A Study of the Usefulness of Physical Models and Digital Models for Teaching Science to Prospective Primary School Teachers
Abstract
:1. Introduction
2. AIMS
- To diagnose the previous use of models in biology among future teachers of Primary Education in their Primary, Secondary and University studies;
- To carry out a comparative study of the educational performance of future Primary Education teachers in a specific biology problem situation (transport of oxygen inside the human body), between the use of physical and digital models;
- To analyze the future Primary School teachers’ assessment of the educational use of the physical or digital models used.
3. Materials and Methods
3.1. Context and Participants
3.2. Student Work
3.3. Post-Practical Work Questionnaire
4. Results and Discussion
4.1. Previous Use of Models by Future Primary School Teachers
4.2. Work Carried out by the Students
4.3. Difficulties/Errors Identified
- Knowledge of the basic anatomy and physiology of the respiratory system.
- b.
- Relationship of the respiratory apparatus to cellular respiration
4.4. Evaluation after Implementation of the Proposal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council (NCR). A Framework for K-12 Science Education: Practices, Crosscutting Concepts and Core Ideas; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Muñoz-Campos, V.; Franco-Mariscal, A.J.; Blanco-López, A. Integración de prácticas científicas de argumentación, indagación y modelización en un contexto de la vida diaria. Valoraciones de estudiantes de secundaria. Rev. Eureka Sobre Enseñanza Divulg. Cienc. 2020, 17, 3201. [Google Scholar] [CrossRef]
- Justi, R. La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza Cienc. 2006, 24, 173–184. Available online: https://raco.cat/index.php/Ensenanza/article/view/75824 (accessed on 1 December 2022). [CrossRef]
- Windschitl, M.; Thompson, J.; Braaten, M. Beyond the Scientific Method: Model-Based Inquiry as a New Paradigm of Preference for School Science Investigations. Sci. Educ. 2008, 92, 941–967. [Google Scholar] [CrossRef] [Green Version]
- Erduran, S.; Jiménez-Aleixandre, M. Argumentation in Science Education: Perspectives from Classroom-Based Research; Springer: New York, NY, USA, 2007. [Google Scholar]
- Schwarz, C.V.; Reiser, B.J.; Davis, E.A.; Kenyon, L.; Acher, A.; Fortus, D.; Krajcik, J. Developing a learning progression for scientific modeling: Making scientific modelling accessible and meaningful for learners. J. Res. Sci. Teach. 2009, 46, 632–654. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.K.; Boulter, C.J.; Elmer, R. Positioning models in science education and in design and technologyeducation. In Developing Models in Science Education; Gilbert, J.K., Boulter, C.J., Eds.; KluwerAcademic Publisher: Dordrecht, The Netherlands, 2000; pp. 3–17. [Google Scholar]
- Hernández, M.I.; Couso, D.; Pintó, R. Analyzing students’ learning progressions throughout a teaching sequence on Acoustic Properties of Materials with a model-based inquiry approach. J. Sci. Educ. Technol. 2015, 24, 356–377. [Google Scholar] [CrossRef]
- Olander, C.; Wickman, P.; Tytler, R.; Ingerman, A. Representations as mediation between purposes as junior secondary science students learn about the human body. Int. J. Sci. Educ. 2018, 40, 204–226. [Google Scholar] [CrossRef]
- Brandstetter, M.; Sandmann, A.; Florian, C. Understanding pictorial information in biology: Students’ cognitive activities and visual reading strategies. Int. J. Sci. Educ. 2017, 39, 1218–1237. [Google Scholar] [CrossRef]
- Oliva, J.M. Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza Cienc. 2019, 37, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Acher, A. Cómo facilitar la modelización científica en el aula. Tecné Epistem. Didaxis 2014, 36, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, C.V.; White, B.Y. Metamodeling knowledge: Developing students’ understanding of scientific modelling. Cogn. Instr. 2005, 23, 165–205. [Google Scholar] [CrossRef]
- Muñoz-Campos, V. Aprendizaje del cambio químico y desarrollo de prácticas científicas en una secuencia de enseñanza-aprendizaje para Educación Secundaria Obligatoria en el contexto del consumo y elaboración del yogur. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, 2020. Available online: https://hdl.handle.net/10630/22464 (accessed on 20 November 2022).
