A Two-Stage DEA Model to Evaluate the Performance of Iberian Banks
Abstract
:1. Introduction
- (a)
- lower total assets to GDP ratio;
- (b)
- an higher customer credit to total assets ratio;
- (c)
- a higher individual’ credits stocks to country’s GDP;
- (d)
- a higher non-financial firms’ credits to the country’s GDP;
- (e)
- an higher credit risk to total credit ratio (namely regarding Portugal);
- (f)
- a higher dependence on customer deposits (Banco de Portugal 2020).
2. Literature Review
2.1. Intellectual Capital and Its measurement
2.2. Relating Firms’ IC and Performance
2.3. IC and Performance in the Banking Sector: Prior Studies
3. Methodology
3.1. Contextualisation of the Banking Sector and Period of Analysis
3.2. Data Collection and the Data Envelopment Analysis (DEA) Model
Input and Output Variables
3.3. Econometric Analysis
3.3.1. Fractional Regression Model (FRM)
3.3.2. Dependent, Independent, and Control Variables
4. Results and Discussion
4.1. Banks’ Efficiency Analysis
4.2. IC and Performance Nexus Analysis
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://www.bportugal.pt/sites/default/files/anexos/pdf-boletim/overviewportuguesebankingsystem_2016q4_en_0_0.pdf, accessed in 15 January 2021. |
References
- Aggelopoulos, Eleftherios, and Antonios Georgopoulos. 2017. Bank Branch Efficiency under Environmental Change: A Bootstrap DEA on Monthly Profit and Loss Accounting Statements of Greek Retail Branches. European Journal of Operational Research 261: 1170–88. [Google Scholar] [CrossRef]
- Ahangar, Reza. 2011. The Relationship between Intellectual Capital and Financial Performance: An Empirical Investigation in an Iranian Company. African Journal of Business Management 5: 88–95. [Google Scholar]
- Ahn, Heinz, and Minh Hanh Le. 2014. An insight into the specification of the input-output set for DEA-based bank efficiency measurement. Management Review Quarterly 64: 3–37. [Google Scholar] [CrossRef]
- Al-Musali, Mahfoudh Abdul Karem, and Ku Nor Izah Ku Ismail. 2014. Intellectual Capital and Its Effect on Financial Performance of Banks: Evidence from Saudi Arabia. Procedia-Social and Behavioral Sciences 164: 201–7. [Google Scholar] [CrossRef] [Green Version]
- Alipour, Mohammad. 2012. The Effect of Intellectual Capital on Firm Performance: An Investigation of Iran Insurance Companies. Measuring Business Excellence 16: 53–66. [Google Scholar] [CrossRef]
- Anifowose, Mutalib, Hafiz Majdi Abdul Rashid, and Hairul Azlan Annuar. 2017. Intellectual Capital Disclosure and Corporate Market Value: Does Board Diversity Matter? Journal of Accounting in Emerging Economies 7: 369–98. [Google Scholar] [CrossRef]
- Banco de Portugal. 2020. Portuguese Banking System: Latest Developments 4th Quarter 2016. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjCwP2U66ryAhWWAogKHRlxBXUQFnoECAUQAQ&url=https%3A%2F%2Fwww.bportugal.pt%2Fen%2Fpublicacao%2Fportuguese-banking-system-4rd-quarter-2016&usg=AOvVaw38wa4T7vcA_6l-4a2RVANG (accessed on 17 January 2021).
- Banker, Rajiv D., Abraham Charnes, and William Wager Cooper. 1984. Estimation of Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30: 1078–92. [Google Scholar] [CrossRef] [Green Version]
- Barman, Nitashree, Kingshuk Adhikari, and Nikhil Bhusan Dey. 2015. Technical Efficiency of Public Sector Banks in India: An Empirical Study. Journal of Commerce and Trade 10: 56–65. [Google Scholar]
- Bontis, Nick. 2001. Managing Organizational Knowledge by Diagnosing Intellectual Capital: Framing and Advancing the State of the Field. International Journal of Technology Management, 267–97. [Google Scholar] [CrossRef]
- Cabrita, Maria do Rosário, and Nick Bontis. 2008. Intellectual Capital and Business Performance in the Portuguese Banking Industry. International Journal Technology Management 43: 1–3212. [Google Scholar] [CrossRef] [Green Version]
- Cabrita, Maria do Rosário Meireles Ferreira, Maria de Lurdes Ribeiro da Silva, Ana Maria Gomes Rodrigues, and María del Pilar Muñoz Dueñas. 2017. Competitiveness and Disclosure of Intellectual Capital: An Empirical Research in Portuguese Banks. Journal of Intellectual Capital 18: 486–505. [Google Scholar] [CrossRef]
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. Measuring the Efficiency of Decision Making Units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Chen, Yu-Shan. 2008. The Positive Effect of Green Intellectual Capital on Competitive Advantages of Firms. Journal of Business Ethics 77: 271–86. [Google Scholar] [CrossRef]
- Chen, Zhongfei, Roman Matousek, and Peter Wanke. 2018. Chinese Bank Efficiency during the Global Financial Crisis: A Combined Approach Using Satisficing DEA and Support Vector Machines☆. The North American Journal of Economics and Finance 43: 71–86. [Google Scholar] [CrossRef]
