Quantile Analysis of the Effect of Non-Mandatory Cash Crop Production on Poverty Among Smallholder Farmers
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Research Design
2.3. Sampling Procedure
2.4. Model Specification
Quantile Regression Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dimensions | Indicators | Deprived If… | Weights |
---|---|---|---|
Education | Years of schooling | There is no member aged thirteen years or older who has completed six years | 1/6 |
Child school attendance | Any child at school-age is not attending school up to thirteen years | 1/6 | |
Health conditions | Health affiliation | Affiliated members of household/Total household members are less than 50% | 1/6 |
Child mortality | Any child died in the past five years | 1/6 | |
Housing conditions | Improved sanitations * | Household’s sanitation improved but shared or not improved | 1/18 |
Flooring and walls | The type of floor is other cement or tiles, and the wall is in wood, shrubbery and plastic sheets | 1/18 | |
Electricity | The house has no electricity | 1/18 | |
Cooking fuel | The household does not use electricity or gas | 1/18 | |
Clean drinking water ** | Clean drinking water is at least thirty minutes’ walk (round-trip) | 1/18 | |
Assets ownership | The household does not own a radio, a TV, a bicycle, a car or truck | 1/18 |
1 | Rwanda’s decentralized administrative layers consist of Provinces, Districts, Sectors, Cells and Villages. Cells are the lowest administrative unit that is responsible for community mobilization, data reporting and the provision of administrative documents to the citizens. Districts are the most important layer of the decentralization systems that are characterized by financial and legal independence |
References
- Ali, D. A., Deininger, K., & Goldstein, M. (2014). Environmental and gender impacts of land tenure regularization in africa: Pilot evidence from rwanda. Journal of Development Economics, 110, 262–275. [Google Scholar] [CrossRef]
- Alkire, S., & Seth, S. (2015). Multidimensional poverty reduction in India between 1999 and 2006: Where and how? World Development, 72, 93–108. [Google Scholar] [CrossRef]
- Ashraf, N., Giné, X., & Karlan, D. (2008). Finding Missing markets (and a disturbing epilogue): Evidence from an export crop adoption and Marketing intervention in Kenya Nava. Journal of Agricultural Economics, 91(4), 973–990. [Google Scholar] [CrossRef]
- Awotide, B. A., Karimov, A. A., & Diagne, A. (2016). Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria. Agricultural and Food Economics, 4, 3. [Google Scholar] [CrossRef]
- Biederlack, L., & Rivers, J. (2009). Comprehensive food security & vulnerability analysis guidelines (CFSVA): Ghana. United Nations World Food Programme. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/C52F595446FC19B2852575B4005D0E17-Full_Report.pdf (accessed on 9 December 2024).
- Bordens, K. S., & Abbott, B. B. (2011). Research design and methods. A process approach. Eighth. [Google Scholar]
- Chen, H., Yi, Z., Schmidt-Vogt, D., Ahrends, A., Beckschäfer, P., Kleinn, C., Ranjitkar, S., & Xu, J. (2016). Pushing the limits: The pattern and dynamics of rubber monoculture expansion in Xishuangbanna, SW China. PLoS ONE, 11(2), e0150062. [Google Scholar] [CrossRef] [PubMed]
- Chernozhukov, V., & Hansen, C. (2006). Instrumental quantile regression inference for structural and treatment effect models. Journal of Econometrics, 132(2), 491–525. [Google Scholar] [CrossRef]
- Diao, X., Hazell, P., & Thurlow, J. (2010a). The role of agriculture in african development. World Development, 38(10), 1375–1383. [Google Scholar] [CrossRef]
- Diao, X., Fan, S., Kanyarukiga, S., & Yu, B. (2010b). Agricultural growth and investment options for poverty reduction in rwanda. International Food Policy Research Institute. [Google Scholar]
- Doss, C. R. (2018). Women and agricultural productivity: Reframing the issues. Development Policy Review, 36(1), 35–50. [Google Scholar] [CrossRef] [PubMed]
- Garza-Rodriguez, J., Ayala-Diaz, G. A., Coronado-Saucedo, G. G., Garza-Garza, E. G., & Ovando-Martinez, O. (2021). Determinants of poverty in Mexico: A quantile regression analysis. Economies, 9(2), 60. [Google Scholar] [CrossRef]
- Gollin, D., Lagakos, D., & Waugh, M. E. (2014). The agricultural productivity gap. Quarterly Journal of Economics, 129(2), 939–993. [Google Scholar] [CrossRef]
- Gong, B. (2020). Agricultural productivity convergence in China. China Economic Review, 60, 101423. [Google Scholar] [CrossRef]
- Government of Rwanda. (2018). Kigali: National agricultural policy. Available online: https://www.minagri.gov.rw/index.php?eID=dumpFile&t=f&f=3627&token=4643d60cec964c5fdf4c0307160562ac186cb94d (accessed on 9 December 2024).
