Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection
Abstract
:1. Introduction
2. Why Proteomics?
3. Which Biofluid to Analyze?
4. Biofluids Proteomics
4.1. Urinary and Blood Proteomics
Biofluid Type Proteomic Technique | Population Dimension (It Is Indicated If an Independent Validation Set Was Used) | Prediction Models (Peptide Fragments/Proteins Used in the Model) | Ref |
---|---|---|---|
Urine (14 peptides previously discovered) | *No-A-TCMR 390, borderline A-TCMR 157, A-TCMR IA+B 36. A-TCMR IIA+IIB+ I 46 (3 countries) | AUC (A-TCMR) 0.67 (collagen a(I) and (III) chain fragments) | [75] |
Urine LC-TOF MS/MS | *STA 14, A-ABMR 22 Validation set: *STA 18, A-ABMR 19., HC 12 | AUC (A-ABMR) 0.95, sensitivity 1.00, specificity 0.78 (epidermal growth factor, collagen alpha-1 (VI) chain, Nidogen-1) | [74] |
Urine iTRAQ LC-MS/MS | *STA 117, AR 112, CAN 116, BKVN 51 Validation set: *STA 47, AR 42, CAN 46, BKVN 16 | AUC (AR) 0.93; AUC (CAN) 0.99; AUC (BKVN) 0.83 (AR: 11 peptides; CAN: 12 peptides; and BKVN: 12 peptides) | [79] |
Urine LC-MS/MS | *STA 5, Sub-Cli-R 6, IFTA 6 Validation set: *STA 22, ScR 17, GN 15, Viral nephropathies 7, IFTA = 20, IFTAi 13; B-T 13 | AUC (matrix metalloproteinase-7: creatinine, inflamed vs. non-inflamed biopsies) 0.74 | [29] |
Urine SELDI-TOF-MS | *STA 26, AR 26 Validation set: *STA 16, AR 16 | AUCs (alpha-1-microglobulin) 0.81 and (haptoglobin) 0.76 | [80] |
Urine CE-MS | *STA 23, Subcli-TCMRC 16 Validation set: *STA 36, SubCli-R 18, Cli-R 10 | AUC (TCMRC) 0.91 (collagen α (I); α (III); matrix metalloproteinase-8) | [71] |
Urine SELDI-TOF-MS/protein chip array | *STA 36, AR 55, ATN 10 | ATN vs. STA: sensitivity 1.0 and specificity 1.0; STA vs. AR: sensitivity 0.86 and specificity 0.85 (p < 0.001) (ATN vs. STA: 2655; 11,730; 13,134 Da. STA vs. AR: 2364; 33,344; 66,479 Da) | [81] |
Urine LC-MS/MS and ELISA | *STA, AR 10, HC 20 Validation set: *STA 20, AR 20, HC 20 | AUC (CD44) 0.97; AUC (PEDF) 0.93; AUC (UMOD) 0.85 (MHC antigens, complement cascade, extracellular matrix proteins) | [54] |
Urine MALDI-TOF MS | *STA 10, AR 10, BKVN 6 Validation set: *STA 10, AR 10, BKVN 4, NS 10, HC 10 | AUC (AR) 0.96 (40 peptides) | [82] |
Urine LC-MALDI-TOF MS | *STA 8, C-ABMR 10, IFTA 8, HC 10 Validation set: *C-ABMR 8, IFTA 6 | AUC (C-ABMR) 1.00 (6 peptides—m/z:1539.8, 1540.03, 1542.1, 1575.48, 1587.86, and 1657.4) | [69] |
Urine LC-MALDI-TOF MS | *STA 5, C-ABMR 10, IFTA 8, HC 9 Validation set: *STA 9, C-ABMR 11, IFTA 10, HC 9 | C-ABMR: sensitivities 0.70 and specificities 0.70 (m/z: 610.7, 638.0, 642,6, 645.6, and 1096.8) | [70] |
Urine SELDI-TOF-MS/ Protein chip array | *STA 22, Sub-Cli-R 27 Validations set: *STA 14, SubCli-R 10 | Sensitivity 0.90 and specificity 0.71 (m/z: 2761, 10762, 11729, 11940) | [76] |
Urine SELDI-TOF-MS | *STA 22, AR 18, ATN 5, dnG 5, HC 28, UTI 5 | AR vs. STA p < 0.0001 Detected (peaks I+II+III) 94% AR and 18% STA and 0% HC | [61] |
Urine SELDI-TOF-MS | *STA 22, AR 23, HC 20 | sensitivity 0.905–0.913 and specificity 0.772–0.833 (2003.0, 2802.6, 4756.3, 5872.4, 6990.6, 19,018.8, 25,665.7 Da) | [55] |
Urine SELDI-TOF-MS | *STA 15, AR 17 | Tree decision model: sensitivity 0.83 and specificity 1.00 (decision trees 3.4, 10.0 Kd) | [83] |
Plasma LC-MS/MS | *STA 25, A-CR 6 | p < 0.05 (24 proteins) | [57] |
Plasma plus Blood iTRAQ MALDI-TOF/TOF MS/MS | *AR 20, non-AR 20 | AUC (21 peptides) 0.57 AUC (90 probes gene) 0.71 | [84] |
Plasma iTRAQ MALDI-TOF/TOF | *AR 11, non-AR 21 | AUC 0.86 (titin, kininogen-1, and lipopolysaccharide-binding protein) | [56] |
Serum iTRAQ LC-ESI-MS/MS | *AR 3, HC 9 | Q ≤ 0.05 (109 proteins) | [85] |
Serum MALDI-TOF MS | *STA 12, AR 12, CR 12, HC 13 | Identification 83% AR and 99% CR (AR: 18 peptides; CR: 6 peptides) | [77] |
- Define a specific proteomics technique since each technique will highlight a different set of proteins;
- Define a specific biofluid, as the proteomic is specific to the biofluid;
- High dimension of the population evaluated;
- Apply an independent validation data set to test prediction models;
- Consider a high diversity of confound conditions, including patients with and without rejection processes, including, e.g., kidney drug toxicity, ischemic/reperfusion injury, and infections, among other diseases;
- All samples should be classified according to a parallel and rigorous histological-based biopsy analysis;
- The prediction power of the model should be quantified by measures such as AUC, sensitivity, and specificity, among others.