- Gómez Galindo, A.A. Fundamentación teórica y diseño de una unidad didáctica para la enseñanza de del modelo ser vivo en la escuela primaria. Enseñanza Cienc. 2007, 25, 325–340. Available online: https://www.raco.cat/index.php/Ensenanza/article/download/87930/216420. [CrossRef]
- De Abreu, F.; Nunes, L.M.; Silva, E.L. Teaching Cell Biology in Primary Schools. Educ. Res. Int. 2014, 2014, 272475. [Google Scholar] [CrossRef] [Green Version]
- Ferrera, F.; Guerra, L.; Oliva, C.; Quintana, I.; Domínguez, A.; Calvet, M.E. Maqueta de célula eucariota animal. Morfovirtual 2018. Convención Virtual de Ciencias Morfológicas. Available online: http://www.morfovirtual2018.sld.cu/index.php/morfovirtual/2018/paper/viewPaper/129/612 (accessed on 20 November 2022).
- Perveen, N.; Bhutta, S.M. Enhancing content knowledge of in-service science teachers through model and modeling. J. Res. Reflect. Educ. 2012, 6, 61–74. [Google Scholar]
- Maroto, R.M. La QRélulas: Maquetas de células, Web 2.0 y Códigos QR. In Jornadas sobre investigación y Didáctica en ESO y Bachillerato. II Congreso de docentes de Ciencias; Santillana Educación S.L.: Madrid, Spain, 2014; pp. 271–276. Available online: http://www.epinut.org.es/archivado.htm?box2=1bosk76avo43r2azycvouclx4e191x1s (accessed on 20 November 2022).
- Arslan, R.; Kofoğlu, M.; Dargut, C. Development of Augmented Reality Application for Biology Education. J. Turk. Sci. Educ. 2020, 17, 62–72. Available online: https://www.tused.org/index.php/tused/article/view/874/610 (accessed on 25 November 2022). [CrossRef]
- Deng, X.; Zhou, G.; Xiao, B.; Zhao, Z.; He, Y.; Chen, C. Effectiveness evaluation of digital virtual simulation application in teaching of gross anatomy. Ann. Anat. Anat. Anz. 2018, 218, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Fančovičova, J.; Prokop, P. The effects of 3D plastic models of animals and cadaveric dissection on students´ perceptions of the internal organs of animals. J. Balt. Sci. Educ. 2014, 13, 767–775. Available online: http://www.scientiasocialis.lt/jbse/?q=node/397 (accessed on 20 November 2022). [CrossRef]
- García Fernández, B.; Mateos Jiménez, A. Comparación entre la realización de maquetas y la visualización para mejorar la alfabetización visual en anatomía humana en futuros docentes. Rev. Eureka Sobre Enseñanza Divulg. Cienc. 2018, 15, 3605. [Google Scholar] [CrossRef]
- García-Bonete, M.J.; Jensen, M.; Katona, G. A Practical Guide to Developing Virtual and Augmented Reality Exercises for Teaching Structural Biology. Biochem. Mol. Biol. Educ. 2018, 47, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Murgitroyd, E.; Marduska, M.; González, J.; Watson, A. 3D digital anatomy modelling—Practical or pretty. Surgeon 2015, 13, 1–4. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Sterp Moga, E.; Hernández-Muñoz, O. Anatomía natural versus anatomía artificial en la enseñanza de las ciencias. Soportes visuales e innovaciones tecnológicas. Hum. Rev. 2022, 11, 3–17. [Google Scholar] [CrossRef]
- Yammine, K.; Violato, C. The effectiveness of physical models in teaching anatomy: A meta-analysis of comparative studies. Adv. Health Sci. Educ. 2015, 21, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Pro, A.; Pro, C.; Cantó, J. El COVID-19: Planteamiento de actividades por los profesores de Secundaria en formación inicial. In Actas 1er Congreso Internacional sobre Educación Científica y Problemas Relevantes para la Ciudadanía; Franco-Mariscal, A.J., Cebrián-Robles, D., Lupión-Cobos, T., Acebal-Expósito, M.C., Blanco, A., Eds.; ENCIC: Málaga, Spain, 2020; pp. 136–139. [Google Scholar]
- Portillo-Blanco, A.; Díez, J.R.; Barrutia, O.; Garmendia, M.; Guisasola, J. Diseño y evaluación de una intervención educativa sobre la pandemia de la COVID-19 y las medidas de prevención. Rev. Eureka Sobre Enseñanza Divulg. Cienc. 2022, 19, 130201–130218. [Google Scholar] [CrossRef]
- Robles, F.J.; Fernández, M.; Ayuso, E. Desarrollo Sostenible a través de Instagram. Estudio de propuestas de futuros docentes de Primaria. EDUTEC Rev. Electrónica Tecnol. Educ. 2021, 76, 212–227. [Google Scholar] [CrossRef]