- Chiu, Yung-ho, Zhengying Luo, Yu-Chuan Chen, Zebin Wang, and Min-Pei Tsai. 2013. A Comparison of Operating Performance Management between Taiwan Banks and Foreign Banks Based on the Meta-Hybrid DEA Model. Economic Modelling 33: 433–39. [Google Scholar] [CrossRef]
- Diallo, Boubacar. 2018. Bank Efficiency and Industry Growth during Financial Crises. Economic Modelling 68: 11–22. [Google Scholar] [CrossRef]
- Dyakona, Valentina. 2015. Genesis of the theory of intellectual capital and its importance in modern economy. Information Technologies, Management and Society 8: 68–71. [Google Scholar]
- Du, Kai, Andrew C. Worthington, and Valentin Zelenyuk. 2018. Data Envelopment Analysis, Truncated Regression and Double-Bootstrap for Panel Data with Application to Chinese Banking. European Journal of Operational Research 265: 748–64. [Google Scholar] [CrossRef] [Green Version]
- Ferenhof, Helio Aisenberg, Susanne Durst, Mariana Zaniboni Bialecki, and Paulo Mauricio Selig. 2015. Intellectual Capital Dimensions: State of the Art in 2014. Journal of Intellectual Capital 16: 58–100. [Google Scholar] [CrossRef]
- Fernandes, Filipa Da Silva, Charalampos Stasinakis, and Valeriya Bardarova. 2018. Two-Stage DEA-Truncated Regression: Application in Banking Efficiency and Financial Development. Expert Systems with Applications 96: 284–301. [Google Scholar] [CrossRef] [Green Version]
- Firer, Steven, and Mitchell Williams. 2003. Intellectual Capital and Traditional Measures of Corporate Performance. Journal of Intellectual Capital 4: 348–60. [Google Scholar] [CrossRef]
- Garcia-Parra, Mercedes, Pep Simo, Jose M. Sallan, and Juan Mundet. 2009. Intangible Liabilities: Beyond Models of Intellectual Assets. Management Decision 47: 819–30. [Google Scholar] [CrossRef]
- Giuliani, Marco. 2015. Rome Wasn’t Built in a Day … Reflecting on Time, Intellectual Capital and Intellectual Liabilities. Journal of Intellectual Capital 16: 2–19. [Google Scholar] [CrossRef]
- Henriques, Iago Cotrim, Vinicius Amorim Sobreiro, Herbert Kimura, and Enzo Barberio Mariano. 2020. Two-stage DEA in banks: Terminological controversies and future directions. Expert Systems with Applications 29: 113632. [Google Scholar] [CrossRef] [PubMed]
- Inkinen, Henri. 2015. Review of Empirical Research on Intellectual Capital and Firm Performance. Journal of Intellectual Capital 16: 518–65. [Google Scholar] [CrossRef]
- Inkinen, Henri, Aino Kianto, Mika Vanhala, and Paavo Ritala. 2017. Structure of Intellectual Capital—An International Comparison. Accounting, Auditing & Accountability Journal 30: 1160–83. [Google Scholar] [CrossRef]
- Iqbal, Javed, and Jahan Zaib. 2017. Corporate Governance, Intellectual Capital and Financial Performance of Banks Listed in Pakistan Stock Exchange. Pakistan Administrative Review 1: 175–96. [Google Scholar]
- Irawanto, Dodi, Haryo Gondomono, and Ananda Hussein. 2017. The Effect of Intellectual Capital on A Company’s Performance Moderated by ITS Governance and IT Strategy Integration Employed By Bank Listed in Indonesian Stock Exchange. The South East Asian Journal of Management 11. Available online: http://journal.ui.ac.id/index.php/tseajm/article/view/8522 (accessed on 17 January 2021). [CrossRef]
- Jafarnezhad, Morteza, and Naser Ali Yadollahzade Tabari. 2016. The Effect of Intellectual Capital on Financial Performance: Evidence from Iranian Banks Listed in Tehran’s Stock Exchange. International Journal of Management, Accounting and Economics 3: 1–13. [Google Scholar]
- Joshi, Mahesh, Daryll Cahill, Jasvinder Sidhu, and Monika Kansal. 2013. Intellectual Capital and Financial Performance: An Evaluation of the Australian Financial Sector. Journal of Intellectual Capital 14: 264–85. [Google Scholar] [CrossRef] [Green Version]
- Kianto, Aino, Josune Sáenz, and Nekane Aramburu. 2017. Knowledge-Based Human Resource Management Practices, Intellectual Capital and Innovation. Journal of Business Research 81: 11–20. [Google Scholar] [CrossRef]
- Kickert, Walter, and Tamyko Ysa. 2014. New development: How the Spanish government responded to the global economic, banking and fiscal crisis. Public Money & Management 34: 453–57. [Google Scholar]
- Kujansivu, Paula, and Antti Lönnqvist. 2007. Investigating the Value and Efficiency of Intellectual Capital. Journal of Intellectual Capital 8: 272–87. [Google Scholar] [CrossRef]
- Liu, Hsiang-Hsi. 2017. Applying Three-Stage DEA on the Operational Performance of Foreign Banks in Taiwan. International Review of Applied Economics 32: 1–15. [Google Scholar] [CrossRef]
- Long Kweh, Qian, Yee Chuann Chan, and Irene Wei Kiong Ting. 2013. Measuring Intellectual Capital Efficiency in the Malaysian Software Sector. Journal of Intellectual Capital 14: 310–24. [Google Scholar] [CrossRef]