4.2. PBMC Proteomics
4.3. Exosomes Proteomics
4.4. Multi-Omics Approach
5. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lohéac, C.; Aubert, O.; Loupy, A.; Legendre, C. Étude Des Étiologies Spécifiques de Perte Des Greffons Rénaux: Place Du Rejet Médié Par Les Anticorps et Approche En Population. Néphrol. Thér. 2018, 14, S39–S50. [Google Scholar] [CrossRef] [PubMed]
- Schold, J.D.; Buccini, L.D.; Goldfarb, D.A.; Flechner, S.M.; Poggio, E.D. Association between Kidney Transplant Center Performance and the Survival Benefit of Transplantation Versus Dialysis. Clin. J. Am. Soc. Nephrol. 2014, 9, 1773–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumar, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. Summary of the Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104, 708–714. [Google Scholar] [CrossRef]
- Rosselli, D.; Rueda, J.; Diaz, C.E. Cost-Effectiveness of Kidney Transplantation Compared with Chronic Dialysis in End-Stage Renal Disease. Saudi J. Kidney Dis. Transplant. 2015, 26, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Burton, H.; Iyamu Perisanidou, L.; Steenkamp, R.; Evans, R.; Mumford, L.; Evans, K.M.; Caskey, F.J.; Hilton, R. Causes of Renal Allograft Failure in the UK: Trends in UK Renal Registry and National Health Service Blood and Transplant Data from 2000 to 2013. Nephrol. Dial. Transplant. 2019, 34, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Leendert, C.P. Chronic Renal Transplant Loss. Kidney Int. 1995, 47, 1491–1499. [Google Scholar] [CrossRef] [Green Version]
- Hongera, G.; Fornaro, I.; Granado, C.; Tiercy, J.-M.; Hosli, I.; Schaub, S. Frequency and Determinants of Pregnancy-Induced Child-Specific Sensitization. Am. J. Transplant. 2013, 13, 746–753. [Google Scholar] [CrossRef]
- Pratschke, J.; Dragun, D.; Hauser, I.A.; Horn, S.; Mueller, T.F.; Schemmer, P.; Thaiss, F. Immunological Risk Assessment: The Key to Individualized Immunosuppression after Kidney Transplantation. Transplant. Rev. 2016, 30, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Marfo, K.; Lu, A.; Ling, M.; Akalin, E. Desensitization Protocols and Their Outcome. Clin. J. Am. Soc. Nephrol. 2011, 6, 922–936. [Google Scholar] [CrossRef] [Green Version]
- Khodadadi, L.; Adib, M.; Pourazar, A. Immunoglobulin Class (IgG, IgM) Determination by Dithiothreitol in Sensitized Kidney Transplant Candidates. Transplant. Proc. 2006, 38, 2813–2815. [Google Scholar] [CrossRef]
- Nakorchevsky, A.; Hewel, J.A.; Kurian, S.M.; Mondala, T.S.; Campbell, D.; Head, S.R.; Marsh, C.L.; Yates, J.R.; Salomon, D.R. Molecular Mechanisms of Chronic Kidney Transplant Rejection via Large-Scale Proteogenomic Analysis of Tissue Biopsies. J. Am. Soc. Nephrol. 2010, 21, 362–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nankivell, B.J.; Kuypers, D.R. Diagnosis and Prevention of Chronic Kidney Allograft Loss. Lancet 2011, 378, 1428–1437. [Google Scholar] [CrossRef]
- Halloran, P.F.; Reeve, J.P.; Pereira, A.B.; Hidalgo, L.G.; Famulski, K.S. Antibody-Mediated Rejection, T Cell-Mediated Rejection, and the Injury-Repair Response: New Insights from the Genome Canada Studies of Kidney Transplant Biopsies. Kidney Int. 2014, 85, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, A.S. Mechanisms of Organ Transplant Injury Mediated by B Cells and Antibodies: Implications for Antibody-mediated Rejection. Am. J. Transplant. 2020, 20, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, C.; Viglietti, D.; Bentlejewski, C.; Duong van Huyen, J.-P.; Vernerey, D.; Aubert, O.; Verine, J.; Jouven, X.; Legendre, C.; Glotz, D.; et al. IgG Donor-Specific Anti-Human HLA Antibody Subclasses and Kidney Allograft Antibody-Mediated Injury. J. Am. Soc. Nephrol. 2016, 27, 293–304. [Google Scholar] [CrossRef]
- Terasaki, P.I.; Cai, J. Humoral Theory of Transplantation: Further Evidence. Curr. Opin. Immunol. 2005, 17, 541–545. [Google Scholar] [CrossRef]
- Merhi, B.; Bayliss, G.; Gohh, R.Y. Role for Urinary Biomarkers in Diagnosis of Acute Rejection in the Transplanted Kidney. World J. Transplant. 2015, 5, 251–261. [Google Scholar] [CrossRef]
- Ponticelli, C. The Mechanisms of Acute Transplant Rejection Revisited. J. Nephrol. 2012, 25, 150–158. [Google Scholar] [CrossRef]
- Randhawa, P. T-Cell-Mediated Rejection of the Kidney in the Era of Donor-Specific Antibodies. Curr. Opin. Organ Transplant. 2015, 20, 325–332. [Google Scholar] [CrossRef]
