Proteomics of Toxigenic Corynebacteria
Abstract
:1. Relevance and Properties of Toxigenic Corynebacteria
1.1. Corynebacterium diphtheriae
1.2. Corynebacterium belfantii and Corynebacterium rouxii
1.3. Corynebacterium ulcerans
1.4. Corynebacterium silvaticum
1.5. Corynebacterium pseudotuberculosis
2. Proteomics as a Diagnostic Tool
3. Development, Limitations and Perspectives
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef] [PubMed]
- Burkovski, A. Cell envelope of Corynebacteria: Structure and influence on pathogenicity. ISRN Microbiol. 2013, 2013, 935736. [Google Scholar] [CrossRef] [PubMed]
- Genus Corynebacterium. Available online: https://www.bacterio.net/genus/corynebacterium (accessed on 25 September 2023).
- Riegel, P.; Ruimy, R.; de Briel, D.; Prevost, G.; Jehl, F.; Christen, R.; Monteil, H. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol. Lett. 1995, 126, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Sangal, V.; Hoskisson, P.A. Corynephages: Infection of Infectors. In Corynebacterium diphtheriae and Related Toxigenic Species; Burkovski, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 67–82. [Google Scholar]
- Bernard, K.A.; Burdz, T.; Pacheco, A.L.; Wiebe, D.; Bernier, A.-M. Corynebacterium hindlerae sp. nov., derived from a human granuloma, which forms black colonies and black halos on modified Tinsdale medium but is not closely related to Corynebacterium diphtheriae and related taxa. Int. J. Syst. Evol. Microbiol. 2021, 71, 004919. [Google Scholar] [CrossRef] [PubMed]
- Prygiel, M.; Polak, M.; Mosiej, E.; Wdowiak, K.; Formińska, K.; Zasada, A.A. New Corynebacterium species with the potential to produce diphtheria toxin. Pathogens 2022, 11, 1264. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.C.; Efstratiou, A.; Mokrousov, I.; Mutreja, A.; Das, B.; Ramamurthy, T. Diphtheria. Nat. Rev. Dis. Prim. 2019, 5, 81. [Google Scholar] [CrossRef]
- Ott, L.; Möller, J.; Burkovski, A. Interactions between the re-rmerging pathogen Corynebacterium diphtheriae and host cells. Int. J. Mol. Sci. 2022, 23, 3298. [Google Scholar] [CrossRef]
- Hansmeier, N.; Chao, T.-C.; Kalinowski, J.; Pühler, A.; Tauch, A. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics 2006, 6, 2465–2476. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.-B.; Kwon, O.; Kang, H.A. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J. Biochem. 2010, 147, 523–533. [Google Scholar] [CrossRef]
- Ott, L.; Höller, M.; Gerlach, R.G.; Hensel, M.; Rheinlaender, J.; Schäffer, T.E.; Burkovski, A. Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol. 2010, 10, 2. [Google Scholar] [CrossRef]
- Kharseeva, G.G.; Alieva, A.A. Adhesion of Corynebacterium diphtheriae: The role of surface structures and formation mechanism. Zh. Mikrobiol. Epidemiol. Immunobiol. 2014, 4, 109–117. (In Russian) [Google Scholar]
- Swaminathan, A.; Mandlik, A.; Swierczynski, A.; Gaspar, A.; Das, A.; Ton-That, H. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae. Mol. Microbiol. 2007, 66, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Nosratabadi, F.; Musella, L.; Hofmann, J.; Burkovski, A. Corynebacterium diphtheriae proteome adaptation to cell culture medium and serum. Proteomes 2021, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Bansal, S.; Deb, J.K.; Kundu, B. Interplay between DtxR and nitric oxide reductase activities: A functional genomics approach indicating involvement of homologous protein domains in bacterial pathogenesis. Int. J. Exp. Pathol. 2007, 88, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hillion, M.; Imber, M.; Pedre, B.; Bernhardt, J.; Saleh, M.; Van Loi, V.; Maaß, S.; Becher, D.; Rosado, L.A.; Adrian, L.; et al. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Sci. Rep. 2017, 7, 5020. [Google Scholar] [CrossRef] [PubMed]
