Arithmetic Word Problems Revisited: Cognitive Processes and Academic Performance in Secondary School
Abstract
:1. Introduction
1.1. Background
1.2. Arithmetic Word Problems (AWPs)
1.3. AWP and Reading Comprehension
1.4. AWP and Reasoning
1.5. Aims
- (1)
- We expect significant differences in AWP performance between two grades, 2nd and 3rd grade of Compulsory Secondary School courses.
- (2)
- We also expect differences as a function of type of problem. Inconsistent AWPs should be significantly more difficult than consistent problems. In the same way, the arithmetic problems with two add/subtract operations should be significantly more difficult than those of a single operation. The non-consistency effect of the problems should increase the difficulty more than that of the number of operations.
- (3)
- The cognitive measures of reasoning and linguistic comprehension should correlate significantly and moderately with measures of effectiveness in the resolution of AWPs. The correlations should be higher between the cognitive measures and those of the inconsistent problems and the problems of two operations, due to their greater cognitive demand, than with the consistent problems and those of a single operation. All cognitive measures, including the resolution of arithmetic problems, should correlate positively with academic performance.
- (4)
- Given the previous relationship, our aim was to confirm the capacity of association of the cognitive variables measured (reasoning and comprehension) on the score obtained in solving arithmetic problems. Likewise, the various cognitive variables and, in particular, the global arithmetic problems’ score, should show their capacity for association with academic performance in History/Geography and Mathematics.
2. Materials and Methods
2.1. Participants
2.2. Task and Measures
2.2.1. Arithmetic Word Problems Task (AWP)
2.2.2. Reading Processes Assessment Battery (PROLEC-SE)
2.2.3. Kaufman Brief Intelligence Test (KBIT)
2.2.4. Deductive Reasoning Test Simplified (DRTs)
2.2.5. Spelling-SE for Secondary School
2.2.6. Academic Achievement
2.3. Procedure
2.4. Data Analyses
3. Results
3.1. Descriptive Statistics and Comparisons
3.2. Interrelationships among Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rumelhart, D.E. Schemata: The building blocks of cognition. In Theoretical Issues in Reading Comprehension: Perspectives from Cognitive Psychology, Linguistics, Artificial Intelligence and Education; Spiro, R.J., Bruce, B.C., Brewer, W.F., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1980; ISBN 978-1-315-10749-3. [Google Scholar]
- Nelson, G.; Powell, S.R. A Systematic Review of Longitudinal Studies of Mathematics Difficulty. J. Learn. Disabil. 2018, 51, 523–539. [Google Scholar] [CrossRef]
- Peng, P.; Wang, T.; Wang, C.; Lin, X. A Meta-Analysis on the Relation between Fluid Intelligence and Reading/Mathematics: Effects of Tasks, Age, and Social Economics Status. Psychol. Bull. 2019, 145, 189–236. [Google Scholar] [CrossRef]
- Caspi, A.; Wright, B.R.E.; Moffitt, T.E.; Silva, P.A. Early Failure in the Labor Market: Childhood and Adolescent Predictors of Unemployment in the Transition to Adulthood. Am. Sociol. Rev. 1998, 63, 424. [Google Scholar] [CrossRef]
- Marjoribanks, K. Family Environments and Children’s Outcomes. Educ. Psychol. 2005, 25, 647–657. [Google Scholar] [CrossRef]
- Orrantia, J. Dificultades En El Aprendizaje de Las Matemáticas: Una Perspectiva Evolutiva. Rev. Psicopedag. 2006, 23, 158–180. [Google Scholar]
- Sánchez-Pérez, N.; Fuentes, L.J.; Pina, V.; López-López, J.A.; González-Salinas, C. How Do Different Components of Effortful Control Contribute to Children’s Mathematics Achievement? Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, H.M.G.; Shapka, J.D.; Morris, Z.A.; Durik, A.M.; Keating, D.P.; Eccles, J.S. Gendered Motivational Processes Affecting High School Mathematics Participation, Educational Aspirations, and Career Plans: A Comparison of Samples from Australia, Canada, and the United States. Dev. Psychol. 2012, 48. [Google Scholar] [CrossRef] [PubMed]