- Luo, Xueming. 2003. Evaluating the Profitability and Marketability Efficiency of Large Banks: An Application of Data Envelopment Analysis. Journal of Business Research 56: 627–35. [Google Scholar] [CrossRef]
- Maditinos, Dimitrios, Dimitrios Chatzoudes, Charalampos Tsairidis, and Georgios Theriou. 2011. The Impact of Intellectual Capital on Firms’ Market Value and Financial Performance. Journal of Intellectual Capital 12: 132–51. [Google Scholar] [CrossRef] [Green Version]
- Maji, Santi Gopal, and Mitra Goswami. 2016. Intellectual Capital and Firm Performance in Emerging Economies: The Case of India. Review of International Business and Strategy 26: 410–30. [Google Scholar] [CrossRef]
- Martín-de-Castro, Gregorio, Miriam Delgado-Verde, Pedro López-Sáez, and José E Navas-López. 2011. Towards ‘An Intellectual Capital-Based View of the Firm’: Origins and Nature. Journal of Business Ethics 98: 649–62. [Google Scholar] [CrossRef]
- Meles, Antonio, Claudio Porzio, Gabriele Sampagnaro, and Vincenzo Verdoliva. 2016. The Impact of the Intellectual Capital Efficiency on Commercial Banks Performance: Evidence from the US. Journal of Multinational Financial Management 36: 64–74. [Google Scholar] [CrossRef]
- Mention, Anne-Laure, and Nick Bontis. 2013. Intellectual Capital and Performance within the Banking Sector of Luxembourg and Belgium. Journal of Intellectual Capital 14: 286–309. [Google Scholar] [CrossRef]
- Nawaz, Tasawar, and Roszaini Haniffa. 2017. Determinants of Financial Performance of Islamic Banks: An Intellectual Capital Perspective. Journal of Islamic Accounting and Business Research 8: 130–42. [Google Scholar] [CrossRef] [Green Version]
- Nazari, Jamal A., and Irene M. Herremans. 2007. Extended VAIC Model: Measuring Intellectual Capital Components. Edited by Nick Bontis and Christopher K Bart. Journal of Intellectual Capital 8: 595–609. [Google Scholar] [CrossRef]
- Neves, Maria Elisabete, Catarina Proença, and António Dias. 2020. Bank profitability and efficiency in Portugal and Spain: A non-linearity approach. Journal of Risk and Financial Management 13: 284. [Google Scholar] [CrossRef]
- Novickytė, Lina, and Jolanta Droždz. 2018. Measuring the Efficiency in the Lithuanian Banking Sector: The DEA Application. International Journal of Financial Studies 6: 37. [Google Scholar] [CrossRef] [Green Version]
- Ouenniche, Jamal, and Skarleth Carrales. 2018. Assessing Efficiency Profiles of UK Commercial Banks: A DEA Analysis with Regression-Based Feedback. Annals of Operations Research 266: 551–87. [Google Scholar] [CrossRef] [Green Version]
- Ousama, A. Anam, and A. Hamid Fatima. 2015. Intellectual Capital and Financial Performance of Islamic Banks. International Journal of Learning and Intellectual Capital 12: 1–15. [Google Scholar] [CrossRef]
- Ozkan, Nasif, Sinan Cakan, and Murad Kayacan. 2017. Intellectual Capital and Financial Performance: A Study of the Turkish Banking Sector. Borsa Istanbul Review 17: 190–98. [Google Scholar] [CrossRef] [Green Version]
- Papke, Leslie E., and Jeffrey M. Wooldridge. 1996. Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates. Journal of Applied Econometrics 11: 619–32. [Google Scholar] [CrossRef] [Green Version]
- Paradi, Joseph C., Stephen Rouatt, and Haiyan Zhu. 2011. Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega 39: 99–109. [Google Scholar] [CrossRef]
- Pulic, Ante. 2004. Intellectual Capital—Does It Create or Destroy Value? Measuring Business Excellence 8: 62–68. [Google Scholar] [CrossRef] [Green Version]
- Raheli, Hossein, Rassul Mohammad Rezaei, Mehri Raei Jadidi, and Hassan Ghasemi Mobtaker. 2017. A Two-Stage DEA Model to Evaluate Sustainability and Energy Efficiency of Tomato Production. Information Processing in Agriculture 4: 342–50. [Google Scholar] [CrossRef]
- Ramalho, Esmeralda A., Joaquim J. S. Ramalho, and Pedro D. Henriques. 2010. Fractional Regression Models for Second Stage DEA Efficiency Analyses. Journal of Productivity Analysis 34: 239–55. [Google Scholar] [CrossRef]
- Said, Houda Ben, Rim Zouari-Hadiji, and Abdelfettah Bouri. 2017. French Bank Mergers and Acquisitions Performance. Risk Governance and Control: Financial Markets and Institutions 7: 113–25. [Google Scholar] [CrossRef]
- Shewell, Patricia, and Stephen Migiro. 2016. Data Envelopment Analysis in Performance Measurement: A Critical Analysis of the Literature. Problems and Perspectives in Management 14: 705–13. [Google Scholar] [CrossRef] [Green Version]
- Sveiby, Karl-Erik, and Tom Lloyd. 2010. Methods for Measuring Intangible Assets. Available online: https://harisportal.hanken.fi/sv/publications/methods-for-measuring-intangible-assets (accessed on 17 January 2021).
