Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer
Abstract
:1. Introduction
1.1. Proteomics-Driven Biomarker Discoveries from Diverse Body Fluids
Body Fluid Type | Cancer/Disease Type | Cohort Used | Biomarkers Find | Methodology Applied | Reference |
---|---|---|---|---|---|
Blood | HBV induced Hepatocellular carcinoma (HCC) | 22 patients affected by HBV induced HCC and 22 healthy controls | Alpha-fetoprotein (AFP) | Enzyme-linked immunosorbent assay (ELISA) and SPSS for statistical analysis | [14] |
Urine | Pancreatic cancer | [I] Healthy: 87 individuals; Pancreatic cancer: 192 individuals [II] Healthy: 87 individuals; Pancreatic cancer: 71 individuals | Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), regenerating gene-1-alpha (REG-1-alpha) and trefoil factor-1 (TFF-1) | GeLc/MS/MS analysis; biomarker validation was conducted via ELISA and a multiple logistic regression model was applied to a training dataset of 488 urine samples in a multicentre cohort | [15] |
Serum | HNSCC | Healthy: 10 individuals; HNSCC: 39 individuals (37 men and 2 women) | MMP 13 | A two-site sandwich ELISA assay was used to evaluate the markers | [16] |
Serum | Endometrial cancer | 174 endometrial cancer patients. Samples were taken at four points: (i) primary diagnosis, (ii) post-surgery, (iii) follow-up, and (iv) at recurrence | HE4, CA 125 (cancer antigen 125) | Levels of biomarkers were measured using chemiluminescent enzyme immunoassay (CLEIA) | [17] |
Plasma | Laryngeal squamous cell carcinoma (LSCC) | 22 patients diagnosed with advanced LSCC and 21 healthy controls | miR-31-3p and miR-196a-5p | RT-qPCR was used to estimate the presence of biomarkers. Tissue and plasma samples were correlated and the two miRNAs were found to be upregulated in both tissue and plasma samples | [18] |
1.2. Different Types of Diagnostic Body Fluids in Cervical Cancer
2. Proteomic Biomarkers Identified from a Variety of Body Fluids of Cervical Cancer Patients
2.1. Blood (Plasma) Based Biomarkers
Body Fluid Type | Methodology and Protocol | Cohort | Key Findings | Extra Comments (Merits/Demerits) | References |
---|---|---|---|---|---|
Plasma | 2D-DIGE separation (stained with cytidine dyes); MALDI—TOF/TOF MS analysis; ELISA for biomarker validation and statistical analysis. | Healthy: 22 individuals; early-stage CSCC (cervical squamous cell carcinoma) patients: 22 individuals. | ApoA1, ApoE and CLU were validated by ELISA as prognostic markers. ApoA1 was downregulated and ApoE and CLU were upregulated in CSCC. | Identifying individual or panel of potential biomarkers at a treatable stage. | [13] |
Plasma | 2D-DIGE (silver staining); MS/MS (MALDI-TOF) to identify DEPs, and further validation by ELISA and statistical analysis by ANOVA. | Healthy: 40 individuals; CSCC and CIN patients: 80 individuals. | Cytokeratin 19 is upregulated in both the CIN 3 and CSCC IV conditions and tetranectin downregulated in CSCC. | Identification of DEPs along different stages of cervical cancer progression helps in understanding and prognosis of cancer. | [38] |
Serum | Weak cation method, exchange chromatography fractionation in conjunction with MALDI-TOF spectrometry, liquid chromatography-electrospray ionization tandem mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). | Healthy: 50 individuals; patients before surgery: 39; patients after surgery: 28. | The three peaks (m/z: 2435.63, 2575.3, and 2761.79 Da) may serve as predictive serum biomarkers for cervical cancer (CC). | Each patient group has obvious variation as the combined effect of age, stage, and tumor type reduces the power of marker detection. | [47] |
Serum | In-house developed ELISA with linear peptide envelope antigens derived from TAAs. | Healthy: 28 individuals; CIN I: 28 patients; CIN II: 30 patients; CIN III: 31 patients; cancer: 31 patients. | Survivin, TP53, CyclinB-1 and ANXA-1, c-myc proteins were found differentially expressed in various cancer groups which could be potential biomarkers. | NA | [48] |