- OECD. PISA 2018 Results: What Students Know and Can Do; OECD Publishing: Paris, France, 2019; Volume 1. [Google Scholar] [CrossRef]
- Kintsch, W.; Greeno, J.G. Understanding and Solving Word Arithmetic Problems. Psychol. Rev. 1985, 92, 109–129. [Google Scholar] [CrossRef]
- Kintsch, W. Comprehension: A Paradigm for Cognition; Cambridge University Press: Cambridge, UK, 1998; ISBN 978-0-521-58360-2. [Google Scholar]
- Reusser, K. Textual and Situational Factors in Solving Mathematical Word Problems; University of Bern: Bern, Switzerland, 1989. [Google Scholar]
- Bassok, M.; Wu, L.L.; Olseth, K.L. Judging a Book by Its Cover: Interpretative Effects of Content on Problem-Solving Transfer. Mem. Cognit. 1995, 23, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Bassok, M.; Chase, V.; Martin, S. Adding Apples and Oranges: Alignment of Semantic and Formal Knowledge. Cognit. Psychol. 1998, 35, 99–134. [Google Scholar] [CrossRef] [Green Version]
- Gros, H.; Thibaut, J.P.; Sander, E. Semantic Congruence in Arithmetic: A New Conceptual Model for Word Problem Solving. Educ. Psychol. 2020, 55, 1–19. [Google Scholar] [CrossRef]
- Thevenot, C. Arithmetic Word Problem Solving: Evidence for the Construction of a Mental Model. Acta Psychol. 2010, 133. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.B.T. Hypothetical Thinking; Psychology Press: London, UK, 2007; ISBN 978-0-367-42362-9. [Google Scholar]
- García-Madruga, J.A.; Gutiérrez, F.; Carriedo, N.; Luzón, J.M.; Vila, J.O. Mental Models in Propositional Reasoning and Working Memory’s Central Executive. Think. Reason. 2007, 13, 370–393. [Google Scholar] [CrossRef]
- Cattell, R.B. Theory of Fluid and Crystallized Intelligence: A Critical Experiment. J. Educ. Psychol. 1963, 54, 1–22. [Google Scholar] [CrossRef]
- Engle, R.W.; Tuholski, S.W.; Laughlin, J.E.; Conway, A.R.A. Working Memory, Short-Term Memory, and General Fluid Intelligence: A Latent-Variable Approach. J. Exp. Psychol. Gen. 1999, 128, 309–331. [Google Scholar] [CrossRef] [PubMed]
- Fung, W.; Swanson, H.L. Working Memory Components That Predict Word Problem Solving: Is It Merely a Function of Reading, Calculation, and Fluid Intelligence? Mem. Cognit. 2017, 45, 804–823. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.L.; Cattell, R.B. Age Differences in Fluid and Crystallized Intelligence. Acta Psychol. 1967, 26, 107–129. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Perrig, W.J. Improving Fluid Intelligence with Training on Working Memory. Proc. Natl. Acad. Sci. USA 2008, 105, 6829–6833. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, R.J.; Ben-Zeev, T. The Nature of Mathematical Thinking; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1996; ISBN 978-0-8058-1799-7. [Google Scholar]
- de Koning, B.B.; Boonen, A.J.H.; van der Schoot, M. The Consistency Effect in Word Problem Solving Is Effectively Reduced through Verbal Instruction. Contemp. Educ. Psychol. 2017, 49, 121–129. [Google Scholar] [CrossRef]
- Jiang, R.; Li, X.; Xu, P.; Lei, Y. Do Teachers Need to Inhibit Heuristic Bias in Mathematics Problem-Solving? Evidence from a Negative-Priming Study. Curr. Psychol. 2020. [Google Scholar] [CrossRef]
- Lubin, A.; Rossi, S.; Lanoë, C.; Vidal, J.; Houdé, O.; Borst, G. Expertise, Inhibitory Control and Arithmetic Word Problems: A Negative Priming Study in Mathematics Experts. Learn. Instr. 2016, 45, 40–48. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Pazzaglia, F. Individual Differences in Memory Updating in Relation to Arithmetic Problem Solving. Learn. Individ. Differ. 2004, 14. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Pazzaglia, F. A Comparison of Updating Processes in Children Good or Poor in Arithmetic Word Problem-Solving. Learn. Individ. Differ. 2005, 15. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Siegel, L.C. Short-Term Memory, Working Memory, and Inhibitory Control in Children with Difficulties in Arithmetic Problem Solving. J. Exp. Child. Psychol. 2001, 80. [Google Scholar] [CrossRef]
