Digital Sequential Scaffolding during Experimentation in Chemistry Education—Scrutinizing Influences and Effects on Learning
Abstract
:1. Introduction
1.1. Sequential Scaffolding during Experimentation
1.2. Research Questions
2. Materials and Methods
2.1. Sample
2.2. Data Collection
2.3. Measures
3. Results
3.1. Factor Analysis-Descriptives
3.2. Results Relating to Research Question 1
3.3. Results Relating to Research Question 2
3.3.1. Influence on Situational Interest (Catch)
3.3.2. Influence on Situational Interest (Hold)
3.3.3. Influence on Self-Perceived Experimentation Competence after the Experiment
3.3.4. Influence on Perceived Competence Support
3.3.5. Influence on Perceived Autonomy Support
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abrams, E.; Southerland, S.A.; Evans, C.A. Inquiry in the Classroom. Identifying Necessary Components of a Useful Definition. In Inquiry in the Classroom. Realitites and Opportunities; Abrams, E., Southerland, S.A., Silva, P.C., Eds.; Information Age Publishing: Charlotte, NC, USA, 2008; pp. xi–xlii. [Google Scholar]
- Bell, R.L.; Smetana, L.; Binns, I. Simplifying Inquiry Instruction. Sci. Teach. 2005, 72, 30–33. [Google Scholar]
- Lazonder, A.W.; Harmsen, R. Meta-Analysis of Inquiry-Based Learning: Effects of Guidance. Rev. Educ. Res. 2016, 86, 681–718. [Google Scholar] [CrossRef]
- Affeldt, F.; Markic, S.; Eilks, I. Über die Nutzung abgestufter Lernhilfen beim forschenden Lernen [On the use of sequential scaffolds in inquiry-based learning]. Chem. Sch. 2019, 34, 17–21. [Google Scholar]
- Schumacher, A. Forschendes Lernen im Chemieunterricht [Inquiry-based learning in chemistry education]. In Chemie vermitteln. Fachdidaktische Grundlagen und Implikationen; Reiners, C.S., Ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2017; pp. 177–191. [Google Scholar]
- Stäudel, L.; Franke-Braun, G.; Schmidt-Weigand, F. Komplexität erhalten—Auch in heterogenen Lerngruppen: Aufgaben mit gestuften Lernhilfen [Maintain complexity—Even in heterogeneous learning groups: Tasks with sequwntial scaffolding]. CHEMKON 2007, 14, 115–122. [Google Scholar] [CrossRef]
- Wieczorek, R.; Sommer, K. Strukturen nachweisen—Gestufte Lernhilfen und deren Einsatz bei eigenverantwortlichen Schülerexperimenten [Detecting structures—Sequential scaffolds and their use in independent student experiments]. Unterr. Chem. 2008, 19, 88–93. [Google Scholar]
- Van Gog, T.; Hoogerheide, V.; Harsel, M. The Role of Mental Effort in Fostering Self-Regulated Learning with Problem-Solving Tasks. Educ. Psychol. Rev. 2020, 32, 1055–1072. [Google Scholar] [CrossRef]
- Van Gog, T.; Rummel, N.; Renkl, A. Learning how to solve problems by studying examples. In The Cambridge Handbook of Cognition and Education; Dunlosky, J., Rawson, K.A., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 183–208. [Google Scholar]
- Renkl, A. The worked examples principle in multimedia learning. In The Cambridge Handbook of Multimedia Learning; Mayer, R.E., Ed.; Cambridge University Press: New York, NY, USA, 2014; pp. 391–412. [Google Scholar]
- Banchi, H.; Bell, R. The Many Levels of Inquiry. Sci. Child. 2008, 46, 26–29. [Google Scholar]
- Vygotsky, L.S. Mind in Society: Development of Higher Psychological Processes; Harvard University Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Stäudel, L. Differenzieren im Chemieunterricht. Eine Herausforderung für Lehrkräfte, Lernende und das Selbstverständnis von Schule [Differentiation in chemistry teaching. A Challenge for Teachers, Learners and the Self-Perception of Schools]. Unterr. Chem. 2009, 20, 8–11. [Google Scholar]
- Großmann, N.; Wilde, M. Experimentation in biology lessons: Guided discovery through incremental scaffolds. Int. J. Sci. Educ. 2019, 41, 759–781. [Google Scholar] [CrossRef]