- Sarwal, M.; Chua, M.-S.; Kambham, N.; Hsieh, S.-C.; Satterwhite, T.; Masek, M.; Salvatierra, O. Molecular Heterogeneity in Acute Renal Allograft Rejection Identified by DNA Microarray Profiling. N. Engl. J. Med. 2003, 349, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Gwinner, W. Renal Transplant Rejection Markers. World J. Urol. 2007, 25, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Pereira, A.B.; Chang, J.; Matas, A.; Picton, M.; De Freitas, D.; Bromberg, J.; Serõn, D.; Sellarés, J.; Einecke, G.; et al. Microarray Diagnosis of Antibody-Mediated Rejection in Kidney Transplant Biopsies: An International Prospective Study (INTERCOM). Am. J. Transplant. 2013, 13, 2865–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasmar, M.F.; Dutra, R.S.; Nogueira-Machado, J.A.; Fabreti-Oliveira, R.A.; Siqueira, R.G.; Nascimento, E. Effects of Immunotherapy Induction on Outcome and Graft Survival of Kidney-Transplanted Patients with Different Immunological Risk of Rejection. BMC Nephrol. 2019, 20, 314. [Google Scholar] [CrossRef]
- Senev, A.; Lerut, E.; Van Sandt, V.; Coemans, M.; Callemeyn, J.; Sprangers, B.; Kuypers, D.; Emonds, M.; Naesens, M. Specificity, Strength, and Evolution of Pretransplant Donor-specific HLA Antibodies Determine Outcome after Kidney Transplantation. Am. J. Transplant. 2019, 19, 3100–3113. [Google Scholar] [CrossRef] [PubMed]
- Townamchai, N.; Safa, K.; Chandraker, A. Immunologic Monitoring in Kidney Transplant Recipients. Kidney Res. Clin. Pract. 2013, 32, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, H.; Hirai, T.; Kohei, N.; Yamaguchi, Y.; Tanabe, K. Significance of Qualitative and Quantitative Evaluations of Anti-HLA Antibodies in Kidney Transplantation. Transpl. Int. 2011, 24, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R. Donor-Specific Antibodies in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2017, 13, 82–192. [Google Scholar] [CrossRef]
- Kenta, I.; Takaaki, K. Molecular Mechanisms of Antibody-Mediated Rejection and Accommodation in Organ Transplantation. Nephron 2020, 144, 2–6. [Google Scholar] [CrossRef]
- Ho, J.; Rush, D.N.; Krokhin, O.; Antonovici, M.; Gao, A.; Bestland, J.; Wiebe, C.; Hiebert, B.; Rigatto, C.; Gibson, I.W.; et al. Elevated Urinary Matrix Metalloproteinase-7 Detects Underlying Renal Allograft Inflammation and Injury. Transplantation 2016, 100, 648–654. [Google Scholar] [CrossRef]
- Rush, D. Protocol Biopsies for Renal Transplantation. Saudi J. Kidney Dis. Transpl. 2010, 21, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Yango, A.; Gohh, R.; Wang, L.J.; Morrissey, P.; Shih, M.; Lowery, K.; Charpentier, K.; Gautam, A.; Mendonca, C.; Kumar, S.; et al. The Utility of 6-Month Protocol Renal Biopsy under Modern Immunosuppression. Clin. Nephrol. 2008, 70, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Chang, J.; Famulski, K.; Hidalgo, L.G.; Salazar, I.D.R.; Merino Lopez, M.; Matas, A.; Picton, M.; de Freitas, D.; Bromberg, J.; et al. Disappearance of T Cell-Mediated Rejection Despite Continued Antibody-Mediated Rejection in Late Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2015, 26, 1711–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariharan, S. BK Virus Nephritis after Renal Transplantation. Kidney Int. 2006, 69, 655–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djamali, A.; Premasathian, N.; Pirsch, J.D. Outcomes in Kidney Transplantation. Semin. Nephrol. 2003, 23, 306–316. [Google Scholar] [CrossRef]
- Eikmans, M.; Gielis, E.M.; Ledeganck, K.J.; Yang, J.; Abramowicz, D.; Claas, F.F.J. Non-Invasive Biomarkers of Acute Rejection in Kidney Transplantation: Novel Targets and Strategies. Front. Med. 2019, 5, 358. [Google Scholar] [CrossRef]
- Erpicum, P.; Hanssen, O.; Weekers, L.; Lovinfosse, P.; Meunier, P.; Tshibanda, L.; Krzesinski, J.; Hustinx, R.; Jouret, F. Non-Invasive Approaches in the Diagnosis of Acute Rejection in Kidney Transplant Recipients, Part II: Omics Analyses of Urine and Blood Samples. Clin. Kidney J. 2017, 10, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Sarwal, M. Protein Biomarkers in Renal Transplantation. Expert Rev. Proteom. 2018, 15, 41–54. [Google Scholar] [CrossRef]
- Hricik, D.E.; Nickerson, P.; Formica, R.N.; Poggio, E.D.; Rush, D.; Newell, K.A.; Goebel, J.; Gibson, I.W.; Fairchild, R.L.; Riggs, M.; et al. Multicenter Validation of Urinary CXCL9 as a Risk-Stratifying Biomarker for Kidney Transplant Injury. Am. J. Transplant. 2013, 13, 2634–2644. [Google Scholar] [CrossRef] [Green Version]