- Tan, Hong Pew, David Plowman, and Phil Hancock. 2007. Intellectual Capital and Financial Returns of Companies. Journal of Intellectual Capital 8: 76–95. [Google Scholar] [CrossRef]
- Thakur, Virender Singh. 2017. Intellectual Capital: Its Effect on Financial Performance of Indian Public and Private Sector Banks. Journal of Social Sciences 3: 100–106. [Google Scholar]
- Tiwari, Ranjit, and Harishankar Vidyarthi. 2018. Intellectual Capital and Corporate Performance: A Case of Indian Banks. Journal of Accounting in Emerging Economies 8: 84–105. [Google Scholar] [CrossRef]
- Tsai, Chia-Han, Hung-Yi Wu, I-Shuo Chen, Jui-Kuei Chen, and Rih-Wei Ye. 2017. Exploring Benchmark Corporations in the Semiconductor Industry Based on Efficiency. The Journal of High Technology Management Research 28: 188–207. [Google Scholar] [CrossRef]
- Tsolas, Ioannis E., Vincent Charles, and Tatiana Gherman. 2020. Supporting better practice benchmarking: A DEA-ANN approach to bank branch performance assessment. Expert Systems with Applications 160: 113599. [Google Scholar] [CrossRef]
- Vale, José, Manuel Castelo Branco, and João Ribeiro. 2016. Individual Intellectual Capital versus Collective Intellectual Capital in a Meta-Organization. Journal of Intellectual Capital 17: 279–97. [Google Scholar] [CrossRef]
- Vale, José, João Alves Ribeiro, and Manuel Castelo Branco. 2017. Intellectual Capital Management and Power Mobilisation in a Seaport. Journal of Knowledge Management 21: 1183–201. [Google Scholar] [CrossRef]
- Veltri, Stefania, and Antonella Silvestri. 2011. Direct and Indirect Effects of Human Capital on Firm Value: Evidence from Italian Companies. Journal of Human Resource Costing & Accounting 15: 232–54. [Google Scholar] [CrossRef]
- Venugopal, Deepa, S. Thirupparkadal Nambi, and M. Lakshmanan. 2018. A Data Envelopment Analysis Approach to Performance Efficiency of Intellectual Capital—Case of Titan Company Limited#. SDMIMD Journal of Management 9: 1. [Google Scholar] [CrossRef] [Green Version]
- Vidyarthi, Harishankar. 2018. Dynamics of Intellectual Capitals and Bank Efficiency in India. The Service Industries Journal 39: 1–24. [Google Scholar] [CrossRef]
- Wang, Mushun. 2011. Measuring Intellectual Capital and Its Effect on Financial Performance: Evidence from the Capital Market in Taiwan. Frontiers of Business Research in China 5: 243–65. [Google Scholar] [CrossRef]
- Wanke, Peter, Carlos Pestana Barros, and Ali Emrouznejad. 2016. Assessing Productive Efficiency of Banks Using Integrated Fuzzy-DEA and Bootstrapping: A Case of Mozambican Banks. European Journal of Operational Research 249: 378–89. [Google Scholar] [CrossRef] [Green Version]
- Wanke, Peter, and Carlos Pestana Barros. 2016. Efficiency Drivers in Brazilian Insurance: A Two-Stage DEA Meta Frontier-Data Mining Approach. Economic Modelling 53: 8–22. [Google Scholar] [CrossRef]
- Wanke, Peter, Andrew Maredza, and Rangan Gupta. 2017. Merger and Acquisitions in South African Banking: A Network DEA Model. Research in International Business and Finance 41: 362–76. [Google Scholar] [CrossRef]
- Xu, Xin-long, Xiao-nan Yang, Liang Zhan, Cheng Kun Liu, Ni-di Zhou, and Meimei Hu. 2017. Examining the Relationship between Intellectual Capital and Performance of Listed Environmental Protection Companies. Environmental Progress & Sustainable Energy 36: 1056–66. [Google Scholar] [CrossRef]
- Xu, Tao. 2018. A Two-Stage DEA Test on the Chinese Listed Banks. Engineering Economics 29: 24–31. [Google Scholar] [CrossRef] [Green Version]
- Yalama, Abdullah, and Metin Coskun. 2007. Intellectual Capital Performance of Quoted Banks on the Istanbul Stock Exchange Market. Journal of Intellectual Capital 8: 256–71. [Google Scholar] [CrossRef]