- Trost, E.; Blom, J.; Soares, S.d.C.; Huang, I.-H.; Al-Dilaimi, A.; Schröder, J.; Jaenicke, S.; Dorella, F.A.; Rocha, F.S.; Miyoshi, A.; et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J. Bacteriol. 2012, 194, 3199–3215. [Google Scholar] [CrossRef] [PubMed]
- Sangal, V.; Blom, J.; Sutcliffe, I.C.; von Hunolstein, C.; Burkovski, A.; Hoskisson, P.A. Adherence and invasive properties of Corynebacterium diphtheriae strains correlates with the predicted membrane-associated and secreted proteome. BMC Genom. 2015, 16, 765. [Google Scholar] [CrossRef]
- Dass, J.F.P.; Deepika, V.L. Implication from predictions of HLA-DRB1 binding peptides in the membrane proteins of Corynebacterium diphtheriae. Bioinformation 2008, 3, 111–113. [Google Scholar] [CrossRef]
- Jamal, S.B.; Hassan, S.S.; Tiwari, S.; Viana, M.V.; Benevides, L.d.J.; Ullah, A.; Turjanski, A.G.; Barh, D.; Ghosh, P.; Costa, D.A.; et al. An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae. PLoS ONE 2017, 12, e0186401. [Google Scholar] [CrossRef]
- Hassan, S.S.; Jamal, S.B.; Radusky, L.G.; Tiwari, S.; Ullah, A.; Ali, J.; Behramand; de Carvalho, P.V.S.D.; Shams, R.; Khan, S.; et al. The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets. Front. Genet. 2018, 9, 44. [Google Scholar] [CrossRef]
- Goodall, E.C.A.; Antunes, C.A.; Möller, J.; Sangal, V.; Torres, V.V.L.; Gray, J.; Cunningham, A.F.; Hoskisson, P.A.; Burkovski, A.; Henderson, I.R. A multiomic approach to defining the essential genome of the globally important pathogen Corynebacterium diphtheriae. PLoS Genet. 2023, 19, e1010737. [Google Scholar] [CrossRef] [PubMed]
- Hoskisson, P.A. Microbe Profile: Corynebacterium diphtheriae—An old foe always ready to seize opportunity. Microbiology (Reading) 2018, 164, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Kraner, M.; Sonnewald, U.; Sangal, V.; Tittlbach, H.; Winkler, J.; Winkler, T.H.; Melnikov, V.; Lang, R.; Sing, A.; et al. Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are immunogenic and may contribute to protection of humans against Corynebacterium diphtheriae. Vaccine 2019, 21, 3061–3070. [Google Scholar] [CrossRef] [PubMed]
- Malito, E.; Rappouli, R. History of vaccine development. In Corynebacterium diphtheriae and Related Toxigenic Species; Burkovski, A., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 225–238. [Google Scholar]
- Bavaro, S.L.; Kanduc, D. Pentapeptide commonality between Corynebacterium diphtheriae toxin and the Homo sapiens proteome. Immunotherapy 2011, 3, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, S.L.; Calabrò, M.; Kanduc, D. Pentapeptide sharing between Corynebacterium diphtheriae toxin and the human neural protein network. Immunopharmacol. Immunotoxicol. 2011, 33, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Reche, P.A. Potential Cross-Reactive Immunity to SARS-CoV-2 from common human pathogens and vaccines. Front. Immunol. 2020, 11, 586984. [Google Scholar] [CrossRef] [PubMed]
- Dazas, M.; Badell, E.; Carmi-Leroy, A.; Criscuolo, A.; Brisse, S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 3826–3831. [Google Scholar] [CrossRef]
- Badell, E.; Hennart, M.; Rodrigues, C.; Passet, V.; Dazas, M.; Panunzi, L.; Bouchez, V.; Carmi–Leroy, A.; Toubiana, J.; Brisse, S. Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex. Res. Microbiol. 2020, 171, 122–127. [Google Scholar] [CrossRef]
- Schlez, K.; Eisenberg, T.; Rau, J.; Dubielzig, S.; Kornmayer, M.; Wolf, G.; Berger, A.; Dangel, A.; Hoffmann, C.; Ewers, C.; et al. Corynebacterium rouxii, a recently described member of the C. diphtheriae group isolated from three dogs with ulcerative skin lesions. Antonie Van Leeuwenhoek 2021, 114, 1361–1371. [Google Scholar] [CrossRef]