- Hirt-Minkowski, P.; Amico, P.; Ho, J.; Gao, A.; Bestland, J.; Hopfer, H.; Steiger, J.; Dickenmann, M.; Burkhalter, F.; Rush, D.; et al. Detection of Clinical and Subclinical Tubulo-Interstitial Inflammation by the Urinary CXCL10 Chemokine in a Real-Life Setting. Am. J. Transplant. 2012, 12, 1811–1823. [Google Scholar] [CrossRef]
- Araújo, R.; Bento, L.F.N.; Fonseca, T.A.H.; Von Rekowski, C.P.; da Cunha, B.R.; Calado, C.R.C. Infection Biomarkers Based on Metabolomics. Metabolites 2022, 12, 92. [Google Scholar] [CrossRef]
- Lin, X.-C.; Sui, W.-G.; Qi, S.-W.; Tang, D.-E.; Cong, S.; Zou, G.-M.; Zhang, Y.; Li, H.; Chen, W.-B.; Cheng, Z.-Q.; et al. Quantitative Proteomic Profiling of Renal Tissue in Human Chronic Rejection Biopsy Samples After Renal Transplantation. Transplant. Proc. 2015, 47, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-M.; Thijs, L.; Liu, Y.-P.; Zhang, Z.; Jacobs, L.; Koeck, T.; Zürbig, P.; Lichtinghagen, R.; Brand, K.; Kuznetsova, T.; et al. The Urinary Proteome as Correlate and Predictor of Renal Function in a Population Study. Nephrol. Dial. Transplant. 2014, 29, 2260–2268. [Google Scholar] [CrossRef] [Green Version]
- Raimondo, F.; Corbetta, S.; Chinello, C.; Pitto, M.; Magni, F. The Urinary Proteome and Peptidome of Renal Cell Carcinoma Patients: A Comparison of Different Techniques. Expert Rev. Proteom. 2014, 11, 503–514. [Google Scholar] [CrossRef]
- Kaysheva, A.L.; Kopylov, A.T.; Kushlinskii, N.E.; Gershtein, E.S.; Alferov, A.A.; Morozov, A.A.; Kazantseva, I.A.; Pleshakova, T.O.; Archakov, A.I.; Ivanov, Y.D. Comparative Analysis of Blood Plasma Proteome in Patients with Renal Cell Carcinoma. Bull. Exp. Biol. Med. 2019, 167, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.; Magalhães, P.; Krochmal, M.; Pejchinovski, M.; Daina, E.; Caruso, M.R.; Goea, L.; Belczacka, I.; Remuzzi, G.; Umbhauer, M.; et al. Urinary Proteome Signature of Renal Cysts and Diabetes Syndrome in Children. Sci. Rep. 2019, 9, 2225. [Google Scholar] [CrossRef]
- Matías-García, P.R.; Wilson, R.; Guo, Q.; Zaghlool, S.B.; Eales, J.M.; Xu, X.; Charchar, F.J.; Dormer, J.; Maalmi, H.; Schlosser, P.; et al. Plasma Proteomics of Renal Function: A Transethnic Meta-Analysis and Mendelian Randomization Study. J. Am. Soc. Nephrol. 2021, 32, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zu, Q.; Lu, J.; Zhang, L.; Zhu, Q.; Sun, X.; Dong, J. Effects of Donor-Recipient Age Difference in Renal Transplantation, an Investigation on Renal Function and Fluid Proteome. Clin. Interv. Aging 2021, 16, 1457–1470. [Google Scholar] [CrossRef]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, R.A. Proteomics Approach and Techniques in Identification of Reliable Biomarkers for Diseases. Saudi J. Biol. Sci. 2020, 27, 968–974. [Google Scholar] [CrossRef]
- Xie, S.; Moya, C.; Bilgin, B.; Jayaraman, A.; Walton, S.P. Emerging Affinity-Based Techniques in Proteomics. Expert Rev. Proteom. 2009, 6, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Flechner, S.M.; Kurian, S.M.; Head, S.R.; Sharp, S.M.; Whisenant, T.C.; Zhang, J.; Chismar, J.D.; Horvath, S.; Mondala, T.; Gilmartin, T.; et al. Kidney Transplant Rejection and Tissue Injury by Gene Profiling of Biopsies and Peripheral Blood Lymphocytes. Am. J. Transplant. 2004, 4, 1475–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrowska, M.; Wlosowicz, A.; Gawin, M.; Widlak, P. MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal. In Advances in Experimental Medicine and Biology; Springer Nature: Cham, Switzerland, 2019; Volume 1073, pp. 57–76. ISBN 9783030122980. [Google Scholar]
- Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.C.; Liebler, D.C. Depletion of Abundant Plasma Proteins and Limitations of Plasma Proteomics. J. Proteome Res. 2010, 9, 4982–4991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigdel, T.K.; Kaushal, A.; Gritsenko, M.; Norbeck, A.D.; Qian, W.; Xiao, W.; Camp, D.G.; Smith, R.D.; Sarwal, M.M. Shotgun Proteomics Identifies Proteins Specific for Acute Renal Transplant Rejection. Proteom. Clin. Appl. 2010, 4, 32–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Riordan, E. Bioinformatic Analysis of the Urine Proteome of Acute Allograft Rejection. J. Am. Soc. Nephrol. 2004, 15, 3240–3248. [Google Scholar] [CrossRef] [PubMed]
- Freue, G.V.C.; Sasaki, M.; Meredith, A.; Günther, O.P.; Bergman, A.; Takhar, M.; Mui, A.; Balshaw, R.F.; Ng, R.T.; Opushneva, N.; et al. Proteomic Signatures in Plasma during Early Acute Renal Allograft Rejection. Mol. Cell. Proteom. 2010, 9, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.D.; Sakata, M.M.; Colucci, J.A.; Spinelli, G.A.; Felipe, C.R.; Carvalho, V.M.; Cardozo, K.H.M.; Medina-Pestana, J.O.; Tedesco-Silva, H.; Schor, N.; et al. Plasma Proteomics for the Assessment of Acute Renal Transplant Rejection. Life Sci. 2016, 158, 111–120. [Google Scholar] [CrossRef]