Serum | Immunoaffinity chromatography, SDS-PAGE, and in-gel digestion, LC-MS/MS; pooled serum sample expression was determined by Western blot. | Healthy: 16 individuals; cervical cancer patients: 31 Individuals. | A1AT, PYCR2, TTR, ApoAI, VDBP, and MMRN1 were expressed considerably differently in serum samples from healthy controls and cervical cancer patients. | VDBP is primarily generated and secreted by the liver and is the principal transporter of vitamin D and its metabolites to target organs. | [49] |
Serum | iTRAQ, label-free shotgun mass spectrometric quantification, and targeted mass spectrometric quantification. | For serum pooling and iTRAQ labelling: healthy set_1: 10; healthy set_2: 7; cancer early stage: 9; cancer late-stage: 7; For Label-Free NanoChip-LC/MS Quantification and Targeted MRM Analysis: healthy controls- cervical intraepithelial neoplasia- cancer early stage- cancer late-stage-ovarian cancer. | Patients and healthy controls showed significant changes in abundance of alpha-1-acid glycoprotein 1, alpha-1-antitrypsin, serotransferrin, haptoglobin, alpha-2-HS-glycoprotein, and vitamin D-binding protein. | NA | [50] |
Mucous | SELDI-TOF (surface-enhanced laser desorption and ionization-time of flight mass spectrometry). | Samples were collected from women attending urban hospital colposcopy clinics who were enrolled as a part of the study of cervical neoplasia. Samples were collected at the time of colposcopy by absorption into two Weck-Cel® sponges from 2–6 women matched for ages and races. | Annexin, tropomyosin, 14-3-3 sigma, calreticulin, and anterior gradient protein were identified. | The short sample size and inaccuracy of sample collecting techniques lowered the number of proteins discovered | [28] |
Mucous | Screening by LC-MS (liquid chromatography-mass spectrometry and gene ontology to predict functions. Differentially expressed proteins in the cervical adenocarcinoma patients and the controls. were conducted using the iTRAQ. | Healthy: 3 individuals; endocervical adenocarcinoma: 3 patients; in situ adenocarcinoma: 3 patients. | The top differentially expressed proteins were APOB, FINC, K1C13, SPTA1, CATA, K2C4, PERM, CO4B, A1AT, CFAH, A2ML1. For AIS: EA they were, PP2AA, HBG2, SBP1, APOC3, IGA2, HSP27, PERM, FINC. AIS: Control patients, the differentially expressed proteins were F10A5, SKP1, HBG2, PNCB, KPYM, SPR1A, MRS. | Although there are two different types of cervical cancer samples, the sample size was very small. | [51] |
Menstrual fluid | Genomic DNA was extracted from the menstrual blood collected on a napkin using a QIAmp DNA Mini Kit. Two rounds of PCR reaction using My11 and My09 primers for HPV detection. Fischer’s exact test to examine the association between the distribution of genotypes or alleles for the TAP polymorphisms. | Control: 137 individuals; CIN3, CIN1, CIN2: 265 patients. | TAP1 I333V and TAP1 D637G were detected in the menstrual blood samples. The genotypes AA, AG, and GG were detected at each polymorphic site in the patients and the risk of developing high-grade cervical neoplasia was reduced for the AG and GG phenotypes as compared to the AA genotype. The risk of developing high-grade CIN was reduced in the patients that had a G allele than in those with an A allele. | The findings in the study have high specificity, sensitivity, and positive predictive value for the HPV virus and have received positive responses from over 5000 women. | [52] |