- Banet, E.; Nuñez, F. Esquemas conceptuales de los alumnos sobre la respiración. Rev. Enseñanza Cienc. 1990, 8, 105–111. [Google Scholar]
- Marcos, J.M.; Esteban, M.R. Concepciones alternativas sobre Biología Celular y Microbiología de los maestros en formación: Implicaciones de su presencia. Campo Abierto 2017, 36, 167–179. [Google Scholar]
- Robles, F.J.; Fernández, M.; Ayuso, G.E. Adaptaciones al COVID en el proceso de aprendizaje-enseñanza del cuerpo humano. Primeros datos. In 30 Encuentros Internacionales de Didáctica de las Ciencias Experimentales. La Enseñanza de las Ciencias en un Entorno Intercultural; Benarroch, A., Ed.; University of Granada: Granada, Spain, 2022; pp. 1081–1088. [Google Scholar]
- Couso, D.; Garrido-Espeja, A. Models and Modelling in Pre-service Teacher Education: Why We Need Both. In Cognitive and Affective Aspects in Science Education Research; Hahl, K., Juuti, K., Lampiselkä, J., Uitto, A., Lavonen, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 245–261. [Google Scholar]
Reference | Advantages | Disadvantages | |
---|---|---|---|
DM | Murgitroyd, Marduska, Gonzalez and Watson [20] | Can enhance learning of complex structures. Useful in medical practice simulations. Improve understanding of complex anatomical structures and relationships. | They require reliable and affordable technology. |
Deng, Zhou, Xiao, Zhao, He and Chen [21] | Learning outcomes are improved. Students can access the simulation remotely. Provides accurate anatomy information. | The simulation does not provide a tactile sensation of the hardness, weight or flexibility of the organs. Some small parts do not have sufficient resolution. | |
García-Bonete, Jensen and Katona [22] | Better realism (VR). Unique experience (VR). Experience can be shared with others (AR). Only smartphone is needed (AR). | Unintuitive use of controls (VR). Cannot be shown to others (VR). No different from viewing on a computer screen (AR). Unintuitive controls (AR). Unrealistic simulation (AR). | |
Arslan, Kofoglu and Dargut [23] | Facilitates understanding with 3D models. Increases student motivation. Increases student success. Easily accessible by smartphone. | It does not allow the whole of a subject to be covered. More content needs to be developed, especially basic biology. | |
PM | Fančovičova and Prokop [24] | PM, by simplifying anatomy and differentiating by color, facilitates learning and retention. | PM may be perceived as less stimulating than real specimens. |
Yammine and Violato [25] | Promotes knowledge in general. Promotes the acquisition of spatial knowledge. Facilitates long-term knowledge retention. Easy accessibility. | Not described in the study. | |
García and Mateos [26] | Making PM promotes visual literacy in human anatomy. | Not described in the study. | |
Sánchez-Ortiz, Sterp and Hernández-Muñoz [27] | They gave students access to virtual dissections of different models of living beings. | Teachers may perceive them as obsolete objects in favor of other resources and devices. |
Issue | Type of Reply | Assessment of the Reply |
---|---|---|
Route | It is able to determine the path taken by the oxygen molecule through the human body. | If the answer is correct, it is given a score of 2; if there is an error or inaccuracy, it is given a score of 1; and if it is completely wrong, it is given a score of 0. |
Order organs | In the path of oxygen through the human body, correctly establish the sequence of the organs through which the molecule travels. | If the answer is correct, it is given a score of 2; if there is an error or inaccuracy, it is given a score of 1; and if it is completely wrong, it is given a score of 0. |
Order Body systems | The sequence of systems and apparatus through which the oxygen molecule moves is correctly established. | If the answer is correct, it is given a score of 2; if there is an error or inaccuracy, it is given a score of 1; and if it is completely wrong, it is given a score of 0. |