- Kaisar, M.; van Dullemen, L.F.A.; Thézénas, M.-L.; Zeeshan Akhtar, M.; Huang, H.; Rendel, S.; Charles, P.D.; Fischer, R.; Ploeg, R.J.; Kessler, B.M. Plasma Degradome Affected by Variable Storage of Human Blood. Clin. Proteom. 2016, 13, 26. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, S.; Cairns, D.A.; Jackson, D.; Craven, R.A.; Riley, B.; Hutchinson, M.; Wood, S.; Smith, M.W.; Thompson, D.; Banks, R.E. An Analysis of the Impact of Pre-Analytical Factors on the Urine Proteome: Sample Processing Time, Temperature, and Proteolysis. Proteom. Clin. Appl. 2015, 9, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Ostroff, R.; Foreman, T.; Keeney, T.R.; Stratford, S.; Walker, J.J.; Zichi, D. The Stability of the Circulating Human Proteome to Variations in Sample Collection and Handling Procedures Measured with an Aptamer-Based Proteomics Array. J. Proteom. 2010, 73, 649–666. [Google Scholar] [CrossRef]
- Schaub, S.; Rush, D.; Wilkins, J.; Gibson, I.W.; Weiler, T.; Sangster, K.; Nicolle, L.; Karpinski, M.; Jeffery, J.; Nickerson, P. Proteomic-Based Detection of Urine Proteins Associated with Acute Renal Allograft Rejection. J. Am. Soc. Nephrol. 2004, 15, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Nagaraj, N.; Mann, M. Quantitative Analysis of the Intra- and Inter-Individual Variability of the Normal Urinary Proteome. J. Proteome Res. 2011, 10, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Swensen, A.C.; He, J.; Fang, A.C.; Ye, Y.; Nicora, C.D.; Shi, T.; Liu, A.Y.; Sigdel, T.K.; Sarwal, M.M.; Qian, W.-J. A Comprehensive Urine Proteome Database Generated From Patients With Various Renal Conditions and Prostate Cancer. Front. Med. 2021, 8, 548212. [Google Scholar] [CrossRef] [PubMed]
- Habuka, M.; Fagerberg, L.; Hallström, B.M.; Kampf, C.; Edlund, K.; Sivertsson, Å.; Yamamoto, T.; Pontén, F.; Uhlén, M.; Odeberg, J. The Kidney Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling. PLoS ONE 2014, 9, e116125. [Google Scholar] [CrossRef] [PubMed]
- The Human Protein Atlas. Available online: https://www.proteinatlas.org/humanproteome/kidney (accessed on 15 March 2019).
- He, T.; Pejchinovski, M.; Mullen, W.; Beige, J.; Mischak, H.; Jankowski, V. Peptides in Plasma, Urine, and Dialysate: Toward Unravelling Renal Peptide Handling. Proteom. Clin. Appl. 2021, 15, 2000029. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.; Pontillo, C.; Pejchinovski, M.; Siwy, J.; Krochmal, M.; Makridakis, M.; Carrick, E.; Klein, J.; Mullen, W.; Jankowski, J.; et al. Comparison of Urine and Plasma Peptidome Indicates Selectivity in Renal Peptide Handling. Proteom. Clin. Appl. 2018, 12, 1700163. [Google Scholar] [CrossRef]
- Savage, A.K.; Gutschow, M.V.; Chiang, T.; Henderson, K.; Green, R.; Chaudhari, M.; Swanson, E.; Heubeck, A.T.; Kondza, N.; Burley, K.C.; et al. Multimodal Analysis for Human Ex Vivo Studies Shows Extensive Molecular Changes from Delays in Blood Processing. iScience 2021, 24, 102404. [Google Scholar] [CrossRef]
- Quintana, L.F.; Solé-Gonzalez, A.; Kalko, S.G.; Bañon-Maneus, E.; Solé, M.; Diekmann, F.; Gutierrez-Dalmau, A.; Abian, J.; Campistol, J.M. Urine Proteomics to Detect Biomarkers for Chronic Allograft Dysfunction. J. Am. Soc. Nephrol. 2009, 20, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Quintana, L.F.; Campistol, J.M.; Alcolea, M.P.; Bañon-Maneus, E.; Sol-González, A.; Cutillas, P.R. Application of Label-Free Quantitative Peptidomics for the Identification of Urinary Biomarkers of Kidney Chronic Allograft Dysfunction. Mol. Cell. Proteom. 2009, 8, 1658–1673. [Google Scholar] [CrossRef] [Green Version]
- Metzger, J.; Chatzikyrkou, C.; Broecker, V.; Schiffer, E.; Jaensch, L.; Iphoefer, A.; Mengel, M.; Mullen, W.; Mischak, H.; Haller, H.; et al. Diagnosis of Subclinical and Clinical Acute T-Cell-Mediated Rejection in Renal Transplant Patients by Urinary Proteome Analysis. Proteom. Clin. Appl. 2011, 5, 322–333. [Google Scholar] [CrossRef]
- Mao, Y.; Bai, J.; Chen, J.; Shou, Z.; He, Q.; Wu, J.; Chen, Y.; Cheng, Y. A Pilot Study of GC/MS-Based Serum Metabolic Profiling of Acute Rejection in Renal Transplantation. Transpl. Immunol. 2008, 19, 74–80. [Google Scholar] [CrossRef]