Cervicovaginal fluid | Label-free quantification method based on LC-MS/MS method followed by ELISA. The PLS-DA model for further statistical analysis. | Development set—healthy: 10 individuals; LSIL: 10 individuals; HSIL: 10 individuals; cancer: 10 individuals Validation set—healthy: 14; LSIL: 8; HSIL: 6; cancer: 5. | ACTN4, VTN, ANXA1, ANXA2, CAP1, MUC5B and PKM2 from the 27 differentially expressed proteins have been indicated as promising biomarkers for cervical cancer. | The comparatively high number of samples gives better and more accurate results and reduces the chances of false biomarker discovery. The samples were also better classified into further four subgroups providing a comparison basis amongst the four groups. | [53] |
Cervicovaginal fluid | Label-free quantification method based on LC-MS/MS method followed by ELISA. Significant proteins were determined using normalised spectra abundance factor values (NSAF values). Chi-squared test to determine the exclusivity of the protein and Unpaired Student’s t-test to analyse the ELISA results. | Healthy: 6 individuals; precancerous: 6 individuals. | They determined protein biomarkers for the precancerous state of cervical cancer. They found 12 proteins, including ACTN4 and PKM2. | There is a significant statistical analysis conducted to determine the significant proteins among the ones discovered after the ELISA results. | [54] |
Urine | Label-free quantification- UPLC-MS/MS analysis of pooled samples protein-protein interaction (STRING), pathway enrichment analysis, and molecular functions from KEGG and GO. Sensitivity as potential biomarkers tested by Western blotting and statistical analysis like logistic regression, ROC and AUC. | Healthy: 13 individuals; cervical cancer: 24 individuals. | Five Proteins with molecular weight >100 kDA were identified as potential biomarkers—LRG1, MMRN1 (upregulated), S100A1, CD44, SERPIN 33 (downregulated). | Rather than conventional gel-based MS analysis, non-gel based LFQ-MS analysis could aid in finding the low molecular weight potential biomarkers present in trace amounts in urine. | [55] |
Urine | 2-DE and MALDI-MS and MS/MS analysis, validation by nano LC-MS analysis (LTQ Orbitrap XL ETD mass spectrometer), immunoblotting and statistical analysis. | Healthy: 31 individuals; cervical cancer: 42 individuals. | PCDH8, ARNTL2, serum albumin and Endorepellin, C-terminal domain V of perlecan were found to be differentially expressed. Only endorepellin L3 fragment showed significantly elevated expression levels. | Pre-processing of samples prior to gel-based applications could reduce interference in urine. | [56] |
2.2. Serum Based Biomarkers
2.3. Mucous Based Biomarkers
2.4. Menstrual-Fluid Based Biomarkers
2.5. Cervicovaginal Fluid-Based Biomarkers
2.6. Urine Based Biomarkers
3. Body Fluid-Based Biomarker Development for Cervical Cancer: Scope and Difficulties
3.1. The Use of Unusual Body Fluids in the Search for Cervical Cancer Biomarkers
3.2. Current Clinical Challenges of Performing Omics-Based Studies including Cervical Cancer Patients
4. Metadata Analysis from Proteomic Studies on Cervicovaginal Fluid (CVF)
4.1. Network Analysis via STRING
4.1.1. STRING Settings
4.1.2. STRING Results
4.2. Network Analysis via Cytoscape
4.2.1. Cytoscape Settings
4.2.2. Cytoscape Results
4.3. Combined Interpretation of the Pathway Analysis Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Thongboonkerd, V. Proteomics of Human Body Fluids: PRINCIPLES, Methods, and Applications; Springer: Humana Totowa, NJ, USA, 2007. [Google Scholar]
- Csősz, É.; Kalló, G.; Márkus, B.; Deák, E.; Csutak, A.; Tőzsér, J. Quantitative body fluid proteomics in medicine—A focus on minimal invasiveness. J. Proteom. 2017, 153, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, D.M.; Thongboonkerd, V.; Novak, J.; Bascands, J.-L.; Schanstra, J.P.; Coon, J.J.; Dominiczak, A.; Mischak, H. Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future. J. Proteome Res. 2007, 6, 4549–4555. [Google Scholar] [CrossRef] [PubMed]