- Zéghal, Daniel, and Anis Maaloul. 2010. Analysing Value Added as an Indicator of Intellectual Capital and Its Consequences on Company Performance. Journal of Intellectual Capital 11: 39–60. [Google Scholar] [CrossRef] [Green Version]
Outputs | Inputs |
---|---|
|
|
Total NLA | Total Deposits | Net II | Total OE | Nr. Employees | Fixed Assets | |
---|---|---|---|---|---|---|
Total NLA | 1 | |||||
Total deposits | 0.9967 * | 1 | ||||
0.0000 | ||||||
Net II | 0.9794 * | 0.9693 * | 1 | |||
0.0000 | 0.0000 | |||||
Total OE | 0.9893 * | 0.9832 * | 0.9901 * | 1 | ||
0.0000 | 0.0000 | 0.0000 | ||||
Nr. Employees | 0.9773 * | 0.9718 * | 0.9869 * | 0.9925 * | 1 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
Fixed Assets | 0.9722 * | 0.9678 * | 0.9754 * | 0.9714 * | 0.9579 * | 1 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Country | DMU | Bank | TE | PTE | SE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | Mean | 2013 | 2014 | 2015 | 2016 | Mean | 2013 | 2014 | 2015 | 2016 | Mean | |||
PT | 1 | Banco L. J. Carregosa, S.A. | 0.423 | 0.253 | 0.372 | 0.287 | 0.334 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.423 | 0.253 | 0.372 | 0.287 | 0.334 |
ES | 2 | Caixabank, S.A. | 0.231 | 0.274 | 0.307 | 0.398 | 0.303 | 0.779 | 0.945 | 0.971 | 1.000 | 0.924 | 0.296 | 0.290 | 0.317 | 0.398 | 0.325 |
ES | 3 | BFA Tenedora de Acciones | 0.387 | 0.500 | 0.437 | 0.437 | 0.440 | 1.000 | 1.000 | 0.881 | 0.883 | 0.941 | 0.387 | 0.500 | 0.496 | 0.495 | 0.469 |
ES | 4 | Liberbank SA | 0.209 | 0.227 | 0.259 | 0.360 | 0.264 | 0.473 | 0.434 | 0.483 | 0.641 | 0.508 | 0.441 | 0.524 | 0.536 | 0.562 | 0.516 |
ES | 5 | Renta 4 Banco, S.A. | 0.055 | 0.046 | 0.053 | 0.124 | 0.069 | 0.208 | 0.214 | 0.211 | 0.246 | 0.220 | 0.265 | 0.214 | 0.251 | 0.503 | 0.308 |
ES | 6 | Ibercaja Banco SA | 0.219 | 0.228 | 0.171 | 0.381 | 0.250 | 0.540 | 0.482 | 0.359 | 0.615 | 0.499 | 0.405 | 0.473 | 0.475 | 0.619 | 0.493 |
ES | 7 | Abanca C. B. SA | 0.213 | 0.235 | 0.190 | 0.424 | 0.265 | 0.436 | 0.468 | 0.551 | 0.644 | 0.525 | 0.488 | 0.502 | 0.345 | 0.658 | 0.498 |
ES | 8 | Kutxabank SA | 0.176 | 0.176 | 0.234 | 0.447 | 0.258 | 0.496 | 0.548 | 0.558 | 0.650 | 0.563 | 0.355 | 0.321 | 0.420 | 0.688 | 0.446 |
ES | 9 | Banco Caminos SA | 0.384 | 0.311 | 0.477 | 0.549 | 0.430 | 0.512 | 0.402 | 0.502 | 0.615 | 0.508 | 0.749 | 0.775 | 0.949 | 0.893 | 0.841 |
ES | 10 | Banco Inversis SA | 0.575 | 0.572 | 0.385 | 0.354 | 0.471 | 0.728 | 0.797 | 0.744 | 0.880 | 0.787 | 0.790 | 0.718 | 0.517 | 0.402 | 0.607 |
ES | 11 | CIMD Group | 0.219 | 0.052 | 0.033 | 0.049 | 0.088 | 0.637 | 0.441 | 0.404 | 0.521 | 0.501 | 0.344 | 0.117 | 0.082 | 0.093 | 0.159 |
PT | 12 | Santander Totta SGPS | 0.338 | 0.341 | 0.387 | 0.547 | 0.403 | 0.711 | 0.671 | 0.808 | 0.818 | 0.752 | 0.475 | 0.507 | 0.479 | 0.669 | 0.533 |
PT | 13 | Montepio Geral | 0.273 | 0.460 | 0.323 | 0.374 | 0.357 | 0.323 | 0.607 | 0.568 | 0.495 | 0.498 | 0.843 | 0.758 | 0.569 | 0.755 | 0.732 |
PT | 14 | Caixa Geral de Depositos | 0.118 | 0.155 | 0.212 | 0.456 | 0.235 | 0.912 | 0.848 | 0.878 | 0.995 | 0.908 | 0.130 | 0.183 | 0.241 | 0.458 | 0.253 |
PT | 15 | Millennium BCP | 0.212 | 0.289 | 0.436 | 0.536 | 0.368 | 0.660 | 0.675 | 0.700 | 0.960 | 0.749 | 0.321 | 0.428 | 0.622 | 0.559 | 0.482 |
PT | 16 | BBVA | 0.212 | 0.344 | 0.457 | 1.000 | 0.503 | 0.225 | 0.354 | 0.491 | 1.000 | 0.517 | 0.943 | 0.971 | 0.930 | 1.000 | 0.961 |
PT | 17 | Banco de Investimento SA | 0.452 | 0.471 | 0.598 | 0.473 | 0.498 | 0.582 | 0.656 | 0.763 | 0.763 | 0.691 | 0.777 | 0.718 | 0.784 | 0.619 | 0.724 |
ES | 18 | BBVA | 0.385 | 0.378 | 0.446 | 0.449 | 0.414 | 0.876 | 1.000 | 1.000 | 1.000 | 0.969 | 0.439 | 0.378 | 0.446 | 0.449 | 0.428 |
