) | −0.5358 (0.0000) | ||||||
26.106 (0.0059) | |||||||
21.173 (0.0095) | −0.1305 (0.0216) | ||||||
23.4021 (0.032) | 41.3881 (0.0001) | 0.1232 (0.0325) | |||||
−0.2659 (0.0001) | |||||||
46.006 (0.0001) | 1.0212 (0.0000) | ||||||
13.741 (0.0824) | |||||||
−20.422 (0.0468) | −18.8278 (0.0429) | −0.4227 (0.0000) | |||||
35.935 (0.0000) | |||||||
−18.7368 (0.0783) | −21.077 (0.0003) | −0.2513 (0.0002) | |||||
0.9174 | 0.8809 | 0.8414 | 0.990649 | 0.9974 | |||
F-Global (p-value) | 61.08 (0.000) | 40.68 (0.000) | 21.22 (0.000) | 70.63 (0.000) | 328.7 (0.000) | ||
Normality (p-value) | 0.52431 (0.7694) | 0.0754 (0.9630) | 0.7649 (0.6822) | 0.0178 (0.9911) | 6.3868 (0.0410) | 0.5237 (0.7696) | 0.7915 (0.6732) |
Hetero (p-value) | 0.71567 (0.6755) | 0.1951 (0.9953) | 1.6937 (0.1680) | 1.8564 (0.1351) | 1.1828 (0.1595) | ||
Hetero-X (p-value) | 0.79994 (0.6586) | 0.7145 (0.7285) | 2.0357 (0.1149) | ||||
RESET (p-value) | 3.6659 (0.0440) | 3.23 (0.0937) | 0.6083 (0.5540) | 13.341 (0.0003) | 0.81108 (0.4778) | 2.6384 (0.0930) | 0.5699 (0.5829) |
Pre-Pandemic | Post-Pandemic | |||
---|---|---|---|---|
Patents | SII | Patents | SII | |
H1 | ✔ | ? | ✔ | ? |
H2 | ✔ | ✔ | ✔ | |
H3 | ✔ | ✔ | ||
H4 | ✔ | |||
H5 | ✔ | ✔ | ✔ | |
H6 | ✔ | ✔ | ||
H7 | ✔ | |||
H8 | ✔ | ✔ | ||
H9 | ✔ | |||
H10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, J.; Santos, C.; Oliveira, M.A. A Quest for Innovation Drivers with Autometrics: Do These Differ Before and After the COVID-19 Pandemic for European Economies? Economies 2025, 13, 110. https://doi.org/10.3390/economies13040110
Marques J, Santos C, Oliveira MA. A Quest for Innovation Drivers with Autometrics: Do These Differ Before and After the COVID-19 Pandemic for European Economies? Economies. 2025; 13(4):110. https://doi.org/10.3390/economies13040110
Chicago/Turabian StyleMarques, Jorge, Carlos Santos, and Maria Alberta Oliveira. 2025. "A Quest for Innovation Drivers with Autometrics: Do These Differ Before and After the COVID-19 Pandemic for European Economies?" Economies 13, no. 4: 110. https://doi.org/10.3390/economies13040110
APA StyleMarques, J., Santos, C., & Oliveira, M. A. (2025). A Quest for Innovation Drivers with Autometrics: Do These Differ Before and After the COVID-19 Pandemic for European Economies? Economies, 13(4), 110. https://doi.org/10.3390/economies13040110