- Levin, Y.; Schwarz, E.; Wang, L.; Leweke, F.M.; Bahn, S. Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J. Sep. Sci. 2007, 30, 2198–2203. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.-M.; Simpson, R.J. Body fluid proteomics: Prospects for biomarker discovery. Proteom.—Clin. Appl. 2007, 1, 1004–1015. [Google Scholar] [CrossRef]
- Patel, S. Role of Proteomics in Biomarker Discovery. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 94, pp. 39–75. [Google Scholar] [CrossRef]
- Waggoner, S.E. Cervical cancer. Lancet 2003, 361, 2217–2225. [Google Scholar] [CrossRef]
- Vora, C.; Gupta, S. Targeted therapy in cervical cancer. ESMO Open 2018, 3, e000462. [Google Scholar] [CrossRef] [Green Version]
- Moseley, F.L.; Bicknell, K.A.; Marber, M.S.; Brooks, G. The use of proteomics to identify novel therapeutic targets for the treatment of disease. J. Pharm. Pharmacol. 2007, 59, 609–628. [Google Scholar] [CrossRef]
- Mischak, H.; Apweiler, R.; Banks, R.E.; Conaway, M.; Coon, J.; Dominiczak, A.; Ehrich, J.H.H.; Fliser, D.; Girolami, M.; Hermjakob, H.; et al. Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteom.—Clin. Appl. 2007, 1, 148–156. [Google Scholar] [CrossRef]
- Martin, K.J.; Fournier, M.V.; Reddy, G.P.V.; Pardee, A.B. A Need for Basic Research on Fluid-Based Early Detection Biomarkers: Figure 1. Cancer Res. 2010, 70, 5203–5206. [Google Scholar] [CrossRef] [Green Version]
- Hortin, G.L.; Sviridov, D. The dynamic range problem in the analysis of the plasma proteome. J. Proteom. 2010, 73, 629–636. [Google Scholar] [CrossRef]
- Guo, X.; Hao, Y.; Kamilijiang, M.; Hasimu, A.; Yuan, J.; Wu, G.; Reyimu, H.; Kadeer, N.; Abudula, A. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis. Tumor Biol. 2015, 36, 1711–1720. [Google Scholar] [CrossRef]
- Ahmed, A.; AL-Ansi, W.; Basharat, S.; Li, Y.; Bai, Z. Validation of ProteinBiomarker Candidates for Diagnosis of HBV induced HCC. Int. J. Adv. Agric. Sci. Technol. 2022, 9, 9–42. [Google Scholar] [CrossRef]
- Radon, T.P.; Massat, N.J.; Jones, R.; Alrawashdeh, W.; Dumartin, L.; Ennis, D.; Duffy, S.W.; Kocher, H.M.; Pereira, S.P.; Guarner (posthumous), L.; et al. Identification of a Three-Biomarker Panel in Urine for Early Detection of Pancreatic Adenocarcinoma. Clin. Cancer Res. 2015, 21, 3512–3521. [Google Scholar] [CrossRef] [Green Version]
- Marcos, C.Á.; Martínez, D.A.K.; de los Toyos, J.R.; Domínguez Iglesias, F.; Hermsen, M.; Guervós, M.A.; Pendás, J.L.L. The usefulness of new serum tumor markers in head and neck squamous cell carcinoma. Otolaryngol. Head Neck Surg. 2009, 140, 375–380. [Google Scholar] [CrossRef]
- Abbink, K.; Zusterzeel, P.L.; Geurts-Moespot, A.J.; Herwaarden, A.; Pijnenborg, J.M.; Sweep, F.C.; Massuger, L.F. HE4 is superior to CA125 in the detection of recurrent disease in high-risk endometrial cancer patients. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2018, 40, 1010428318757103. [Google Scholar] [CrossRef] [Green Version]
- Kyurkchiyan, S.G.; Popov, T.M.; Shakola, F.; Rangachev, J.; Mitev, V.I.; Kaneva, R. A pilot study reveals the potential of miR-31-3p and miR-196a-5p as non-invasive biomarkers in advanced laryngeal cancer. Folia Med. 2021, 63, 355–364. [Google Scholar] [CrossRef]
- Jimenez-Luna, C.; Torres, C.; Ortiz, R.; Dieguez, C.; Martinez-Galan, J.; Melguizo, C.; Prados, J.C.; Caba, O. Proteomic biomarkers in body fluids associated with pancreatic cancer. Oncotarget 2018, 9, 16573–16587. [Google Scholar] [CrossRef]
- Plebani, M.; Basso, D.; Panozzo, M.P.; Fogar, P.; Del Favero, G.; Naccarato, R. Tumor Markers in the Diagnosis, Monitoring and Therapy of Pancreatic Cancer: State of the Art. Int. J. Biol. Markers 1995, 10, 189–199. [Google Scholar] [CrossRef]
- St. John, M.A.R.; Li, Y.; Zhou, X.; Denny, P.; Ho, C.-M.; Montemagno, C.; Shi, W.; Qi, F.; Wu, B.; Sinha, U.; et al. Interleukin 6 and Interleukin 8 as Potential Biomarkers for Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. Arch. Otolaryngol.—Head Neck Surg. 2004, 130, 929. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-D.; Lee, H.-S.; Jeon, C.-H. Body Fluid Biomarkers for Early Detection of Head and Neck Squamous Cell Carcinomas. Anticancer Res. 2011, 31, 1161–1167. [Google Scholar]