- Wittke, S.; Haubitz, M.; Walden, M.; Rohde, F.; Schwarz, A.; Mengel, M.; Mischak, H.; Haller, H.; Gwinner, W. Detection of Acute Tubulointerstitial Rejection by Proteomic Analysis of Urinary Samples in Renal Transplant Recipients. Am. J. Transplant. 2005, 5, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Heidari, S.S.; Nafar, M.; Kalantari, S.; Tavilani, H.; Karimi, J.; Foster, L.; Moon, K.M.; Khodadadi, I. Urinary Epidermal Growth Factor Is a Novel Biomarker for Early Diagnosis of Antibody Mediated Kidney Allograft Rejection: A Urinary Proteomics Analysis. J. Proteom. 2021, 240, 104208. [Google Scholar] [CrossRef] [PubMed]
- Gwinner, W.; Karch, A.; Braesen, J.H.; Khalifa, A.A.; Metzger, J.; Naesens, M.; Van Loon, E.; Anglicheau, D.; Marquet, P.; Budde, K.; et al. Noninvasive Diagnosis of Acute Rejection in Renal Transplant Patients Using Mass Spectrometric Analysis of Urine Samples: A Multicenter Diagnostic Phase III Trial. Transplant. Direct 2022, 8, e1316. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yu, J.; Chen, J.; Yang, H.; He, Q.; Shou, Z.; Wu, J.; Zheng, S. Diagnosis of Renal Allograft Subclinical Rejection by Urine Protein Fingerprint Analysis. Transpl. Immunol. 2008, 18, 255–259. [Google Scholar] [CrossRef]
- Sui, W.; Huang, L.; Dai, Y.; Chen, J.; Yan, Q.; Huang, H. Proteomic Profiling of Renal Allograft Rejection in Serum Using Magnetic Bead-Based Sample Fractionation and MALDI-TOF MS. Clin. Exp. Med. 2010, 10, 259–268. [Google Scholar] [CrossRef]
- Sigdel, T.K.; Salomonis, N.; Nicora, C.D.; Ryu, S.; He, J.; Dinh, V.; Orton, D.J.; Moore, R.J.; Hsieh, S.-C.; Dai, H.; et al. The Identification of Novel Potential Injury Mechanisms and Candidate Biomarkers in Renal Allograft Rejection by Quantitative Proteomics. Mol. Cell. Proteom. 2014, 13, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Sigdel, T.K.; Gao, Y.; He, J.; Wang, A.; Nicora, C.D.; Fillmore, T.L.; Shi, T.; Webb-Robertson, B.-J.; Smith, R.D.; Qian, W.-J.; et al. Mining the Human Urine Proteome for Monitoring Renal Transplant Injury. Kidney Int. 2016, 89, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Stubendorff, B.; Finke, S.; Walter, M.; Kniemeyer, O.; von Eggeling, F.; Gruschwitz, T.; Steiner, T.; Ott, U.; Wolf, G.; Wunderlich, H.; et al. Urine Protein Profiling Identified Alpha-1-Microglobulin and Haptoglobin as Biomarkers for Early Diagnosis of Acute Allograft Rejection Following Kidney Transplantation. World J. Urol. 2014, 32, 1619–1624. [Google Scholar] [CrossRef]
- Yang, H.; Mao, Y.; Yu, J.; Chen, J.; He, Q.; Shou, Z.; Wu, J.; Chen, Y.; Zheng, S. Diagnosis of C4d+ Renal Allograft Acute Humoral Rejection by Urine Protein Fingerprint Analysis. J. Int. Med. Res. 2010, 38, 176–186. [Google Scholar] [CrossRef]
- Ling, X.B.; Sigdel, T.K.; Lau, K.; Ying, L.; Lau, I.; Schilling, J.; Sarwal, M.M. Integrative Urinary Peptidomics in Renal Transplantation Identifies Biomarkers for Acute Rejection. J. Am. Soc. Nephrol. 2010, 21, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Clarke, W.; Silverman, B.C.; Zhang, Z.; Chan, D.W.; Klein, A.S.; Molmenti, E.P. Characterization of Renal Allograft Rejection by Urinary Proteomic Analysis. Ann. Surg. 2003, 237, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Günther, O.P.; Shin, H.; Ng, R.T.; McMaster, W.R.; McManus, B.M.; Keown, P.A.; Tebbutt, S.J.; Lê Cao, K.-A. Novel Multivariate Methods for Integration of Genomics and Proteomics Data: Applications in a Kidney Transplant Rejection Study. OMICS A J. Integr. Biol. 2014, 18, 682–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ou, M.; Lin, H.; Lai, L.; Chen, H.; Chen, J.; Sui, W.; Xue, W.; Zhang, R.; Gan, Q.; et al. Proteomic Analysis of Differentially Expressed Proteins in the Serum of Patients with Acute Renal Allograft Rejection Using ITRAQ Labelling Technology. Mol. Med. Rep. 2020, 22, 2329–2341. [Google Scholar] [CrossRef] [PubMed]