- Shum, H.Y.; Chan, W.W.L. Young Children’s Inhibition of Keyword Heuristic in Solving Arithmetic Word Problems. Hum. Behav. Brain 2020, 1, 43. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Abidin, N.L.Z.; Ali, M. Analysis of Students’ Errors in Solving Higher Order Thinking Skills (HOTS) Problems for the Topic of Fraction. Asian Soc. Sci. 2015, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Hasanah, N.; Hayashi, Y.; Hirashima, T. An Analysis of Learner Outputs in Problem Posing as Sentence-Integration in Arithmetic Word Problems. Res. Pract. Technol. Enhanc. Learn. 2017, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, M.; Mayer, R.E.; Green, C.E. Comprehension of Arithmetic Word Problems: Evidence from Students’ Eye Fixations. J. Educ. Psychol. 1992, 84, 76–84. [Google Scholar] [CrossRef]
- Rohmah, M.; Sutiarso, S. Analysis Problem Solving in Mathematical Using Theory Newman. EURASIA J. Math. Sci. Technol. Educ. 2018, 14, 671–681. [Google Scholar] [CrossRef]
- Riley, M.S.; Greeno, J.G.; Heller, J.L. Development of children’s problem-solving ability in arithmetic. In The Development of Mathematical Thinking; Ginsburg, H.P., Ed.; Academic Press: New York, NY, USA, 1984; pp. 153–196. [Google Scholar]
- Bassok, M.; Pedigo, S.F.; Oskarsson, A.T. Priming Addition Facts with Semantic Relations. J. Exp. Psychol. Learn. Mem. Cogn. 2008, 34, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Guthormsen, A.M.; Fisher, K.J.; Bassok, M.; Osterhout, L.; DeWolf, M.; Holyoak, K.J. Conceptual Integration of Arithmetic Operations with Real-World Knowledge: Evidence from Event-Related Potentials. Cogn. Sci. 2016, 40, 723–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenot, C.; Oakhill, J. The Strategic Use of Alternative Representations in Arithmetic Word Problem Solving. Q. J. Exp. Psychol. Sect. A 2005, 58, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Gros, H.; Sander, E.; Thibaut, J.P. When Masters of Abstraction Run into a Concrete Wall: Experts Failing Arithmetic Word Problems. Psychon. Bull. Rev. 2019, 26, 1738–1746. [Google Scholar] [CrossRef] [Green Version]
- Thevenot, C.; Fanget, M.; Fayol, M. Retrieval or Nonretrieval Strategies in Mental Arithmetic? An Operand Recognition Paradigm. Mem. Cognit. 2007, 35, 1344–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischbein, E. Tacit Models and Mathematical Reasoning. Learn. Math. 1989, 9, 9–14. [Google Scholar]
- Sternberg, R.J. What is mathematical thinking? In The Nature of Mathematical Thinking; Sternberg, R.J., Ben-Zeev, T., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1996; pp. 303–318. ISBN 978-0-8058-1799-7. [Google Scholar]
- Hegarty, M.; Mayer, R.E.; Monk, C.A. Comprehension of Arithmetic Word Problems: A Comparison of Successful and Unsuccessful Problem Solvers. J. Educ. Psychol. 1995, 87, 18–32. [Google Scholar] [CrossRef]
- Lewis, A.B.; Mayer, R.E. Students’ Miscomprehension of Relational Statements in Arithmetic Word Problems. J. Educ. Psychol. 1987, 79. [Google Scholar] [CrossRef]
- Siegler, R.; Jenkins, E.A. How Children Discover New Strategies; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1989; ISBN 978-0-8058-0472-0. [Google Scholar]
- Stacey, K.; MacGregor, M. Learning the Algebraic Method of Solving Problems. J. Math. Behav. 1999, 18, 149–167. [Google Scholar] [CrossRef]
- Khng, K.H.; Lee, K. Inhibiting Interference from Prior Knowledge: Arithmetic Intrusions in Algebra Word Problem Solving. Learn. Individ. Differ. 2009, 19, 262–268. [Google Scholar] [CrossRef]