- Gilbert, R.; Stewart, F.C. Corynebacterium ulcerans: A pathogenic microorganism resembling Corynebacterium diphtheriae. J. Lab. Clin. Med. 1927, 12, 756–761. [Google Scholar]
- Hacker, E.; Antunes, C.; Mattos-Guaraldi, A.L.; Burkovski, A.; Tauch, A.; Shadnezhad, A.; Naegeli, A.; Collin, M.; Muñoz-Wolf, N.; Rial, A.; et al. Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol. 2016, 11, 1191–1208. [Google Scholar] [CrossRef] [PubMed]
- Bostock, A.; Gilbert, F.; Lewis, D.; Smith, D. Corynebacterium ulcerans infection associated with untreated milk. J. Infect. 1984, 9, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.J.C. Corynebacterium ulcerans in humans and cattle in North Devon. J. Hyg. 1984, 92, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.S.; White, J.M.; Crowcroft, N.S.; DE Martin, S.; Mann, G.; Efstratiou, A. Diphtheria in the United Kingdom, 1986–2008: The increasing role of Corynebacterium ulcerans. Epidemiol. Infect. 2010, 138, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.A.; Santos, L.S.; Sabbadini, P.S.; Santos, C.S.; Silva, F.C., Jr.; Napoleão, F.; Nagao, P.E.; Villas-Bôas, M.H.S.; Hirata, R., Jr.; Guaraldi, A.L.M. Corynebacterium ulcerans diphtheria: An emerging zoonosis in Brazil and worldwide. Rev. Saude Publica 2011, 45, 1176–1191, Erratum in Rev. Saude Publica 2012, 46, 203–204. (In English, Portuguese). [Google Scholar] [CrossRef]
- Gower, C.M.; Scobie, A.; Fry, N.K.; Litt, D.J.; Cameron, J.C.; Chand, M.; Brown, C.S.; Collins, S.; White, J.M.; Ramsay, M.; et al. The changing epidemiology of diphtheria in the United Kingdom, 2009 to 2017. Eurosurveillance 2020, 25, 1900462-35. [Google Scholar] [CrossRef] [PubMed]
- Trost, E.; Al-Dilaimi, A.; Papavasiliou, P.; Schneider, J.; Viehoever, P.; Burkovski, A.; Soares, S.C.; Almeida, S.S.; Dorella, F.; Miyoshi, A.; et al. Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genom. 2011, 12, 383. [Google Scholar] [CrossRef]
- Bittel, M.; Gastiger, S.; Amin, B.; Hofmann, J.; Burkovski, A. Surface and extracellular proteome of the emerging pathogen Corynebacterium ulcerans. Proteomes 2018, 6, 18. [Google Scholar] [CrossRef]
- Tauch, A.; Burkovski, A. Molecular armory or niche factors: Virulence determinants of Corynebacterium species. FEMS Microbiol. Lett. 2015, 362, fnv185. [Google Scholar] [CrossRef]
- Burkovski, A. The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek 2018, 111, 717–725. [Google Scholar] [CrossRef]
- Hansmeier, N.; Chao, T.-C.; Daschkey, S.; Müsken, M.; Kalinowski, J.; Pühler, A.; Tauch, A. A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411. Proteomics 2007, 7, 1076–1096. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, L.G.; Slade, S.; Seyffert, N.; Santos, A.R.; Castro, T.L.; Silva, W.M.; Santos, A.V.; Santos, S.G.; Farias, L.M.; Carvalho, M.A.; et al. A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis. BMC Microbiol. 2011, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.A.; Kleifeld, O.; Crellin, P.K.; Ho, B.; Stinear, T.P.; Smith, A.I.; Coppel, R.L. Proteomic characterization of a natural host–pathogen interaction: Repertoire of in vivo expressed bacterial and host surface-associated proteins. J. Proteome Res. 2015, 14, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.M.; Seyffert, N.; Ciprandi, A.; Santos, A.V.; Castro, T.L.P.; Pacheco, L.G.C.; Barh, D.; Le Loir, Y.; Pimenta, A.M.C.; Miyoshi, A.; et al. Differential exoproteome analysis of two Corynebacterium pseudotuberculosis biovar ovis strains isolated from goat (1002) and sheep (C231). Curr. Microbiol. 2013, 67, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.M.; Seyffert, N.; Santos, A.V.; Castro, T.L.; Pacheco, L.G.; Santos, A.R.; Ciprandi, A.; Dorella, F.A.; Andrade, H.M.; Barh, D.; et al. Identification of 11 new exoproteins in Corynebacterium pseudotuberculosis by comparative analysis of the exoproteome. Microb. Pathog. 2013, 61–62, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.M.; Carvalho, R.D.; Soares, S.C.; Bastos, I.F.; Folador, E.L.; Souza, G.H.; Le Loir, Y.; Miyoshi, A.; Silva, A.; Azevedo, V. Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide. BMC Genom. 2014, 15, 1065. [Google Scholar] [CrossRef] [PubMed]