- Franke-Braun, G.; Schmidt-Weigand, F.; Stäudel, L.; Wodzinski, R. Aufgaben mit gestuften Lernhilfen—Ein besonderes Aufgabenformat zur kognitiven Aktivierung der Schülerinnen und Schüler und zur Intensivierung der sachbezogenen Kommunikation [Tasks with sequential scaffolds—A special task format for cognitive activation of students and intensification of factual communication]. In Lernumgebungen auf dem Prüfstand: Zwischenergebnisse aus den Forschungsprojekten; Forschungsgruppe, K., Ed.; Kassel University Press: Kassel, Germany, 2008; pp. 27–42. [Google Scholar]
- Hmelo-Silver, C.E.; Duncan, R.G.; Chinn, C.A. Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educ. Psychol. 2007, 42, 99–107. [Google Scholar] [CrossRef]
- Schmidt-Weigand, F.; Franke-Braun, G.; Hänze, M. Erhöhen gestufte Lernhilfen die Effektivität von Lösungsbespielen? [Do sequential scaffolds increase the effectiveness of solution examples?]. Unterrichtswissenschaft 2008, 36, 365–384. [Google Scholar]
- Belland, B.R.; Kim, C.; Hannafin, M.J. A framework for designing scaffolds that improve motivation and Cognition. Educ. Psychol. 2013, 48, 243–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, M.; Ioannidis, A.; González, L.F.; Dabrowski, T.; Großschedl, J. Fostering Learning with Incremental Scaffolds During Chemical Experimentation: A Study on Junior High School Students Working in Peer-Groups. Int. J. Innov. Sci. Math. Educ. 2021, 29, 19–31. [Google Scholar] [CrossRef]
- Stiller, C.; Wilde, M. Einfluss gestufter Lernhilfen als Unterstützungsmaßnahme beim Experimentieren auf den Lernerfolg im Biologieunterricht. Z. Erzieh. 2021, 24, 743–763. [Google Scholar] [CrossRef]
- Arnold, J.; Kremer, K.; Mayer, J. Scaffolding beim Forschenden Lernen [Scaffolding in inquiry-based learning]. Z. Didakt. Nat. 2017, 23, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, S.I.; Besa, K.-S.; Wilde, M. Der Einsatz gestufter Lernhilfen als Unterstützung für Lernende im Kontext des biologischen Experimentierens. Einfluss auf die Schüler*innen-Motivation im Naturwissenschafts- und Mathematikunterricht [The use of incremental scaffolds as support for learners in the context of experimenting in biology. Influence on students’ intrinsic motivation in science and math classes]. Z. Didakt. Biol. Biol. Lehren Lern. 2022, 26, 1–18. [Google Scholar] [CrossRef]
- Schmidt-Borcherding, F.; Hänze, M.; Wodzinski, R.; Rincke, K. Inquiring scaffolds in laboratory tasks: An instance of a “worked laboratory guide effect”? Eur. J. Psychol. Educ. 2013, 28, 1381–1395. [Google Scholar] [CrossRef]
- Busker, M.; Parchmann, I.; Wickleder, M. Eingangsvoraussetzungen von Studienanfängern im Fach Chemie. Welches Vorwissen und welche Interessen zeigen Studierende? [Entry requirements of first-year chemistry students. What prior knowledge and interests do students show?]. CHEMKON 2010, 17, 163–168. [Google Scholar] [CrossRef]
- Meinhardt, C.; Rabe, T.; Krey, O. Formulierung eines evidenzbasierten Validitätsarguments am Beispiel der Erfassung physikdidaktischer Selbstwirksamkeitserwartungen mit einem neu entwickelten Instrument [Formulating an evidence-based validity argument using the example of assessing physics didactic self-efficacy expectations with a newly developed instrument]. Z. Didakt. Nat. 2018, 24, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Schöne, C.; Dickhäuser, O.; Spinath, B.; Stiensmeier-Pelster, J. Die Skalen zur Erfassung des Schulischen Selbstkonzepts (SESSKO) [The Scales for the Assessment of the School Self-Concept (SESSKO)]; Hogrefe: Göttingen, Germany, 2002. [Google Scholar]
- Rheinberg, F.; Vollmeyer, R.; Burns, B.D. FAM: Ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen [QCM: A questionnaire to assess current motivation in learning situations]. Diagnostica 2001, 47, 57–66. [Google Scholar] [CrossRef]