- Toyoshima, T.; Vairaktaris, E.; Nkenke, E.; Schlegel, K.A.; Neukam, F.W.; Ries, J. Cytokeratin 17 mRNA expression has potential for diagnostic marker of oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2008, 134, 515–521. [Google Scholar] [CrossRef]
- Hu, S.; Loo, J.A.; Wong, D.T. Human body fluid proteome analysis. Proteomics 2006, 6, 6326–6353. [Google Scholar] [CrossRef]
- Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.C.; Liebler, D.C. Depletion of Abundant Plasma Proteins and Limitations of Plasma Proteomics. J. Proteome Res. 2010, 9, 4982–4991. [Google Scholar] [CrossRef] [Green Version]
- Panicker, G.; Ye, Y.; Wang, D.; Unger, E.R. Characterization of the Human Cervical Mucous Proteome. Clin. Proteom. 2010, 6, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Huggins, G.R.; Preti, G. Vaginal odors and secretions. Clin. Obstet. Gynecol. 1981, 24, 355–377. [Google Scholar] [CrossRef]
- Chappell, C.A.; Rohan, L.C.; Moncla, B.J.; Wang, L.; Meyn, L.A.; Bunge, K.; Hillier, S.L. The effects of reproductive hormones on the physical properties of cervicovaginal fluid. Am. J. Obstet. Gynecol. 2014, 211, 226.e1–226.e7. [Google Scholar] [CrossRef] [Green Version]
- Zegels, G.; Van Raemdonck, G.A.; Tjalma, W.A.; Van Ostade, X.W. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci. 2010, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. MCP 2002, 1, 845–867. [Google Scholar] [CrossRef] [Green Version]
- Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017, 13, 942. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, L.; Huang, C.; Li, Q.; Nice, E.C. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 2017, 17, 1600240. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, A.; Hanash, S.M. Unleashing the power of proteomics to develop blood-based cancer markers. Clin. Chem. 2013, 59, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Zhou, Z.; Chen, Y.; Deng, H.; Cai, Y.; Rao, X.; Yin, Y.; Rong, L. Plasma proteomics-based identification of novel biomarkers in early gastric cancer. Clin. Biochem. 2020, 76, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.-S.; Yeom, J.; Yu, J.; Kwon, Y.-I.; Kim, J.-H.; Kim, K. Convergence of Plasma Metabolomics and Proteomics Analysis to Discover Signatures of High-Grade Serous Ovarian Cancer. Cancers 2020, 12, 3447. [Google Scholar] [CrossRef] [PubMed]
- Berggrund, M.; Enroth, S.; Lundberg, M.; Assarsson, E.; Stålberg, K.; Lindquist, D.; Hallmans, G.; Grankvist, K.; Olovsson, M.; Gyllensten, U. Identification of Candidate Plasma Protein Biomarkers for Cervical Cancer Using the Multiplex Proximity Extension Assay. Mol. Cell. Proteom. MCP 2019, 18, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Nam, M.; Kwon, M.; Seo, S.-S.; Jung, S.; Han, J.S.; Hwang, G.-S.; Kim, M.K. LC/MS-Based Polar Metabolite Profiling Identified Unique Biomarker Signatures for Cervical Cancer and Cervical Intraepithelial Neoplasia Using Global and Targeted Metabolomics. Cancers 2019, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Looi, M.L.; Karsani, S.A.; Rahman, M.A.; Dali, A.Z.H.M.; Ali, S.A.M.; Ngah, W.Z.W.; Yusof, Y.A.M. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma. J. Biosci. 2009, 34, 917–925. [Google Scholar] [CrossRef]
- Neves, A.C.O.; Morais, C.L.M.; Mendes, T.P.P.; Vaz, B.G.; Lima, K.M.G. Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: An untargeted lipidomic study. Sci. Rep. 2018, 8, 3954. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Q.; Wang, T.; Liang, H.; Wang, Y.; Duan, Y.; Song, M.; Wang, Y.; Jin, H. Prognostic biomarkers of cervical squamous cell carcinoma identified via plasma metabolomics. Medicine 2019, 98, e16192. [Google Scholar] [CrossRef]