- Habiyaremye, A. (2017). Estimating the Impact of Sericulture Adoption on Farmer Income in Rwanda: An Application of Propensity Score Matching. Agrekon, 56(3), 296–311. [Google Scholar] [CrossRef]
- Headey, D. D., & Jayne, T. S. (2014). Adaptation to land constraints: Is africa different? Food Policy, 48, 18–33. [Google Scholar] [CrossRef]
- Kerr, J., & Kolavalli, S. (1999). Impact of agricultural research on poverty alleviation: Conceptual framework with illustrations from the literature. Available online: https://ageconsearch.umn.edu/record/42826/files/eptdp56.pdf (accessed on 9 December 2024).
- Keswell, M., & Carter, M. R. (2014). Poverty and land redistribution. Journal of Development Economics, 110, 250–261. [Google Scholar] [CrossRef]
- Kibet, N., Obare, G. A., & Lagat, J. K. (2018). Risk attitude effects on global-GAP certification decisions by smallholder french bean farmers in Kenya. Journal of Behavioral and Experimental Finance, 18, 18–29. [Google Scholar] [CrossRef]
- Koenker, R., & Hallock, K. F. (2001). Quantile regression (vol. 15, pp. 143–156). Sage. [Google Scholar]
- Kothari, C. R. (2004). Research methodology: Methods and techniques (New Age International (P) Publishers Ed.; 2nd ed.). New Age International. Available online: http://ndl.ethernet.edu.et/bitstream/123456789/79439/5/Research%20Methodology%20-%20Methods%20and%20Techniques%202004.pdf (accessed on 9 December 2024).
- Lipton, M. (2005). The family farm in a globalizing world the role of crop science in alleviating poverty (vol. 40). International Food Policy Research Institute. [Google Scholar]
- Love, A., Magnan, N., & Colson, G. J. (2014). Male and female risk preferences and maize technology adoption in kenya 1–45. Available online: https://ideas.repec.org/p/ags/aaea14/170241.html (accessed on 9 December 2024).
- Mulusew, A., Mingyong, H., Mesfin, M., & Mebratu, K. (2023). Determinants of household poverty: Analysis of multidimensional aspect in rural and urban areas in Amhara Regional State, Ethiopia. Preprint, 1–25. [Google Scholar] [CrossRef]
- National Institute of Statistics of Rwanda (NISR). (2021). Rwanda vital statistics report 2020. National Institute of Statistics of Rwanda. Available online: https://www.statistics.gov.rw/file/9862/download?token=Lp2l4jQs%0Ahttps://statistics.gov.rw/publication/1767 (accessed on 9 December 2024).