- Boote, S.K.; Boote, D.N. ABC Problem in Elementary Mathematics Education: Arithmetic before Comprehension. J. Math. Teach. Educ. 2018, 21, 99–122. [Google Scholar] [CrossRef]
- Chi, M.T.H.; Glaser, R.; Farr, M.J. The Nature of Expertise; Psychology Press: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Sternberg, R.J.; Frensch, P.A. On being an expert: A cost-benefit analysis. In The Psychology of Expertise; Hoffman, R., Ed.; Springer: New York, NY, USA, 1992; pp. 191–203. [Google Scholar]
- Kahneman, D. Thinking Fast, and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011; ISBN 978-1-84614-606-0. [Google Scholar]
- Mayer, R.E.; Hegarty, M. The Process of Understanding Mathematical Problems. Nat. Math. Think. 1996, 12, 24–59. [Google Scholar]
- Johnson-Laird, P.N. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness; Harvard University Press: Cambridge, MA, USA, 1983; ISBN 978-0-89859-242-9. [Google Scholar]
- Evans, J.B.T.; Over, D.E. Rationality in the Selection Task: Epistemic Utility Versus Uncertainty Reduction. Psychol. Rev. 1996, 103, 356–363. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Subjective Probability: A Judgment of Representativeness. Cognit. Psychol. 1972, 3, 430–454. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Availability: A Heuristic for Judging Frequency and Probability. Cognit. Psychol. 1973, 5, 207–232. [Google Scholar] [CrossRef]
- Stanovich, K.E.; Toplak, M.E. Defining Features versus Incidental Correlates of Type 1 and Type 2 Processing. Mind Soc. 2012, 11. [Google Scholar] [CrossRef]
- Evans, J.S.B.T. In Two Minds: Dual-Process Accounts of Reasoning. Trends Cogn. Sci. 2003, 7, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahneman, D.; Frederick, S. Representativeness revisited: Attribute substitution in intuitive judgment BT—Heuristics and biases: The psychology of intuitive judgment. In Heuristics and Biases: The Psychology of Intuitive Judgment; Cambridge University Press: New York, NY, USA, 2002; ISBN 978-0-521-79260-8. [Google Scholar]
- Sloman, S.A. The Empirical Case for Two Systems of Reasoning. Psychol. Bull. 1996, 119. [Google Scholar] [CrossRef]
- Stanovich, K.E.; West, R.F. Individual Differences in Reasoning: Implications for the Rationality Debate? Behav. Brain. Sci. 2000, 23, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.B.T.; Stanovich, K.E. Dual-Process Theories of Higher Cognition. Perspect. Psychol. Sci. 2013, 8, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.; Carruthers, P. Metacognition and Reasoning. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1366–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Chacón, I.; García-Madruga, J.A.; Vila, J.O.; Elosúa, M.R.; Rodríguez, R. The Dual Processes Hypothesis in Mathematics Performance: Beliefs, Cognitive Reflection, Working Memory and Reasoning. Learn. Individ. Differ. 2014, 29, 67–73. [Google Scholar] [CrossRef]
- Pillow, B.H. Children’s and Adults’ Evaluation of the Certainty of Deductive Inferences, Inductive Inferences, and Guesses. Child. Dev. 2002, 73. [Google Scholar] [CrossRef]
- Moshman, D. Adolescent Rationality and Development; Taylor & Francis: Abingdon, UK, 2004; ISBN 978-1-135-61658-8. [Google Scholar]
- Santamaría, C.; Tse, P.P.; Moreno-Ríos, S.; García-Madruga, J.A. Deductive Reasoning and Metalogical Knowledge in Preadolescence: A Mental Model Appraisal. J. Cogn. Psychol. 2013, 25. [Google Scholar] [CrossRef]
- Kaufman, A.S.; Kaufman, N.L. K-BIT, Test Breve de Inteligencia de Kaufman; Pearson Clinical: Madrid, Spain, 2013; ISBN 978-84-938825-2-5. [Google Scholar]
- García-Madruga, J.A.; Santamaría, C.; Moreno-Ríos, S.; Vila-Chaves, J.O.; Gómez-Veiga, I.; Orenes, I. A Test of Deductive Reasoning. Unpublished work. 2014.