ES | 19 | Bankia, SA | 0.357 | 0.440 | 0.520 | 0.560 | 0.469 | 0.974 | 0.944 | 1.000 | 1.000 | 0.979 | 0.367 | 0.466 | 0.520 | 0.560 | 0.478 |
ES | 20 | Bankinter SA | 0.298 | 0.336 | 0.450 | 0.542 | 0.406 | 0.813 | 0.838 | 0.847 | 0.931 | 0.857 | 0.366 | 0.401 | 0.531 | 0.582 | 0.470 |
ES | 21 | Banco Popular Espanol SA | 0.482 | 0.492 | 0.547 | 0.424 | 0.486 | 1.000 | 1.000 | 1.000 | 0.960 | 0.990 | 0.482 | 0.492 | 0.547 | 0.442 | 0.491 |
ES | 22 | Caixa d’Estalvis de Pollensa | 0.426 | 0.411 | 0.674 | 0.496 | 0.502 | 1.000 | 1.000 | 1.000 | 0.945 | 0.986 | 0.426 | 0.411 | 0.674 | 0.525 | 0.509 |
ES | 23 | Caja de Ahorros: Ontinyent | 0.430 | 0.666 | 0.659 | 0.529 | 0.571 | 0.559 | 0.916 | 0.759 | 0.690 | 0.731 | 0.769 | 0.726 | 0.869 | 0.766 | 0.783 |
ES | 24 | Cajas de Ahorros—CECA | 0.356 | 0.270 | 0.212 | 0.398 | 0.309 | 0.412 | 0.274 | 0.225 | 0.456 | 0.342 | 0.864 | 0.983 | 0.942 | 0.872 | 0.915 |
ES | 25 | Banco Mediolanum SA | 0.568 | 0.514 | 0.434 | 0.382 | 0.474 | 0.694 | 0.677 | 0.619 | 0.697 | 0.672 | 0.818 | 0.759 | 0.700 | 0.548 | 0.707 |
ES | 26 | Banca March SA | 0.194 | 0.211 | 0.192 | 0.235 | 0.208 | 0.287 | 0.343 | 0.229 | 0.306 | 0.291 | 0.677 | 0.614 | 0.839 | 0.767 | 0.724 |
ES | 27 | Caixa Estalvis | 0.203 | 0.236 | 0.290 | 0.347 | 0.269 | 0.751 | 0.866 | 0.945 | 0.878 | 0.860 | 0.271 | 0.273 | 0.307 | 0.395 | 0.312 |
ES | 28 | Banco de Sabadell SA | 0.246 | 0.313 | 0.456 | 0.466 | 0.370 | 0.809 | 0.790 | 1.000 | 1.000 | 0.900 | 0.304 | 0.396 | 0.456 | 0.466 | 0.406 |
ES | 29 | Caja Rural de Almendralejo. | 0.611 | 0.527 | 0.652 | 0.638 | 0.607 | 0.743 | 0.647 | 0.684 | 0.720 | 0.698 | 0.823 | 0.815 | 0.954 | 0.885 | 0.869 |
PT | 30 | Haitong Bank SA | 0.456 | 0.373 | 0.283 | 0.336 | 0.362 | 0.458 | 0.381 | 0.320 | 0.385 | 0.386 | 0.996 | 0.981 | 0.882 | 0.872 | 0.933 |
PT | 31 | Banco Finantia SA | 0.992 | 1.000 | 0.912 | 1.000 | 0.976 | 0.995 | 1.000 | 0.992 | 1.000 | 0.997 | 0.997 | 1.000 | 0.919 | 1.000 | 0.979 |
PT | 32 | Banco Santander Totta SA | 0.331 | 0.332 | 0.365 | 0.500 | 0.382 | 0.703 | 0.643 | 0.728 | 0.799 | 0.718 | 0.471 | 0.516 | 0.501 | 0.625 | 0.528 |
ES | 33 | Deutsche Bank SAE | 1.000 | 0.931 | 0.790 | 0.776 | 0.874 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.931 | 0.790 | 0.776 | 0.874 |
PT | 34 | CCCAM | 0.232 | 0.199 | 0.313 | 0.329 | 0.268 | 0.340 | 0.299 | 0.353 | 0.446 | 0.359 | 0.683 | 0.666 | 0.888 | 0.737 | 0.743 |
ES | 35 | Bankoa SA | 0.280 | 0.264 | 0.445 | 0.760 | 0.437 | 0.414 | 0.409 | 0.523 | 0.886 | 0.558 | 0.675 | 0.646 | 0.851 | 0.858 | 0.757 |
ES | 36 | Santander Consumer F. | 0.828 | 0.853 | 0.834 | 0.931 | 0.862 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.828 | 0.853 | 0.834 | 0.931 | 0.862 |
ES | 37 | Crédito de Los Ingenieros | 0.286 | 0.384 | 0.393 | 0.490 | 0.388 | 0.318 | 0.447 | 0.440 | 0.567 | 0.443 | 0.897 | 0.858 | 0.894 | 0.863 | 0.878 |
ES | 38 | Caja Rural de Jaen, | 0.374 | 0.390 | 0.508 | 0.539 | 0.452 | 0.409 | 0.430 | 0.516 | 0.576 | 0.483 | 0.913 | 0.906 | 0.984 | 0.935 | 0.934 |
ES | 39 | Caja Rural de Navarra | 0.178 | 0.161 | 0.180 | 0.168 | 0.172 | 0.218 | 0.221 | 0.190 | 0.197 | 0.206 | 0.815 | 0.729 | 0.950 | 0.849 | 0.836 |
ES | 40 | Caja Rural de Soria | 0.335 | 0.334 | 0.444 | 0.653 | 0.441 | 0.446 | 0.503 | 0.587 | 0.856 | 0.598 | 0.751 | 0.663 | 0.756 | 0.763 | 0.733 |
ES | 41 | Caja Rural de Zamora | 0.467 | 0.414 | 0.496 | 0.601 | 0.494 | 0.533 | 0.522 | 0.529 | 0.734 | 0.580 | 0.875 | 0.792 | 0.937 | 0.819 | 0.856 |
ES | 42 | Banco Cooperativo Espanol | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
ES | 43 | Banco Alcala | 0.269 | 0.200 | 0.154 | 0.184 | 0.202 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.269 | 0.200 | 0.154 | 0.184 | 0.202 |