- Ochieng, N., & Hepelwa, A. (2018). Effects of small-scale agricultural crop commercialisation on rural household welfare in tanzania: A case study of liwale district, Lindi Region. International Journal of Agricultural Economics, 3(5), 103–111. [Google Scholar] [CrossRef]
- Shimeles, A., Verdier-Chouchane, A., & Boly, A. (2018). Building a resilient and sustainable agriculture in sub-Saharan Africa. Springer Nature. [Google Scholar]
- Thanichanon, P., Schmidt-Vogt, D., Epprecht, M., Heinimann, A., & Wiesmann, U. (2018). Balancing cash and Food: The impacts of agrarian change on rural land use and wellbeing in northern laos. PLoS ONE, 13(12), e0209166. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, J. D. (2012). Poverty alleviation and smallholder agriculture: The rural poverty report 2011. Development and Change, 43(1), 439–448. [Google Scholar] [CrossRef]
- Vandercasteelen, J., Dereje, M., Minten, B., & Taffesse, A. S. (2016, August 14). The effect of technology adoption on farmers’ “adoption decision” and “Taffesse”. International Food Policy Research Institute. 2015/CAE Conference, Milan, IT, USA. [Google Scholar]
- Winklemann, D. L., & Secretariat, C. G. I. A. R. (1998). CGIAR activities and goals: Tracing the connections.
- World Bank. (2011). Rwanda economic update, april 2011: Seeds for higher growth. World Bank. Available online: https://openknowledge.worldbank.org/entities/publication/b9d4d057-025d-57b0-a902-d640b9a18319 (accessed on 9 December 2024).
- Yamane, T. (1967). Elementary sampling theory. Englewood cliffs. Prentice-Hall, Inc. [Google Scholar]
- Zuluaga Diaz, B. (2010). Different impact channels of education on poverty 1. Estudios Gerenciales, 26, 13–37. [Google Scholar]
MPI | Coef. | St. Err. | t-Value | p-Value | [95% Conf | Interval] | Sig |
---|---|---|---|---|---|---|---|
q10 | |||||||
Income | −0.001 | 0.019 | −0.03 | 0.972 | −0.037 | 0.036 | |
Farm size | −0.012 | 0.009 | −1.36 | 0.174 | −0.03 | 0.005 | |
Market accessibility | −0.034 | 0.014 | −2.51 | 0.012 | −0.061 | −0.007 | ** |
age | −0.004 | 0.005 | −0.76 | 0.446 | −0.013 | 0.006 | |
Age squared | 0 | 0 | 1.45 | 0.147 | 0 | 0 | |
Education | −0.005 | 0.002 | −2.22 | 0.027 | −0.009 | −0.001 | ** |
Gender | −0.007 | 0.017 | −0.39 | 0.698 | −0.041 | 0.027 | |
Family size | −0.006 | 0.005 | −1.30 | 0.193 | −0.016 | 0.003 | |
Cooperative membership | 0.001 | 0.025 | 0.06 | 0.956 | −0.048 | 0.05 | |
experience | −0.001 | 0.002 | −0.59 | 0.559 | −0.004 | 0.002 | |
Off-farm revenue | −0.013 | 0.009 | −1.36 | 0.176 | −0.031 | 0.006 | |
Local price | 0 | 0 | −0.81 | 0.42 | 0 | 0 | |
Input efficiency expectations | −0.003 | 0.012 | −0.26 | 0.796 | −0.028 | 0.021 | |
Time valuation | 0 | 0 | −1.11 | 0.268 | 0 | 0 | |