- Ramos, J.L.; Cuetos, F. Batería de Evaluación de Los Procesos Lectores En Los Alumnos Del Tercer Ciclo de Educación Primaria y Educación Secundaria Obligatoria, PROLEC-SE; TEA Ediciones: Madrid, Spain, 1999; ISBN 84-7174-953-X. [Google Scholar]
- Duque de Blas, G.; Gómez-Veiga, I. The Spelling Test for Secondary School. Unpublished work. 2018. [Google Scholar]
- Castro-Martínez, E.; Frías-Zorilla, A. Two-Step Arithmetic Word Problems. Math. Enthus. 2013, 10, 379–406. [Google Scholar]
- Viterbori, P.; Traverso, L.; Usai, M.C. The Role of Executive Function in Arithmetic Problem-Solving Processes: A Study of Third Graders. J. Cogn. Dev. 2017, 18, 595–616. [Google Scholar] [CrossRef]
- Verschaffel, L. Using Retelling Data to Study Elementary School Children’s Representations and Solutions of Compare Problems. J. Res. Math. Educ. 1994, 25. [Google Scholar] [CrossRef]
- López-Higes, R.; Mayoral, J.A.; Villoria, C. Batería de Evaluación de La Lectura (BEL); Psymtec: Madrid, Spain, 2002; ISBN 84-931200-1-4. [Google Scholar]
- Sebastián, N.; Cuetos, F.; Martí, M.A.; Carreiras, M.F. LEXESP: Léxico Informatizado Del Español; Edicions de la Universitat de Barcelona: Barcelona, Spain, 2000; ISBN 978-84-8338-187-8. [Google Scholar]
- McLaughlin, A.C.; McGill, A.E. Explicitly Teaching Critical Thinking Skills in a History Course. Sci. Educ. 2017, 26. [Google Scholar] [CrossRef]
- Reed, J.; Kromrey, J. Teaching Critical Thinking in a Community College History Course: Empirical Evidence from Infusing Paul’s Model. Coll. Stud. J. 2001, 35, 201. [Google Scholar]
- Williams, R.L.; Worth, S.L. The Relationship of Critical Thinking to Success in College. Inq. Crit. Think. Discip. 2001, 21, 5–16. [Google Scholar] [CrossRef]
- Yang, S.C. E-Critical/Thematic Doing History Project: Integrating the Critical Thinking Approach with Computer-Mediated History Learning. Comput. Hum. Behav. 2007, 23. [Google Scholar] [CrossRef]
- Barrouillet, P. Dual-Process Theories and Cognitive Development: Advances and Challenges. Dev. Rev. 2011, 31, 79–85. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Bull, R.; Lee, K. Executive Functioning and Mathematics Achievement. Child. Dev. Perspect. 2014, 8, 36–41. [Google Scholar] [CrossRef]
- Friso-van den Bos, I.; Van der Ven, S.H.G.; Kroesbergen, E.H.; Van Luit, J.E.H. Working Memory and Mathematics in Primary School Children: A Meta-Analysis. Educ. Res. Rev. 2013, 10, 29–44. [Google Scholar] [CrossRef]
- Mayer, R.E.; Hegarty, M.; Lewis, A.B. Mathematical Misunderstandings: Qualitative Reasoning About Quantitative Problems. Adv. Psychol. 1992, 91. [Google Scholar] [CrossRef]
- Pape, S.J. Compare Word Problems: Consistency Hypothesis Revisited. Contemp. Educ. Psychol. 2003, 28, 396–421. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Duque de Blas, G.; Carretti, B.; Gómez-Veiga, I.; García-Madruga, J.A. The Role of Working Memory Updating, Inhibition, Fluid Intelligence and Reading Comprehension in Explaining Differences between Consistent and Inconsistent Arithmetic Word Problem Solving Performance. 2021; in press. [Google Scholar]