- Kumar, V.; Ray, S.; Ghantasala, S.; Srivastava, S. An Integrated Quantitative Proteomics Workflow for Cancer Biomarker Discovery and Validation in Plasma. Front. Oncol. 2020, 10, 1840. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, F.; Limones-González, J.E.; Mendoza-Almanza, B.; Esparza-Ibarra, E.L.; Gallegos-Flores, P.I.; Ayala-Luján, J.L.; Godina-González, S.; Salinas, E.; Mendoza-Almanza, G. Understanding Cervical Cancer through Proteomics. Cells 2021, 10, 1854. [Google Scholar] [CrossRef]
- Zamanian-Daryoush, M.; Lindner, D.; Tallant, T.C.; Wang, Z.; Buffa, J.; Klipfell, E.; Parker, Y.; Hatala, D.; Parsons-Wingerter, P.; Rayman, P.; et al. The Cardioprotective Protein Apolipoprotein A1 Promotes Potent Anti-Tumorigenic Effects. J. Biol. Chem. 2013, 288, 21237–21252. [Google Scholar] [CrossRef] [Green Version]
- Getz, G.S.; Reardon, C.A. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J. Lipid Res. 2009, 50, S156–S161. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Yi, J.; Li, W.; Zheng, X.; Liu, J.; Wang, J.; Du, G. Apolipoproteins and cancer. Cancer Med. 2019, 8, 7032–7043. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.E.; Siewert, K.M.; Klarin, D.; Damrauer, S.M.; Chang, K.-M.; Tsao, P.S.; Assimes, T.L.; Maxwell, K.N.; Voight, B.F. The relationship between circulating lipids and breast cancer risk: A Mendelian randomization study. PLoS Med. 2020, 17, e1003302. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiong, X.; Wang, Y.; Zhao, J.; Shi, H.; Zhang, H.; Wang, Y.; Wei, Y.; Xue, W.; Zhang, J. Proteomic Screening for Serum Biomarkers for Cervical Cancer and Their Clinical Significance. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, M.; Xu, S.; Li, S.; Sun, B.; Lee, K.-H.; Liu, L.; Sun, S. A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with cervical cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 8709–8714. [Google Scholar] [CrossRef] [PubMed]
- Keeratichamroen, S.; Subhasitanont, P.; Chokchaichamnankit, D.; Weeraphan, C.; Saharat, K.; Sritana, N.; Kantathavorn, N.; Wiriyaukaradecha, K.; Sricharunrat, T.; Paricharttanakul, N.M.; et al. Identification of potential cervical cancer serum biomarkers in Thai patients. Oncol. Lett. 2020, 19, 3815–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boichenko, A.P.; Govorukhina, N.; Klip, H.G.; van der Zee, A.G.J.; Güzel, C.; Luider, T.M.; Bischoff, R. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer. J. Proteome Res. 2014, 13, 4995–5007. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, J.; Luan, T.; Chu, C.; Wu, W.; Zhu, Y.; Gu, Y. Proteomic analysis of human cervical adenocarcinoma mucus to identify potential protein biomarkers. PeerJ 2020, 8, e9527. [Google Scholar] [CrossRef]
- Wong, S.C.C.; Au, T.C.C.; Chan, S.C.S.; Ng, L.P.W.; Tsang, H.F. Menstrual Blood Human Papillomavirus DNA and TAP1 Gene Polymorphisms as Potential Biomarkers for Screening and Monitoring of Cervical Squamous Intraepithelial Lesion. J. Infect. Dis. 2018, 218, 1739–1745. [Google Scholar] [CrossRef]
- Starodubtseva, N.L.; Brzhozovskiy, A.G.; Bugrova, A.E.; Kononikhin, A.S.; Indeykina, M.I.; Gusakov, K.I.; Chagovets, V.V.; Nazarova, N.M.; Frankevich, V.E.; Sukhikh, G.T.; et al. Label-free cervicovaginal fluid proteome profiling reflects the cervix neoplastic transformation. J. Mass Spectrom. 2019, 54, 693–703. [Google Scholar] [CrossRef]
- Van Raemdonck, G.A.A.; Tjalma, W.A.A.; Coen, E.P.; Depuydt, C.E.; Van Ostade, X.W.M. Identification of Protein Biomarkers for Cervical Cancer Using Human Cervicovaginal Fluid. PLoS ONE 2014, 9, e106488. [Google Scholar] [CrossRef] [Green Version]