adoption | 0.033 | 0.055 | 0.60 | 0.549 | −0.075 | 0.14 | |
I never take risk | −0.008 | 0.023 | −0.35 | 0.723 | −0.053 | 0.037 | |
I mostly do not take risk | −0.025 | 0.022 | −1.12 | 0.262 | −0.069 | 0.019 | |
I sometimes take risk | −0.034 | 0.018 | −1.84 | 0.066 | −0.069 | 0.002 | * |
In most cases, I do take risk | −0.021 | 0.025 | −0.86 | 0.389 | −0.07 | 0.027 | |
Constant | 0.269 | 0.332 | 0.81 | 0.418 | −0.384 | 0.922 | |
q25 | |||||||
Income | 0.004 | 0.025 | 0.15 | 0.877 | −0.046 | 0.053 | |
Farm size | −0.032 | 0.013 | −2.51 | 0.012 | −0.058 | −0.007 | ** |
Market accessibility | −0.056 | 0.023 | −2.40 | 0.017 | −0.101 | −0.01 | ** |
age | −0.006 | 0.005 | −1.19 | 0.236 | −0.016 | 0.004 | |
Age squared | 0 | 0 | 1.53 | 0.127 | 0 | 0 | |
Education | −0.006 | 0.003 | −2.06 | 0.04 | −0.011 | 0 | ** |
Gender | −0.001 | 0.02 | −0.06 | 0.956 | −0.04 | 0.037 | |
Family size | −0.002 | 0.005 | −0.50 | 0.621 | −0.012 | 0.007 | |
Cooperative membership | −0.029 | 0.034 | −0.86 | 0.392 | −0.096 | 0.038 | |
experience | 0 | 0.001 | 0.02 | 0.983 | −0.002 | 0.003 | |
Off-farm revenue | −0.017 | 0.019 | −0.88 | 0.379 | −0.055 | 0.021 | |
Local price | 0 | 0 | −0.67 | 0.504 | 0 | 0 | |
Input efficiency expectations | −0.003 | 0.017 | −0.19 | 0.848 | −0.037 | 0.03 | |
Time valuation | 0 | 0 | −1.23 | 0.221 | 0 | 0 | |
adoption | 0.077 | 0.09 | 0.85 | 0.395 | −0.1 | 0.254 | |
I never take risk | 0.033 | 0.036 | 0.91 | 0.364 | −0.039 | 0.105 | |
I mostly do not take risk | −0.003 | 0.019 | −0.16 | 0.871 | −0.041 | 0.034 | |
I sometimes take risk | 0.007 | 0.017 | 0.42 | 0.678 | −0.027 | 0.041 | |
In most cases, I do take risk | −0.001 | 0.022 | −0.04 | 0.967 | −0.044 | 0.042 | |
Constant | 0.293 | 0.352 | 0.83 | 0.406 | −0.399 | 0.985 | |
q50 | |||||||
Income | 0.002 | 0.044 | 0.05 | 0.957 | −0.085 | 0.089 | |
Farm size | −0.025 | 0.017 | −1.50 | 0.135 | −0.059 | 0.008 | |
Market accessibility | −0.024 | 0.025 | −0.94 | 0.346 | −0.074 | 0.026 | |
age | −0.008 | 0.005 | −1.66 | 0.098 | −0.018 | 0.002 | * |
Age squared | 0 | 0 | 1.68 | 0.094 | 0 | 0 | * |
Education | −0.009 | 0.004 | −2.25 | 0.025 | −0.017 | −0.001 | ** |
Gender | −0.004 | 0.031 | −0.12 | 0.906 | −0.064 | 0.057 | |
Family size | −0.001 | 0.004 | −0.34 | 0.735 | −0.01 | 0.007 | |
Cooperative membership | −0.019 | 0.033 | −0.58 | 0.561 | −0.085 | 0.046 | |
experience | 0 | 0.001 | −0.30 | 0.762 | −0.003 | 0.002 | |
Off-farm revenue | −0.038 | 0.029 | −1.33 | 0.183 | −0.095 | 0.018 | |
Local price | 0 | 0 | 0.39 | 0.697 | 0 | 0 | |
Input efficiency expectations | −0.002 | 0.013 | −0.15 | 0.882 | −0.028 | 0.024 | |
Time valuation | 0 | 0 | −1.32 | 0.189 | 0 | 0 | |
adoption | −0.076 | 0.099 | −0.76 | 0.446 | −0.27 | 0.119 | |