ES | 44 | Banco Caixa Geral SA | 0.807 | 1.000 | 1.000 | 1.000 | 0.952 | 0.810 | 1.000 | 1.000 | 1.000 | 0.953 | 0.995 | 1.000 | 1.000 | 1.000 | 0.999 |
ES | 45 | BNP Paribas España SA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
ES | 46 | EBN Banco de Negocios SA | 1.000 | 0.791 | 0.927 | 0.175 | 0.723 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.791 | 0.927 | 0.175 | 0.723 |
PT | 47 | Banco BPI SA | 0.335 | 0.344 | 0.427 | 0.821 | 0.482 | 0.644 | 0.698 | 0.804 | 1.000 | 0.786 | 0.520 | 0.493 | 0.532 | 0.821 | 0.591 |
ES | 48 | Allfunds Bank SA | 0.355 | 0.255 | 0.263 | 0.144 | 0.254 | 0.636 | 0.537 | 0.456 | 0.411 | 0.510 | 0.558 | 0.475 | 0.576 | 0.349 | 0.489 |
ES | 49 | Banco Santander SA | 0.428 | 0.359 | 0.457 | 0.456 | 0.425 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.428 | 0.359 | 0.457 | 0.456 | 0.425 |
PT | 50 | BIG | 0.469 | 0.395 | 0.354 | 0.434 | 0.413 | 0.584 | 0.566 | 0.519 | 0.584 | 0.563 | 0.802 | 0.698 | 0.681 | 0.744 | 0.731 |
PT | 51 | Banco Invest SA | 0.695 | 0.809 | 0.662 | 0.543 | 0.677 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.695 | 0.809 | 0.662 | 0.543 | 0.677 |
ES | 52 | Cajamar Caja Rural, S.C.C. | 0.235 | 0.214 | 0.287 | 0.319 | 0.264 | 0.510 | 0.494 | 0.511 | 0.468 | 0.496 | 0.460 | 0.434 | 0.562 | 0.682 | 0.534 |
ES | 53 | Criteria CaixaHolding SA | 0.011 | 0.241 | 0.291 | 0.375 | 0.229 | 0.031 | 0.886 | 0.978 | 0.964 | 0.715 | 0.343 | 0.271 | 0.298 | 0.389 | 0.325 |
ES | 54 | Caja Laboral Popular | 0.257 | 0.266 | 0.337 | 0.409 | 0.317 | 0.403 | 0.463 | 0.468 | 0.592 | 0.481 | 0.638 | 0.575 | 0.720 | 0.690 | 0.656 |
ES | 55 | Unicaja Banco SA | 0.308 | 0.213 | 0.249 | 0.338 | 0.277 | 0.528 | 0.494 | 0.586 | 0.587 | 0.549 | 0.582 | 0.431 | 0.425 | 0.576 | 0.503 |
ES | 56 | Banco De Credito Social | 0.227 | 0.214 | 0.260 | 0.316 | 0.254 | 0.492 | 0.494 | 0.464 | 0.465 | 0.479 | 0.460 | 0.434 | 0.562 | 0.679 | 0.534 |
PT | 57 | Atlântico Europa, Sgps, S.A | 0.321 | 0.224 | 0.393 | 0.626 | 0.391 | 0.684 | 0.660 | 0.756 | 1.000 | 0.775 | 0.470 | 0.340 | 0.519 | 0.626 | 0.489 |
PT | 58 | Finantipar—S.G.P.S., S.A. | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mean | 0.409 | 0.412 | 0.446 | 0.498 | 0.441 | 0.660 | 0.689 | 0.705 | 0.773 | 0.707 | 0.623 | 0.600 | 0.645 | 0.653 | 0.630 |
PTE | TE | HCE | SCE | CEE | SIZE | Lev1 | Lev2 | Lev3 | |
---|---|---|---|---|---|---|---|---|---|
PTE | 1 | ||||||||
TE | 0.8921 * | 1 | |||||||
0.0000 | |||||||||
HCE | 0.2064 * | 0.3426 * | 1 | ||||||
0.0017 | 0.0000 | ||||||||
SCE | 0.0134 * | 0.0924 | 0.5348 * | 1 | |||||
0.8403 | 0.1642 | 0.0000 | |||||||
CEE | −0.0517 | −0.0685 | 0.1845 * | 0.1112 | 1 | ||||
0.4371 | 0.3030 | 0.0052 | 0.0940 | ||||||
SIZE | −0.0528 | −0.0399 | −0.0720 | 0.1039 | −0.2405 * | 1 | |||
0.4279 | 0.5490 | 0.2792 | 0.1177 | 0.0002 | |||||
Lev1 | 0.0912 | 0.1201 | −0.1144 | −0.2944 * | −0.1272 | 0.3711 * | 1 | ||
0.1698 | 0.0702 | 0.0847 | 0.0000 | 0.0551 | 0.0000 | ||||
Lev2 | −0.0911 | −0.1195 | 0.1149 | 0.2942 * | 0.1274 | −0.3746 * | −0.9999 * | 1 | |
0.1702 | 0.0716 | 0.0834 | 0.0000 | 0.0548 | 0.0000 | 0.0000 | |||
Lev3 | 0.4248 * | 0.5638 * | 0.0250 | −0.0340 | −0.0902 | 0.4522 * | 0.5913 * | −0.0902 * | 1 |
0.0000 | 0.0000 | 0.7068 | 0.6096 | 0.1749 | 0.0000 | 0.0000 | 0.0000 |
One-Part Models | One-Part Models | |||||||
---|---|---|---|---|---|---|---|---|
1st Part | ||||||||
Logit | Cloglog | Logit | Cloglog | |||||
CRS | VRS | CRS | VRS | CRS | VRS | CRS | VRS | |
HCE | 0.54653 | 0.3964 | 0.36 | 0.2371 | 0.688 | 0.449 | 0.625 | 0.3601 |
(0.00) *** | (0.00) *** | (0.00) *** | (0.00) *** | (0.00) *** | (0.001) *** | (0.00) *** | (0.00) *** | |
SCE | −0.64 | −0.5856 | −0.34 | −0.2867 | −0.799 | −0.34 | −0.659 | −0.23613 |
(0.021) ** | (0.166) | (0.041) ** | (0.080) * | (0.266) | (0.560) | (0.314) | (0.628) | |