- Van Besouw, N.M.; Yan, L.; De Kuiper, R.; Klepper, M.; Reijerkerk, D.; Dieterich, M.; Roelen, D.L.; Claas, F.H.J.; Clahsen-Van Groningen, M.C.; Hesselink, D.A.; et al. The Number of Donor-Specific IL-21 Producing Cells before and after Transplantation Predicts Kidney Graft Rejection. Front. Immunol. 2019, 10, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, K.; Yamamoto, T.; Inanaga, Y.; Hiramitsu, T.; Miwa, Y.; Murotani, K.; Narumi, S.; Watarai, Y.; Katayama, A.; Uchida, K.; et al. MiR-142-5p and MiR-486-5p as Biomarkers for Early Detection of Chronic Antibody-Mediated Rejection in Kidney Transplantation. Biomarkers 2017, 22, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Gui, B.; Tian, P.; Yao, G.; Fu, R.; Wang, L.; Ge, H.; Ou, Y. TIPE2, a Novel Biomarker for Clinical Chronic Kidney Allograft Rejection. Artif. Organs 2013, 37, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Schaenman, J.M.; Rossetti, M.; Sidwell, T.; Groysberg, V.; Sunga, G.; Korin, Y.; Liang, E.; Zhou, X.; Abdalla, B.; Lum, E.; et al. Increased T Cell Immunosenescence and Accelerated Maturation Phenotypes in Older Kidney Transplant Recipients. Hum. Immunol. 2018, 79, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Nazari, B.; Amirzargar, A.; Nikbin, B.; Nafar, M.; Ahmadpour, P.; Einollahi, B.; Pezeshki, M.L.; Khatami, S.M.R.; Ansaripour, B.; Nikuinejad, H.; et al. Comparison of the Th1, IFN-γ Secreting Cells and FoxP3 Expression between Patients with Stable Graft Function and Acute Rejection Post Kidney Transplantation. Iran. J. Allergy Asthma Immunol. 2013, 12, 262–268. [Google Scholar]
- Barabadi, M.; Shahbaz, S.K.; Foroughi, F.; Hosseinzadeh, M.; Nafar, M.; Yekaninejad, M.S.; Amirzargar, A. High Expression of FOXP3 MRNA in Blood and Urine as a Predictive Marker in Kidney Transplantation. Prog. Transplant. 2018, 28, 134–141. [Google Scholar] [CrossRef]
- Savaryn, J.P.; Toby, T.K.; Catherman, A.D.; Fellers, R.T.; LeDuc, R.D.; Thomas, P.M.; Friedewald, J.J.; Salomon, D.R.; Abecassis, M.M.; Kelleher, N.L. Comparative Top down Proteomics of Peripheral Blood Mononuclear Cells from Kidney Transplant Recipients with Normal Kidney Biopsies or Acute Rejection. Proteomics 2016, 16, 2048–2058. [Google Scholar] [CrossRef]
- Gonzalez-Nolasco, B.; Wang, M.; Prunevieille, A.; Benichou, G. Emerging Role of Exosomes in Allorecognition and Allograft Rejection. Curr. Opin. Organ Transplant. 2018, 23, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Fleissner, F.; Goerzig, Y.; Haverich, A.; Thum, T. Microvesicles as Novel Biomarkers and Therapeutic Targets in Transplantation Medicine. Am. J. Transplant. 2012, 12, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shen, L.; Shi, H.; Pan, Z.; Wu, L.; Yan, Y.; Zhang, X.; Mao, F.; Qian, H.; Xu, W. Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics. Stem Cells Int. 2016, 2016, 1929536. [Google Scholar] [CrossRef] [PubMed]
- Feigerlova, E.; Battaglia-Hsu, S.-F.; Hauet, T.; Guéant, J.-L.; Feigerlová, E.; Battaglia-Hsu, S.-F.; Hauet, T.; Guéant, J.-L. Extracellular Vesicles as Immune Mediators in Response to Kidney Injury. Am. J. Physiol. Physiol. 2018, 314, F9–F21. [Google Scholar] [CrossRef]
- Hiemstra, T.F.; Charles, P.D.; Gracia, T.; Hester, S.S.; Gatto, L.; Al-Lamki, R.; Floto, R.A.; Su, Y.; Skepper, J.N.; Lilley, K.S.; et al. Human Urinary Exosomes as Innate Immune Effectors. J. Am. Soc. Nephrol. 2014, 25, 2017–2027. [Google Scholar] [CrossRef] [Green Version]
- Ezzelarab, M.B.; Raich-Regue, D.; Lu, L.; Zahorchak, A.F.; Perez-Gutierrez, A.; Humar, A.; Wijkstrom, M.; Minervini, M.; Wiseman, R.W.; Cooper, D.K.C.; et al. Renal Allograft Survival in Nonhuman Primates Infused With Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells. Am. J. Transplant. 2017, 17, 1476–1489. [Google Scholar] [CrossRef]
- Aiello, S.; Rocchetta, F.; Longaretti, L.; Faravelli, S.; Todeschini, M.; Cassis, L.; Pezzuto, F.; Tomasoni, S.; Azzollini, N.; Mister, M.; et al. Extracellular Vesicles Derived from T Regulatory Cells Suppress T Cell Proliferation and Prolong Allograft Survival. Sci. Rep. 2017, 7, 11518. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Huang, C.; Song, B.; Xiao, Y.; Fang, M.; Feng, J.; Wang, P. CD4+CD25+ Regulatory T Cells-Derived Exosomes Prolonged Kidney Allograft Survival in a Rat Model. Cell. Immunol. 2013, 285, 62–68. [Google Scholar] [CrossRef]
- Pang, X.-L.; Wang, Z.-G.; Liu, L.; Feng, Y.-H.; Wang, J.-X.; Xie, H.-C.; Yang, X.-L.; Li, J.-F.; Feng, G.-W. Immature Dendritic Cells Derived Exosomes Promotes Immune Tolerance by Regulating T Cell Differentiation in Renal Transplantation. Aging 2019, 11, 8911–8924. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Wang, J.; Tian, X.; Cao, G.; Gu, Y.; Shao, F.; Yan, T. Exosomes Secreted by Mesenchymal Stem Cells Induce Immune Tolerance to Mouse Kidney Transplantation via Transporting LncRNA DANCR. Inflammation 2021. [Google Scholar] [CrossRef]