- Chokchaichamnankit, D.; Watcharatanyatip, K.; Subhasitanont, P.; Weeraphan, C.; Keeratichamroen, S.; Sritana, N.; Kantathavorn, N.; Diskul Na Ayudthaya, P.; Saharat, K.; Chantaraamporn, J.; et al. Urinary biomarkers for the diagnosis of cervical cancer by quantitative label free mass spectrometry analysis. Oncol. Lett. 2019, 17, 5453–5468. [Google Scholar] [CrossRef] [Green Version]
- Aobchey, P. Proteomic Analysis of Candidate Prognostic Urinary Marker for Cervical Cancer. J. Proteom. Bioinform. 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, Y.-N.; Li, Y.; Tian, L.; Ye, X.; Cui, H.; Chang, X.-H. Identification of biomarkers for endometriosis using clinical proteomics. Chin. Med. J. 2015, 128, 520–527. [Google Scholar] [CrossRef]
- Fernandez-Hermida, Y.; Grande, G.; Menarguez, M.; Astorri, A.L.; Azagra, R. Proteomic Markers in Cervical Mucus. Protein Pept. Lett. 2018, 25, 463–471. [Google Scholar] [CrossRef]
- Panicker, G.; Lee, D.R.; Unger, E.R. Optimization of SELDI-TOF protein profiling for analysis of cervical mucous. J. Proteom. 2009, 71, 637–646. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, B.; Prinz, M.; Siegel, D. Proteomic Analysis of Menstrual Blood. Mol. Cell. Proteom. 2012, 11, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- Naseri, S.; Lerma, K.; Blumenthal, P.D. Comparative Assessment of Serum versus Menstrual Blood for Diagnostic Purposes: A Pilot Study. J. Clin. Lab. Med. 2019, 4. [Google Scholar] [CrossRef]
- Einstein, M.H.; Leanza, S.; Chiu, L.G.; Schlecht, N.F.; Goldberg, G.L.; Steinberg, B.M.; Burk, R.D. Genetic Variants in TAP Are Associated with High-Grade Cervical Neoplasia. Clin. Cancer Res. 2009, 15, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Natter, C.; Polterauer, S.; Rahhal-Schupp, J.; Cacsire Castillo-Tong, D.; Pils, S.; Speiser, P.; Zeillinger, R.; Heinze, G.; Grimm, C. Association of TAP Gene Polymorphisms and Risk of Cervical Intraepithelial Neoplasia. Dis. Markers 2013, 35, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, L.L.; Jonscher, K.R.; Heerwagen, M.J.; Gibbs, R.S.; McManaman, J.L. Shotgun Proteomic Analysis of Vaginal Fluid from Women in Late Pregnancy. Reprod. Sci. 2008, 15, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Van Ostade, X.; Dom, M.; Tjalma, W.; Van Raemdonck, G. Candidate biomarkers in the cervical vaginal fluid for the (self-)diagnosis of cervical precancer. Arch. Gynecol. Obstet. 2018, 297, 295–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, A.L.; Lindberg, J.H.; Shevchenko, G.; Gustavsson, I.; Bergquist, J.; Gyllensten, U.; Enroth, S. Identification of Candidate Protein Biomarkers for CIN2+ Lesions from Self-Sampled, Dried Cervico-Vaginal Fluid Using LC-MS/MS. Cancers 2021, 13, 2592. [Google Scholar] [CrossRef]
- An, H.-T.; Yoo, S.; Ko, J. α-Actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of Snail expression and β-catenin stabilization in cervical cancer. Oncogene 2016, 35, 5893–5904. [Google Scholar] [CrossRef]
- Christofk, H.R.; Vander Heiden, M.G.; Harris, M.H.; Ramanathan, A.; Gerszten, R.E.; Wei, R.; Fleming, M.D.; Schreiber, S.L.; Cantley, L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452, 230–233. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Zheng, X. Upregulation of Fibronectin, Vitronectin and Claudin-7 in Cervical Cancer. Int. J. Clin. Exp. Med. 2016, 9, 14247–14253. [Google Scholar]
- Rocha, G.H.O.; Loiola, R.A.; do Nascimento Pantaleão, L.; Reutelingsperger, C.; Solito, E.; Farsky, S.H.P. Control of expression and activity of peroxisome proliferated-activated receptor γ by Annexin A1 on microglia during efferocytosis. Cell Biochem. Funct. 2019, 37, 560–568. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.J.; Chao, S.Y.; Chen, S.J.; Zhang, Z.J.; Zhao, J.; Lv, Y.N.; Yao, J.J.; Bai, Y.Y. Update on urine as a biomarker in cancer: A necessary review of an old story. Expert Rev. Mol. Diagn. 2020, 20, 477–488. [Google Scholar] [CrossRef]
- Decramer, S.; de Peredo, A.G.; Breuil, B.; Mischak, H.; Monsarrat, B.; Bascands, J.-L.; Schanstra, J.P. Urine in Clinical Proteomics. Mol. Cell. Proteom. 2008, 7, 1850–1862. [Google Scholar] [CrossRef] [Green Version]