CEE | −2.64 | −1.01 | −2.23 | −0.7058 | −7.21 | −2414 | −7.31 | −2037 |
(0.00) *** | (0.059) * | (0.00) *** | (0.035) ** | (0.036) ** | (0.094) * | (0.019) ** | (0.095) * | |
SIZE | −0.2864 | 0.048 | −0.22 | 0.0505 | −1.28 | −0.16023 | −1.18 | −0.1545 |
(0.00) *** | (0.645) | (0.00) *** | (0.489) | (0.008) *** | (0.420) | (0.010) *** | (0.363) | |
Lev1 | −14.35 | −358.5 | −4434 | −155.4 | 482.8 | −48.74 | 470 | −44.19 |
(0.697) | (0.001) *** | (0.892) | (0.00) *** | (0.835) | (0.814) | (0.829) | (0.807) | |
Lev2 | −18.5 | −359.17 | −7.3 | −156.07 | 486.3 | −49.09 | 473.5 | −444,281 |
(0.616) | (0.001) *** | (0.823) | (0.00) *** | (0.833) | (0.813) | (0.827) | (0.806) | |
Lev3 | 0.00589 | 0.013 | 0.0081 | 0.0075 | 0.119 | 0.0133 | 0.11 | 0.0181 |
(0.627) | (0.447) | (0.284) | (0.401) | (0.068) * | (0.663) | (0.048) ** | (0.388) | |
Constant | 16.9 | 358.32 | 6.03 | 154.8 | −474.62 | 48.82 | −462.62 | 44,038 |
(0.649) | (0.001) *** | (0.854) | (0.00) *** | (0.837) | (0.814) | (0.831) | (0.808) | |
Observation | 232 | 232 | 232 | 232 | 232 | 232 | 232 | 232 |
R2 | 0.35626 | 0.13281 | 0.367 | 0.1367 | 0.3594 | 0.0874 | 0.375 | 0.09399 |
Two-Part Models—2nd part | ||||||||
---|---|---|---|---|---|---|---|---|
Logit | Probit | Loglog | Cloglog | |||||
CRS | VRS | CRS | VRS | CRS | VRS | CRS | VRS | |
HCE | 0.442 | 0.3216 | 0.261 | 0.2006 | 0.265 | 0.236 | 0.31 | 0.2264 |
(0.00) *** | (0.00) *** | (0.00) *** | (0.000) *** | (0.000) *** | (0.00) *** | (0.00) *** | (0.00) *** | |
SCE | −0.405 | −0.4436 | −0.237 | −0.2791 | −0.24 | −0.331 | −0.251 | −0.3 |
(0.107) | (0.078) * | (0.137) | (0.062) * | (0.142) | (0.079) * | (0.215) | (0.043) ** | |
CEE | −2012 | −0.132 | −1175 | −0.0853 | −1.06 | −0.0319 | −1.69 | −0.20673 |
(0.00) *** | (0.776) | (0.00) *** | (0.762) | (0.000) *** | (0.918) | (0.00) *** | (0.559) | |
SIZE | −0.14341 | 0.20535 | −0.086 | 0.1319 | −0.0865 | 0.1376 | -0.11 | 0.1635 |
(0.037) ** | (0.070) * | (0.042) ** | (0.061) * | (0.034)** | (0.099) * | (0.073) * | (0.039) ** | |
Lev1 | −3.42 | −336.41 | −0.5204 | −187.13 | 0.965 | −304,014 | 0.54 | −152.5 |
(0.913) | (0.001) *** | (0.978) | (0.00) *** | (0.959) | (0.001) *** | (0.984) | (0.00) *** | |
Lev2 | −8.63 | −336.92 | −3.43 | −187.43 | −1.4 | −304.1 | −3,643 | −153 |
(0.782) | (0.001) *** | (0.857) | (0.00) *** | (0.941) | (0.001) *** | (0.892) | (0.00) *** | |
Lev3 | −0.0146 | 0.024 | −0.0082 | 0.0145 | −0.0063 | 0.02103 | −0.01216 | 0.0142 |
(0.366) | (0.329) | (0.399) | (0.316) | (0.485) | (0.269) | (0.385) | (0.324) | |
Constant | 4.73 | 333.95 | 1.27 | 185.56 | 0.025 | 302.63 | 0.177 | 150.3 |
(0.881) | (0.001) *** | (0.948) | (0.00) *** | (0.999) | (0.001) *** | (0.995) | (0.001) *** | |
Observations | 232 | 232 | 232 | 232 | 232 | 232 | 232 | 232 |
R2 | 0.296 | 0.22583 | 0.294 | 0.2269 | 0.286 | 0.2212 | 0.2955 | 0.2337 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutinho, V.; Vale, J.; Bertuzi, R.; Bandeira, A.M.; Palhares, J. A Two-Stage DEA Model to Evaluate the Performance of Iberian Banks. Economies 2021, 9, 115. https://doi.org/10.3390/economies9030115
Moutinho V, Vale J, Bertuzi R, Bandeira AM, Palhares J. A Two-Stage DEA Model to Evaluate the Performance of Iberian Banks. Economies. 2021; 9(3):115. https://doi.org/10.3390/economies9030115
Chicago/Turabian StyleMoutinho, Victor, José Vale, Rui Bertuzi, Ana Maria Bandeira, and José Palhares. 2021. "A Two-Stage DEA Model to Evaluate the Performance of Iberian Banks" Economies 9, no. 3: 115. https://doi.org/10.3390/economies9030115
APA StyleMoutinho, V., Vale, J., Bertuzi, R., Bandeira, A. M., & Palhares, J. (2021). A Two-Stage DEA Model to Evaluate the Performance of Iberian Banks. Economies, 9(3), 115. https://doi.org/10.3390/economies9030115