- Knogler, M.; Harackiewicz, J.M.; Gegenfurtner, A.; Lewalter, D. How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemp. Educ. Psychol. 2015, 43, 39–50. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellnes; The Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Rakoczy, K.; Buff, A.; Lipowsky, F. Dokumentation der Erhebungs- und Auswertungsinstrumente zur Schweizerisch-Deutschen Videostudie. "Unterrichtsqualität, Lernverhalten und Mathematisches Verständnis". 1. Befragungsinstrumente [Documentation of the Survey and Evaluation Instruments for the Swiss-German Video Study. "Teaching Quality, Learning Behavior, and Mathematical Understanding." 1. Survey Instruments]; GFPF u.a.: Frankfurt, Germany, 2005; Volume 13, p. 297. [Google Scholar]
- Hamers, P.; Bekel-Kastrup, H.; Kleinert, S.I.; Haunhorst, D.; Wilde, M. Schüler*innen lernen selbstständig das Modellieren mit Exponentialfunktionen. Binnendifferenzierung im Mathematikunterricht durch digitale gestufte Lernhilfen [Students learn to model exponential functions independently. Internal differentiation in mathematics lessons through digital sequential scaffolds]. DiMawe Mater. 2022, 4, 73–78. [Google Scholar] [CrossRef]
- Kleinert, S.I.; Haunhorst, D.; Bekel-Kastrup, H.; Hamers, P.; Wilde, M. Wie hoch ist die Salztoleranz unterschiedlicher Getreidesorten? Eigenständiges Experimentieren mit digitalen gestuften Lernhilfen zur Thematik Ökologische Nische und Keimung [What is the salt tolerance of different cereal varieties? Independent experimentation with digital sequential scaffolds on the topic of ecological niche and germination]. DiMawe Mater. 2022, 4, 22–29. [Google Scholar] [CrossRef]
Experiment | Scaffolds Set-Up | Scaffolds Conduction | Scaffolds Observation |
---|---|---|---|
(1) Partial set-up of the experiment as an augmented reality 3D model. | (1) Short video showing how to apply zinc iodide solution to an object carrier. | (1) Image showing the two reaction products | |
Electrolysis of a zinc iodide solution | |||
(2) Complete set-up of the experiment as an augmented reality 3D model. | |||
(1) Partial set-up of the experiment as an augmented reality 3D model. | (1) Image showing the correct initial position of the three-way valve | (1) Image showing the gases at 1 and 2 mL | |
Electrolysis of water | |||
(2) Complete set-up of the experiment as an augmented reality 3D model. | (2) Short video showing how to correctly draw the water to the zero mark (3) Image showing how to connect the metal spikes to the battery | (2) Image showing the gases at 2 and 4 mL |
Factor | Factor Loadings | Item | M | SD |
---|---|---|---|---|
| ||||
0.71 | (1) I think it’s good that you should first take one sequential scaffold and then the next one | 3.32 | 0.88 | |
0.69 | (2) I find it easy to use the sequential scaffolds | 3.39 | 0.85 | |
0.68 | (3) I like that the first sequential scaffold is not immediately the complete solution | 3.36 | 0.88 | |
| ||||
0.77 | (4) I was able to conduct the experiment better because of the sequential scaffolds | 3.38 | 0.89 | |
0.72 | (5) I could observe the experiment better because of the sequential scaffolds | 2.99 | 0.96 | |
0.57 | (6) I was able to set up the experiment better because of the sequential scaffolds | 3.26 | 0.98 | |
| ||||
0.77 | (7) The sequential scaffolds have made me even more curious about the experiment | 2.73 | 0.96 | |
0.71 | (8) I had more desire to understand the background of the experiment because of the sequential scaffolds | 2.78 | 0.91 | |
0.68 | (9) The sequential scaffolds have motivated me to carry out the whole experiment without using sequential scaffolds | 2.80 | 0.91 |
M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|---|
1. Understanding of concept and usage | 3.26 | 0.66 | |||||||
2. Perceived benefit | 3.19 | 0.70 | 0.63 *** | ||||||