- St. Clair-Thompson, H.L.; Gathercole, S.E. Executive Functions and Achievements in School: Shifting, Updating, Inhibition, and Working Memory. Q. J. Exp. Psychol. 2006, 59, 745–759. [Google Scholar] [CrossRef]
- García-Madruga, J.A.; Vila, J.O.; Gómez-Veiga, I.; Duque, G.; Elosúa, M.R. Executive Processes, Reading Comprehension and Academic Achievement in 3rd Grade Primary Students. Learn. Individ. Differ. 2014, 35, 41–48. [Google Scholar] [CrossRef]
- Gómez-Veiga, I.; Vila Chaves, J.O.; Duque de Blas, G.; García Madruga, J.A. A New Look to a Classic Issue: Reasoning and Academic Achievement at Secondary School. Front. Psychol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D. Grades as Valid Measures of Academic Achievement of Classroom Learning. Clear. House J. Educ. Strateg. Issues Ideas 2005, 78, 218–223. [Google Scholar] [CrossRef]
- Roth, B.; Becker, N.; Romeyke, S.; Schäfer, S.; Domnick, F.; Spinath, F.M. Intelligence and School Grades: A Meta-Analysis. Intelligence 2015, 53. [Google Scholar] [CrossRef]
- Kuhn, J.T.; Holling, H. Gender, Reasoning Ability, and Scholastic Achievement: A Multilevel Mediation Analysis. Learn. Individ. Differ. 2009, 19, 229–233. [Google Scholar] [CrossRef]
- Re, A.M.; Lovero, F.; Cornoldi, C.; Passolunghi, M.C. Difficulties of Children with ADHD Symptoms in Solving Mathematical Problems When Information Must Be Updated. Res. Dev. Disabil. 2016, 59. [Google Scholar] [CrossRef] [PubMed]
- Passolunghi, M.C.; Mammarella, I.C. Spatial and Visual Working Memory Ability in Children with Difficulties in Arithmetic Word Problem Solving. Eur. J. Cogn. Psychol. 2010, 22. [Google Scholar] [CrossRef]
- García-Madruga, J.A.; Elosúa, M.R.; Gil, L.; Gómez-Veiga, I.; Vila, J.O.; Orjales, I.; Contreras, A.; Rodríguez, R.; Melero, M.A.; Duque, G. Reading Comprehension and Working Memory’s Executive Processes: An Intervention Study in Primary School Students. Read. Res. Q. 2013, 48, 155–174. [Google Scholar] [CrossRef]
Criteria | Values |
---|---|
General types of AWP | Change, combine, compare or equalize problems [36] |
Items named in the problem | |
| The more significant elements, the greater number of steps needed for solving. |
| Familiar or non-familiar for solver [37,38] |
| Symmetric or asymmetric align (e.g., content vs. container) [12] |
Quantities related to elements | |
| Large or small value size [39] |
| Integers or decimal magnitudes [14] |
| Cardinals (unordered entities) or Ordinals (ordered entities) [40] |
| Explicitly (e.g., x = 10) and/or relationally (e.g.,: y = x + 2) [40] |
| Verbal terms: “More than”, “Less than”, “Equals to”, “As many as” [36] |
| Consistent or inconsistent with the suggested operation [34,36] |
Problem question | |
| From 1, to above |
| At start or end of the problem [41] |
| Referring to the overall outcome of any specific part, or to the whole of the parts involved |