- Ramirez-Bajo, M.J.; Rovira, J.; Lazo-Rodriguez, M.; Banon-Maneus, E.; Tubita, V.; Moya-Rull, D.; Hierro-Garcia, N.; Ventura-Aguiar, P.; Oppenheimer, F.; Campistol, J.M.; et al. Impact of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Rat Model of Kidney Rejection. Front. Cell Dev. Biol. 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Lemke, A.; Lange, C. Extracellular Vesicles from MSC Modulate the Immune Response to Renal Allografts in a MHC Disparate Rat Model. Stem Cells Int. 2015, 2015, 486141. [Google Scholar] [CrossRef] [PubMed]
- Tower, C.M.; Reyes, M.; Nelson, K.; Leca, N.; Kieran, N.; Muczynski, K.; Jefferson, J.A.; Blosser, C.; Kukla, A.; Maurer, D.; et al. Plasma C4d+ Endothelial Microvesicles Increase in Acute Antibody-Mediated Rejection. Transplantation 2017, 101, 2235–2243. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Burrello, J.; Fedrigo, M.; Burrello, A.; Bolis, S.; Di Silvestre, D.; Tona, F.; Bottio, T.; Biemmi, V.; Toscano, G.; et al. Circulating Extracellular Vesicles as Non-Invasive Biomarker of Rejection in Heart Transplant. J. Hear. Lung Transplant. 2020, 39, 1136–1148. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, T.K.; Ng, Y.W.; Lee, S.; Nicora, C.D.; Qian, W.-J.; Smith, R.D.; Camp, D.G.; Sarwal, M.M. Perturbations in the Urinary Exosome in Transplant Rejection. Front. Med. 2015, 1, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, S.; Suazo, C.; Boltansky, A.; Ursu, M.; Carvajal, D.; Innocenti, G.; Vukusich, A.; Hurtado, M.; Villanueva, S.; Carreño, J.E.; et al. Urinary Exosomes as a Source of Kidney Dysfunction Biomarker in Renal Transplantation. Transplant. Proc. 2013, 45, 3719–3723. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Santucci, L.; Ravera, S.; Candiano, G.; Bartolucci, M.; Calzia, D.; Lavarello, C.; Inglese, E.; Ramenghi, L.A.; Petretto, A.; et al. Human Urinary Exosome Proteome Unveils Its Aerobic Respiratory Ability. J. Proteom. 2016, 136, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Pisitkun, T.; Gandolfo, M.T.; Das, S.; Knepper, M.A.; Bagnasco, S.M. Application of Systems Biology Principles to Protein Biomarker Discovery: Urinary Exosomal Proteome in Renal Transplantation. Proteom. Clin. Appl. 2012, 6, 268–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales, P.A.; Pisitkun, T.; Hoffert, J.D.; Tchapyjnikov, D.; Star, R.A.; Kleta, R.; Wang, N.S.; Knepper, M.A. Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes. J. Am. Soc. Nephrol. 2009, 20, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Al-Nedawi, K.; Haas-Neill, S.; Gangji, A.; Ribic, C.M.; Kapoor, A.; Margetts, P. Circulating Microvesicle Protein Is Associated with Renal Transplant Outcome. Transpl. Immunol. 2019, 55, 101210. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lee, C.-H.; Kim, K.Y.; Jung, H.; Choi, J.-Y.; Cho, J.; Park, S.; Kim, Y.-L.; Baek, M.; Park, J.B.; et al. Novel Urinary Exosomal Biomarkers of Acute T Cell-Mediated Rejection in Kidney Transplant Recipients: A Cross-Sectional Study. PLoS ONE 2018, 13, e0204204. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-Y.; Lee, C.-H.; Choi, J.-Y.; Cho, J.-H.; Park, S.-H.; Kim, Y.-L.; Moon, P.-G.; Baek, M.-C.; Berm Park, J.; Hoon Kim, Y.; et al. Potential Urinary Extracellular Vesicle Protein Biomarkers of Chronic Active Antibody-Mediated Rejection in Kidney Transplant Recipients. J. Chromatogr. B 2020, 1138, 121958. [Google Scholar] [CrossRef] [PubMed]
- Chari, R.; Coe, B.P.; Vucic, E.A.; Lockwood, W.W.; Lam, W.L. An Integrative Multi-Dimensional Genetic and Epigenetic Strategy to Identify Aberrant Genes and Pathways in Cancer. BMC Syst. Biol. 2010, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Mariani, M.; He, S.; McHugh, M.; Andreoli, M.; Pandya, D.; Sieber, S.; Wu, Z.; Fiedler, P.; Shahabi, S.; Ferlini, C. Integrated Multidimensional Analysis Is Required for Accurate Prognostic Biomarkers in Colorectal Cancer. PLoS ONE 2014, 9, e101065. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalhete, L.M.; Araújo, R.; Ferreira, A.; Calado, C.R.C. Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022, 10, 24. https://doi.org/10.3390/proteomes10030024
Ramalhete LM, Araújo R, Ferreira A, Calado CRC. Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes. 2022; 10(3):24. https://doi.org/10.3390/proteomes10030024
Chicago/Turabian StyleRamalhete, Luís M., Rúben Araújo, Aníbal Ferreira, and Cecília R. C. Calado. 2022. "Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection" Proteomes 10, no. 3: 24. https://doi.org/10.3390/proteomes10030024
APA StyleRamalhete, L. M., Araújo, R., Ferreira, A., & Calado, C. R. C. (2022). Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes, 10(3), 24. https://doi.org/10.3390/proteomes10030024