I never take risk | 0.061 | 0.043 | 1.41 | 0.159 | −0.024 | 0.146 | |
I mostly do not take risk | −0.004 | 0.025 | −0.14 | 0.889 | −0.054 | 0.047 | |
I sometimes take risk | 0.008 | 0.024 | 0.34 | 0.736 | −0.039 | 0.055 | |
In most cases, I do take risk | 0.005 | 0.034 | 0.14 | 0.89 | −0.062 | 0.072 | |
Constant | 0.522 | 0.623 | 0.84 | 0.403 | −0.704 | 1.747 | |
q75 | |||||||
Income | 0.011 | 0.026 | 0.41 | 0.685 | −0.04 | 0.061 | |
Farm size | 0.014 | 0.021 | 0.67 | 0.504 | −0.027 | 0.054 | |
Market accessibility | −0.018 | 0.028 | −0.66 | 0.513 | −0.073 | 0.036 | |
age | −0.015 | 0.009 | −1.73 | 0.084 | −0.032 | 0.002 | * |
Age squared | 0 | 0 | 1.51 | 0.132 | 0 | 0 | |
Education | −0.013 | 0.005 | −2.60 | 0.01 | −0.022 | −0.003 | *** |
Gender | 0.034 | 0.033 | 1.04 | 0.298 | −0.03 | 0.098 | |
Family size | 0.007 | 0.006 | 1.16 | 0.245 | −0.005 | 0.02 | |
Cooperative membership | 0.015 | 0.049 | 0.31 | 0.754 | −0.081 | 0.112 | |
experience | 0.001 | 0.001 | 0.69 | 0.491 | −0.002 | 0.004 | |
Off-farm revenue | −0.033 | 0.035 | −0.94 | 0.347 | −0.102 | 0.036 | |
Local price | 0 | 0 | 0.72 | 0.473 | 0 | 0 | |
Input efficiency expectations | −0.027 | 0.017 | −1.65 | 0.101 | −0.06 | 0.005 | |
Time valuation | 0 | 0 | −2.15 | 0.032 | 0 | 0 | ** |
adoption | −0.118 | 0.104 | −1.14 | 0.257 | −0.323 | 0.086 | |
I never take risk | 0.078 | 0.041 | 1.91 | 0.057 | −0.002 | 0.159 | * |
I mostly do not take risk | 0.065 | 0.037 | 1.77 | 0.077 | −0.007 | 0.137 | * |
I sometimes take risk | 0.074 | 0.034 | 2.17 | 0.031 | 0.007 | 0.142 | ** |
In most cases, I do take risk | 0.044 | 0.032 | 1.36 | 0.173 | −0.019 | 0.107 | |
Constant | 0.624 | 0.371 | 1.68 | 0.094 | −0.106 | 1.355 | * |
q90 | |||||||
Income | 0.023 | 0.05 | 0.45 | 0.651 | −0.075 | 0.12 | |
Farm size | 0.01 | 0.022 | 0.45 | 0.656 | −0.033 | 0.052 | |
Market accessibility | −0.014 | 0.037 | −0.38 | 0.702 | −0.088 | 0.059 | |
age | −0.021 | 0.011 | −2.02 | 0.044 | −0.042 | −0.001 | ** |
Age squared | 0 | 0 | 2.25 | 0.025 | 0 | 0 | ** |
Education | −0.009 | 0.006 | −1.46 | 0.146 | −0.021 | 0.003 | |
Gender | 0.041 | 0.04 | 1.01 | 0.314 | −0.039 | 0.12 | |
Family size | 0.013 | 0.009 | 1.53 | 0.127 | −0.004 | 0.03 | |
Cooperative membership | −0.017 | 0.062 | −0.27 | 0.785 | −0.139 | 0.105 | |
experience | 0.001 | 0.002 | 0.49 | 0.628 | −0.003 | 0.005 | |
Off-farm revenue | 0.001 | 0.04 | 0.03 | 0.973 | −0.078 | 0.081 | |
Local price | 0 | 0 | −0.13 | 0.899 | 0 | 0 | |
Input efficiency expectations | −0.033 | 0.021 | −1.59 | 0.112 | −0.074 | 0.008 | |
Time valuation | 0 | 0 | −2.57 | 0.011 | 0 | 0 | ** |
adoption | −0.015 | 0.153 | −0.10 | 0.924 | −0.316 | 0.286 | |
I never take risk | 0.118 | 0.054 | 2.17 | 0.031 | 0.011 | 0.225 | ** |