- Mongiat, M.; Sweeney, S.M.; San Antonio, J.D.; Fu, J.; Iozzo, R.V. Endorepellin, a Novel Inhibitor of Angiogenesis Derived from the C Terminus of Perlecan. J. Biol. Chem. 2003, 278, 4238–4249. [Google Scholar] [CrossRef] [Green Version]
- Loo, J.A.; Yan, W.; Ramachandran, P.; Wong, D.T. Comparative Human Salivary and Plasma Proteomes. J. Dent. Res. 2010, 89, 1016–1023. [Google Scholar] [CrossRef] [Green Version]
- Perrone, A.M.; Bovicelli, A.; D’Andrilli, G.; Borghese, G.; Giordano, A.; De Iaco, P. Cervical cancer in pregnancy: Analysis of the literature and innovative approaches. J. Cell. Physiol. 2019, 234, 14975–14990. [Google Scholar] [CrossRef]
- Duraisamy, K.; Jaganathan, K.S.; Bose, J.C. Methods of Detecting Cervical Cancer. Advan. Biol. Res. 2011, 5, 226–232. [Google Scholar]
- Adsul, P.; Manjunath, N.; Srinivas, V.; Arun, A.; Madhivanan, P. Implementing Community-Based Cervical Cancer Screening Programs Using Visual Inspection with Acetic Acid in India: A Systematic Review. Cancer Epidemiol. 2017, 49, 161–174. [Google Scholar] [CrossRef]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.-C.T.; Walter, L.C.; et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef]
- STRING: Functional Protein Association Networks. (n.d.). Available online: https://string-db.org/cgi/input?sessionId=bDJJOkQoHqFQ&input_page_show_search=on (accessed on 5 October 2021).
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2018, 18, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Yang, J.C.; Restifo, N.P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2004, 10, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cheng, Y.; Li, C. The role of TLRs in cervical cancer with HPV infection: A review. Signal Transduct. Target. Ther. 2017, 2, 17055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtukiewicz, M.Z.; Sierko, E.; Klement, P.; Rak, J. The hemostatic system and angiogenesis in malignancy. Neoplasia 2001, 3, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, W.C.S. Proteomics Technologies and Challenges. Genom. Proteom. Bioinform. 2007, 5, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Kolch, W.; Neusüß, C.; Pelzing, M.; Mischak, H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom. Rev. 2005, 24, 959–977. [Google Scholar] [CrossRef] [PubMed]
- Wira, C.R.; Fahey, J.V. A new strategy to understand how HIV infects women: Identification of a window of vulnerability during the menstrual cycle. AIDS 2008, 22, 1909–1917. [Google Scholar] [CrossRef]
- Kelly, R.W.; Carr, G.G.; Critchley, H.O. A cytokine switch induced by human seminal plasma: An immune modulation with implications for sexually transmitted disease. Hum. Reprod. 1997, 12, 677–681. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.; Pednekar, C.B.; Kolke, S.S.; Kattimani, M.; Duraisamy, S.; Burli, A.R.; Gupta, S.; Srivastava, S. Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer. Proteomes 2022, 10, 13. https://doi.org/10.3390/proteomes10020013
Mukherjee A, Pednekar CB, Kolke SS, Kattimani M, Duraisamy S, Burli AR, Gupta S, Srivastava S. Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer. Proteomes. 2022; 10(2):13. https://doi.org/10.3390/proteomes10020013
Chicago/Turabian StyleMukherjee, Amrita, Chinmayi Bhagwan Pednekar, Siddhant Sujit Kolke, Megha Kattimani, Subhiksha Duraisamy, Ananya Raghu Burli, Sudeep Gupta, and Sanjeeva Srivastava. 2022. "Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer" Proteomes 10, no. 2: 13. https://doi.org/10.3390/proteomes10020013
APA StyleMukherjee, A., Pednekar, C. B., Kolke, S. S., Kattimani, M., Duraisamy, S., Burli, A. R., Gupta, S., & Srivastava, S. (2022). Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer. Proteomes, 10(2), 13. https://doi.org/10.3390/proteomes10020013