3. Motivation regarding experimentation | 2.77 | 0.70 | 0.24 ** | 0.30 *** | |||||
4. Prior self-perceived experimentation competence | 3.67 | 0.70 | 0.29 *** | 0.18 * | 0.15 | ||||
5. Prior knowledge | 3.80 | 3.23 | −0.16 | −0.06 | 0.06 | 0.15 | |||
6. Chemistry-related self-concept | 2.59 | 0.96 | −0.06 | −0.07 | −0.03 | 0.46 *** | 0.33 *** | ||
7. Interest in chemistry education | 3.66 | 1.50 | 0.05 | 0.07 | 0.13 | 0.44 *** | 0.27 *** | 0.68 *** | |
8. Prior experience with sequential scaffolds | - | - | 0.19 * | 0.28 *** | 0.11 | 0.05 | −0.06 | 0.03 | 0.16 |
Predictor | b | SEb a | beta | T | p | Fit | Difference |
---|---|---|---|---|---|---|---|
Model 1 | |||||||
(Intercept) | 3.07 [2.90, 3.23] | 0.81 | 36.43 | <0.001 | |||
Prior experience with sequential scaffolds | 0.27 [0.03, 0.50] | 0.12 | 0.20 | 2.27 | 0.025 | R2 = 0.04 * | |
Model 2 | |||||||
(Intercept) | 2.15 [1.59, 2.68] | 0.28 | 6.99 | <0.001 | |||
Prior experience with sequential scaffolds | 0.24 [0.00, 0.46] | 0.12 | 0.18 | 2.04 | 0.044 | ||
Prior self-perceived experimentation competence | 0.26 [0.11, 0.41] | 0.07 | 0.27 | 3.09 | 0.002 | R2 = 0.11 *** | ∆R2 = 0.07 ** |
Predictor | b | SEb a | beta | T | p | Fit | Difference |
---|---|---|---|---|---|---|---|
Model 1 | |||||||
(Intercept) | 2.96 [2.77, 3.12] | 0.09 | 33.77 | <0.001 | |||
Prior experience with sequential scaffolds | 0.42 [0.19, 0.67] | 0.12 | 0.30 | 3.43 | <0.001 | R2 = 0.09 *** | |
Model 2 | |||||||
(Intercept) | 2.44 [1.67, 3.15] | 0.47 | 7.43 | <0.001 | |||
Prior experience with sequential scaffolds | 0.41 [0.16, 0.66] | 0.12 | 0.28 | 3.28 | 0.001 | ||
Prior self-perceived experimentation competence | 0.14 [−0.06, 0.35] | 0.10 | 0.14 | 1.61 | 0.108 | R2 = 0.11 *** | ∆R2 = 0.02 |
M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
1. Understanding of concept and usage | 3.26 | 0.66 | ||||||||
2. Perceived benefit | 3.19 | 0.70 | 0.63 *** | |||||||
3. Motivation regarding experimentation | 2.77 | 0.70 | 0.24 ** | 0.30 *** | ||||||
4. Post-test knowledge | 6.51 | 3.21 | 0.04 | −0.09 | 0.04 | |||||
5. Situational interest Catch | 3.86 | 0.85 | 0.16 | 0.33 *** | 0.44 *** | 0.12 | ||||
6. Situational interest Hold | 3.02 | 0.96 | −0.01 | 0.17 * | 0.53 *** | 0.05 | 0.68 *** | |||
7. Self-perceived experimentation competence (post) | 3.86 | 0.71 | 0.22 * | 0.16 | 0.12 | 0.33 *** | 0.41 *** | 0.22 ** | ||
8. Perceived competence support | 2.77 | 0.64 | 0.20 * | 0.27 ** | 0.33 *** | 0.23 ** | 0.41 *** | 0.44 *** | 0.225 ** | |
9. Perceived autonomy support | 3.12 | 0.55 | 0.24 ** | 0.31 *** | 0.20 * | 0.34 *** | 0.50 *** | 0.40 *** | 0.48 *** | 0.49 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleischer, T.; Moser, S.; Deibl, I.; Strahl, A.; Maier, S.; Zumbach, J. Digital Sequential Scaffolding during Experimentation in Chemistry Education—Scrutinizing Influences and Effects on Learning. Educ. Sci. 2023, 13, 811. https://doi.org/10.3390/educsci13080811
Fleischer T, Moser S, Deibl I, Strahl A, Maier S, Zumbach J. Digital Sequential Scaffolding during Experimentation in Chemistry Education—Scrutinizing Influences and Effects on Learning. Education Sciences. 2023; 13(8):811. https://doi.org/10.3390/educsci13080811
Chicago/Turabian StyleFleischer, Timo, Stephanie Moser, Ines Deibl, Alexander Strahl, Simone Maier, and Joerg Zumbach. 2023. "Digital Sequential Scaffolding during Experimentation in Chemistry Education—Scrutinizing Influences and Effects on Learning" Education Sciences 13, no. 8: 811. https://doi.org/10.3390/educsci13080811
APA StyleFleischer, T., Moser, S., Deibl, I., Strahl, A., Maier, S., & Zumbach, J. (2023). Digital Sequential Scaffolding during Experimentation in Chemistry Education—Scrutinizing Influences and Effects on Learning. Education Sciences, 13(8), 811. https://doi.org/10.3390/educsci13080811