I mostly do not take risk | 0.059 | 0.045 | 1.32 | 0.187 | −0.029 | 0.148 | |
I sometimes take risk | 0.077 | 0.051 | 1.51 | 0.131 | −0.023 | 0.177 | |
In most cases, I do take risk | 0.026 | 0.032 | 0.80 | 0.424 | −0.038 | 0.09 | |
Constant | 0.6 | 0.722 | 0.83 | 0.407 | −0.82 | 2.021 | |
Mean dependent var | 0.231 | SD dependent var | 0.141 |
MPI | Coef. | St.Err. | t-Value | p-Value | [95% Conf | Interval] | Sig |
---|---|---|---|---|---|---|---|
q10 | |||||||
sigma | −0.041 | 0.038 | −1.08 | 0.282 | −0.117 | 0.034 | |
alpha | −0.052 | 0.01 | −4.96 | 0 | −0.072 | −0.031 | *** |
lambda | −0.002 | 0.001 | −1.63 | 0.105 | −0.004 | 0 | |
Constant | 0.14 | 0.018 | 7.85 | 0 | 0.104 | 0.175 | *** |
q25 | |||||||
sigma | −0.034 | 0.034 | −1.00 | 0.318 | −0.1 | 0.033 | |
alpha | −0.056 | 0.024 | −2.33 | 0.022 | −0.104 | −0.008 | ** |
lambda | −0.003 | 0.002 | −1.48 | 0.142 | −0.006 | 0.001 | |
Constant | 0.174 | 0.033 | 5.33 | 0 | 0.109 | 0.239 | *** |
q50 | |||||||
sigma | −0.047 | 0.073 | −0.64 | 0.52 | −0.192 | 0.098 | |
alpha | −0.033 | 0.039 | −0.85 | 0.398 | −0.11 | 0.044 | |
lambda | 0.003 | 0.005 | 0.50 | 0.616 | −0.008 | 0.013 | |
Constant | 0.175 | 0.052 | 3.34 | 0.001 | 0.071 | 0.279 | *** |
q75 | |||||||
sigma | 0.133 | 0.146 | 0.91 | 0.364 | −0.156 | 0.423 | |
alpha | −0.024 | 0.065 | −0.38 | 0.707 | −0.153 | 0.104 | |
lambda | 0.005 | 0.007 | 0.78 | 0.438 | −0.008 | 0.019 | |
Constant | 0.232 | 0.056 | 4.14 | 0 | 0.121 | 0.343 | *** |
q90 | |||||||
sigma | 0.115 | 0.089 | 1.29 | 0.2 | −0.061 | 0.291 | |
alpha | 0.021 | 0.057 | 0.36 | 0.719 | −0.093 | 0.134 | |
lambda | 0.003 | 0.005 | 0.53 | 0.6 | −0.007 | 0.012 | |
Constant | 0.282 | 0.059 | 4.77 | 0 | 0.165 | 0.399 | *** |
Mean dependent var | 0.185 | SD dependent var | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwimana, P.; Obare, G.A.; Ingasia, O.A. Quantile Analysis of the Effect of Non-Mandatory Cash Crop Production on Poverty Among Smallholder Farmers. Economies 2025, 13, 93. https://doi.org/10.3390/economies13040093
Uwimana P, Obare GA, Ingasia OA. Quantile Analysis of the Effect of Non-Mandatory Cash Crop Production on Poverty Among Smallholder Farmers. Economies. 2025; 13(4):93. https://doi.org/10.3390/economies13040093
Chicago/Turabian StyleUwimana, Placide, Gideon A. Obare, and Oscar Ayuya Ingasia. 2025. "Quantile Analysis of the Effect of Non-Mandatory Cash Crop Production on Poverty Among Smallholder Farmers" Economies 13, no. 4: 93. https://doi.org/10.3390/economies13040093
APA StyleUwimana, P., Obare, G. A., & Ingasia, O. A. (2025). Quantile Analysis of the Effect of Non-Mandatory Cash Crop Production on Poverty Among Smallholder Farmers. Economies, 13(4), 93. https://doi.org/10.3390/economies13040093