| Numeric or qualitative data (comparative; e.g., “Who has more marbles?”) |
Operations | |
| Addition, subtraction, multiplication and/or division [42] |
| From 1, to above |
WM Load Number of Operations (Add/Subtract + Mult.) | Inconsistency | Superficial Responses | |
---|---|---|---|
Problem-1 | 1 + 1 | No | No |
Problem-2 | 1 + 1 | Yes | Yes |
Problem-3 | 2 + 1 | No–No | No |
Problem-4 | 2 + 1 | No–Yes | Yes |
Problem-5 | 2 + 1 | Yes–Yes | Yes |
Profiles | EF Performance | Scenarios | Response | ||
---|---|---|---|---|---|
Inhibition | Updating | Plan | Execution | ||
1 | Good | Good | Correct | Correct | Correct |
2 | Good | Bad | Correct | Incorrect | Error |
3 | Bad | Good | Incorrect | Correct | Superficial |
4 | Bad | Bad | Incorrect | Incorrect | Error |
N = 135 | Mean | Range | Percentage | SD | Difference between 2nd (N = 56) and 3rd (N = 57) | |||
---|---|---|---|---|---|---|---|---|
M (SD)–M (SD) | F | p | Cohen’s d | |||||
AWP-Global | 2.22 | 0–5 | 44 | 1.47 | 1.66 (1.18)–2.83 (1.52) | 25.41 | 0.001 | 0.80 |
PROLEC-SE | 11.18 | 0–20 | 56 | 3.89 | 10.01 (4.38)–12.43 (2.81) | 14.3 | 0.001 | 0.62 |
Spelling-SE | 30.74 | 0–40 | 77 | 2.68 | 30.34 (2.68)–31.17 (2.64) | 3.26 | 0.073 | 0.31 |
KBIT | 35.10 | 0–48 | 73 | 4.55 | 34.24 (4.91)–36.02 (3.96) | 5.28 | 0.023 | 0.39 |
DRTs-Global | 4.74 | 0–9 | 53 | 1.37 | 4.6 (1.36)–4.89 (1.38) | 1.54 | 0.217 | 0.21 |
Range | 2nd (N = 70) | 3rd (N = 65) | Total (N = 135) | |
---|---|---|---|---|
M (SD) | M (SD) | M (SD) | ||
AWP-1 | 0–1 | 0.63 (0.49) | 0.82 (0.39) | 0.72 (0.45) |
AWP-2 | 0–1 | 0.27 (0.45) | 0.45 (0.50) | 0.36 (0.48) |
AWP-2-sup. | 0–1 | 0.17 (0.38) | 0.22 (0.41) | 0.19 (0.40) |
AWP-2-error | 0–1 | 0.56 (0.50) | 0.34 (0.48) | 0.45 (0.50) |
AWP-3 | 0–1 | 0.41 (0.50) | 0.66 (0.48) | 0.53 (0.50) |
AWP-4 | 0–1 | 0.24 (0.43) | 0.52 (0.50) | 0.38 (0.49) |
AWP-4-sup. | 0–1 | 0.10 (0.30) | 0.11 (0.31) | 0.10 (0.31) |
AWP-4-error | 0–1 | 0.66 (0.48) | 0.37 (0.49) | 0.52 (0.50) |
AWP-5 | 0–1 | 0.20 (0.40) | 0.38 (0.49) | 0.29 (0.46) |
AWP-5-sup. (any) | 0–1 | 0.09 (0.28) | 0.12 (0.33) | 0.10 (0.31) |
AWP-5-error | 0–1 | 0.71 (0.46) | 0.49 (0.50) | 0.61 (0.49) |
AWP-one-op. | 0–2 | 0.9 (0.73) | 1.26 (0.64) | 1.07 (0.71) |
AWP-two-op. | 0–3 | 0.77 (0.82) | 1.57 (1.07) | 1.16 (1.03) |
AWP-Consistent | 0–2 | 1.04 (0.73) | 1.48 (0.66) | 1.25 (0.73) |
AWP-Inconsistent | 0–3 | 0.61 (0.79) | 1.35 (1.19) | 0.97 (1.06) |
AWP-Superficial | 0–3 | 0.36 (0.61) | 0.45 (0.73) | 0.40 (0.67) |
AWP-Error | 0–3 | 2.03 (1.60) | 1.20 (1.08) | 1.63 (1.27) |
AWP-Global | 0–5 | 1.66 (1.18) | 2.83 (1.52) | 2.22 (1.47) |
(I) AWP | (J) AWP | Mean | Dev. Error | Sig. | Cohen’s d |
---|---|---|---|---|---|
Differences (I-J) | |||||
1 | 2 | 0.363 | 0.052 | <0.001 | 0.77 |
3 | 0.184 | 0.053 | 0.007 | 0.40 | |
4 | 0.339 | 0.051 | <0.001 | 0.72 | |
5 | 0.430 | 0.051 | <0.001 | 0.94 | |
2 | 3 | −0.179 | 0.057 | 0.019 | 0.35 |
4 | −0.024 | 0.044 | >0.05 | ||