Use Image support | Uses a visual resource to illustrate their explanation of the questioned issues. | Yes (1) or No (0). |
Correct image | The figure used is properly organized (sequence of organs, sequence of systems, arrangement with reference to the body). | If the reply is correct, it is given a score of 2; if there is an error or inaccuracy, it is given a score of 1; and if it is completely wrong, it is given a score of 0. |
Qualification | Taking into account the different sections above and the work performed by the student, an overall assessment of the answer given by the student is given. | Rating from 1 to 4, with 1 being negative and 4 positive. In addition, a score of 2 or more considered the response to be correct, while scores of less than 2 were considered not correct. |
Target | Item |
---|---|
Motivation | I found the use of the model very motivating. |
Lack of knowledge | Before using the anatomical model, I did not know what we look like inside. |
Arrangement | The model has helped me to better understand the internal arrangement of the organs. |
Visualization | Visualisation of scientific models is very important in science education. |
Understanding | The internal structure of the human being is better understood through verbal explanations, either oral or written, than through the use of models |
Use resource | The use of models in primary education can be a useful resource for teaching about the human body. |
Adequacy | Found the representation of the organs and systems in the model to be adequate. |
Group | Route | Order Organs | Order Body Systems | Correct Image | Qualification | |||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | M | SD | |
PM | 1.55 | 0.59 | 1.53 | 0.61 | 1.52 | 0.61 | 1.43 | 0.69 | 2.64 | 0.99 |
DM | 1.67 | 0.58 | 1.64 | 0.59 | 1.66 | 0.59 | 1.56 | 0.52 | 2.68 | 0.85 |
ALL | 1.60 | 0.59 | 1.58 | 0.60 | 1.58 | 0.60 | 1.48 | 0.62 | 2.55 | 0.93 |
Mann–Whitney U | 2155 | 2218 | 2152 | 2280 | 2441 | |||||
p-value | 0.123 | 0.226 | 0.125 | 0.386 | 0.923 | |||||
Significant difference | No | No | No | No | No |
Group | N | m * | Quartiles | M * | Mann–Whitney U | p-Value | Significant Difference | |||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | ||||||||
Motivation | PM | 77 | 3 | 3 | 3 | 4 | 3.27 | 2399 | 0.548 | No |
DM | 64 | 3 | 3 | 3 | 4 | 3.18 | ||||
Lack of knowledge | PM | 77 | 1 | 1 | 1 | 2 | 1.50 | 1712 | <0.001 | Yes |
DM | 64 | 2 | 1 | 2 | 2 | 2.00 | ||||
Arrangement | PM | 77 | 3 | 3 | 3 | 4 | 3.21 | 1943 | 0.008 | Yes |
DM | 64 | 4 | 3 | 4 | 4 | 3.52 | ||||
Visualization | PM | 77 | 4 | 3 | 4 | 4 | 3.69 | 2499 | 0.853 | No |
DM | 64 | 4 | 3 | 4 | 4 | 3.69 | ||||
Comprehension | PM | 77 | 2 | 1 | 2 | 2 | 1.77 | 2185 | 0.118 | No |
DM | 64 | 1 | 1 | 1 | 2 | 1.60 | ||||
Use resource | PM | 77 | 4 | 4 | 4 | 4 | 3.86 | 2480 | 0.691 | No |
DM | 64 | 4 | 4 | 4 | 4 | 3.89 | ||||
Adequacy | PM | 77 | 4 | 3 | 4 | 4 | 3.60 | 2331 | 0.337 | No |
DM | 64 | 4 | 3 | 4 | 4 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Moral, F.J.; Fernández-Díaz, M.; Ayuso-Fernández, G.E. A Study of the Usefulness of Physical Models and Digital Models for Teaching Science to Prospective Primary School Teachers. Educ. Sci. 2023, 13, 343. https://doi.org/10.3390/educsci13040343
Robles-Moral FJ, Fernández-Díaz M, Ayuso-Fernández GE. A Study of the Usefulness of Physical Models and Digital Models for Teaching Science to Prospective Primary School Teachers. Education Sciences. 2023; 13(4):343. https://doi.org/10.3390/educsci13040343
Chicago/Turabian StyleRobles-Moral, F. Javier, Manuel Fernández-Díaz, and Gabriel Enrique Ayuso-Fernández. 2023. "A Study of the Usefulness of Physical Models and Digital Models for Teaching Science to Prospective Primary School Teachers" Education Sciences 13, no. 4: 343. https://doi.org/10.3390/educsci13040343
APA StyleRobles-Moral, F. J., Fernández-Díaz, M., & Ayuso-Fernández, G. E. (2023). A Study of the Usefulness of Physical Models and Digital Models for Teaching Science to Prospective Primary School Teachers. Education Sciences, 13(4), 343. https://doi.org/10.3390/educsci13040343