5 | 0.066 | 0.045 | >0.05 | ||
3 | 4 | 0.155 | 0.052 | 0.032 | 0.30 |
5 | 0.246 | 0.051 | <0.001 | 0.50 | |
4 | 5 | 0.091 | 0.039 | >0.05 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. History-Geo | 1 | 0.61 ** | 0.33 ** | 0.32 ** | 0.22 ** | 0.04 | 0.26 ** | 0.27 ** | 0.14 | 0.35 ** | 0.33 ** |
2. Mathematics | 1 | 0.30 ** | 0.19 * | 0.39 ** | 0.22 ** | 0.34 ** | 0.33 ** | 0.24 ** | 0.36 ** | 0.38 ** | |
3. PROLEC-SE | 1 | 0.26 ** | 0.38 ** | 0.23** | 0.20 ** | 0.35 ** | 0.24 ** | 0.32 ** | 0.35 ** | ||
4. Spelling-SE | 1 | 0.17 * | 0.11 | 0.19 * | 0.23 ** | 0.20 ** | 0.23 ** | 0.27 ** | |||
5. KBIT | 1 | 0.20 * | 0.22 ** | 0.35 ** | 0.19 * | 0.34 ** | 0.34 ** | ||||
6. DRTs | 1 | 0.21 ** | 0.21 ** | 0.08 | 0.27 ** | 0.24 ** | |||||
7. AWP-one-op. | 1 | 0.42 ** | 0.58 ** | 0.65 ** | 0.76 ** | ||||||
8. AWP-two-op. | 1 | 0.61 ** | 0.82 ** | 0.90 ** | |||||||
9. AWP-Consistent | 1 | 0.32 ** | 0.73 ** | ||||||||
10. AWP-Inconsistent | 1 | 0.88 ** | |||||||||
11. AWP-Global | 1 |
Dependent Variable | R2 | R2 Adj | F | B | Beta | |
---|---|---|---|---|---|---|
AWP Global | 0.22 | 0.20 | 9.101 *** | |||
KBIT | 0.07 | 0.22 | t = 2.56, p = 0.012 | |||
PROLEC-SE | 0.07 | 0.19 | t = 2.24, p = 0.027 | |||
DRTs | 0.14 | 0.13 | t = 1.64, p = 0.103 | |||
Spelling-SE | 0.09 | 0.17 | t = 2.10, p = 0.038 | |||
History & Geography | 0.23 | 0.20 | 7.774 *** | |||
KBIT | 0.02 | 0.04 | t = 0.42, p = 0.673 | |||
PROLEC-SE | 0.11 | 0.21 | t = 2.34, p = 0.021 | |||
AWP-Inconsistent | 0.27 | 0.25 | t = 2.92, p = 0.004 | |||
DRTs | −0.16 | −0.11 | t = −1.30, p = 0.195 | |||
Spelling-SE | 0.16 | 0.22 | t = 2.68, p = 0.008 | |||
Mathematics Achievement | 0.24 | 0.21 | 8.261 *** | |||
KBIT | 0.11 | 0.25 | t = 2.93, p = 0.004 | |||
PROLEC-SE | 0.04 | 0.09 | t = 1.01, p = 0.314 | |||
AWP Global | 0.31 | 0.23 | t = 2.67, p = 0.009 | |||
DRTs | 0.13 | 0.09 | t = 1.15, p = 0.254 | |||
Spelling-SE | 0.04 | 0.05 | t = 0.61, p = 0.541 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque de Blas, G.; Gómez-Veiga, I.; García-Madruga, J.A. Arithmetic Word Problems Revisited: Cognitive Processes and Academic Performance in Secondary School. Educ. Sci. 2021, 11, 155. https://doi.org/10.3390/educsci11040155
Duque de Blas G, Gómez-Veiga I, García-Madruga JA. Arithmetic Word Problems Revisited: Cognitive Processes and Academic Performance in Secondary School. Education Sciences. 2021; 11(4):155. https://doi.org/10.3390/educsci11040155
Chicago/Turabian StyleDuque de Blas, Gonzalo, Isabel Gómez-Veiga, and Juan A. García-Madruga. 2021. "Arithmetic Word Problems Revisited: Cognitive Processes and Academic Performance in Secondary School" Education Sciences 11, no. 4: 155. https://doi.org/10.3390/educsci11040155
APA StyleDuque de Blas, G., Gómez-Veiga, I., & García-Madruga, J. A. (2021). Arithmetic Word Problems Revisited: Cognitive Processes and Academic Performance in Secondary School. Education Sciences, 11(4), 155. https://doi.org/10.3390/educsci11040155