- Dangel, A.; Berger, A.; Rau, J.; Eisenberg, T.; Kämpfer, P.; Margos, G.; Contzen, M.; Busse, H.-J.; Konrad, R.; Peters, M.; et al. Corynebacterium silvaticum sp. nov., a unique group of NTTB corynebacteria in wild boar and roe deer. Int. J. Syst. Evol. Microbiol. 2020, 70, 3614–3624. [Google Scholar] [CrossRef]
- Viana, M.V.C.; Profeta, R.; da Silva, A.L.; Hurtado, R.; Cerqueira, J.C.; Ribeiro, B.F.S.; Almeida, M.O.; Morais-Rodrigues, F.; Soares, S.d.C.; Oliveira, M.; et al. Taxonomic classification of strain PO100/5 shows a broader geographic distribution and genetic markers of the recently described Corynebacterium silvaticum. PLoS ONE 2020, 15, e0244210. [Google Scholar] [CrossRef]
- Viana, M.V.C.; Galdino, J.H.; Profeta, R.; Oliveira, M.; Tavares, L.; Soares, S.d.C.; Carneiro, P.; Wattam, A.R.; Azevedo, V. Analysis of Corynebacterium silvaticum genomes from Portugal reveals a single cluster and a clade suggested to produce diphtheria toxin. PeerJ 2023, 11, e14895. [Google Scholar] [CrossRef]
- Möller, J.; Busch, A.; Berens, C.; Hotzel, H.; Burkovski, A. Newly isolated animal pathogen Corynebacterium silvaticum is cytotoxic to human epithelial cells. Int. J. Mol. Sci. 2021, 22, 3549. [Google Scholar] [CrossRef]
- Möller, J.; Schorlemmer, S.; Hofmann, J.; Burkovski, A. Cellular and extracellular proteome of the animal pathogen Corynebacterium silvaticum, a close relative of zoonotic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Proteomes 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Musella, L.; Melnikov, V.; Geißdörfer, W.; Burkovski, A.; Sangal, V. Phylogenomic characterisation of a novel corynebacterial species pathogenic to animals. Antonie Van Leeuwenhoek 2020, 113, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Diphtheria Reported Cases. Available online: https://immunizationdata.who.int/pages/incidence/diphtheria.html?CODE=Global&YEAR= (accessed on 1 November 2023).
- Dorella, F.A.; Pacheco, L.G.C.; Oliveira, S.C.; Miyoshi, A.; Azevedo, V. Corynebacterium pseudotuberculosis: Microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Veter-Res. 2006, 37, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Williamson, L.H. Caseous lymphadenitis in small ruminants. Veter-Clin. N. Am. Food Anim. Pract. 2001, 17, 359–371.vii. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.A. Oedematous skin disease of buffalo in Egypt. J. Veter-Med. B Infect. Dis. Vet. Pub. Health 2001, 48, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, L.G.C.; Castro, T.L.P.; Carvalho, R.D.; Moraes, P.M.; Dorella, F.A.; Carvalho, N.B.; Slade, S.E.; Scrivens, J.H.; Feelisch, M.; Meyer, R.; et al. A Role for sigma factor σ(E) in Corynebacterium pseudotuberculosis resistance to nitric oxide/peroxide stress. Front. Microbiol. 2012, 3, 126. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.A.; Stinear, T.P.; Goode, R.J.A.; Coppel, R.L.; Smith, A.I.; Kleifeld, O. Changes in protein abundance are observed in bacterial isolates from a natural host. Front. Cell. Infect. Microbiol. 2015, 5, 71. [Google Scholar] [CrossRef]
- Silva, W.M.; Dorella, F.A.; Soares, S.C.; Souza, G.H.M.F.; Castro, T.L.P.; Seyffert, N.; Figueiredo, H.; Miyoshi, A.; Le Loir, Y.; Silva, A.; et al. A shift in the virulence potential of Corynebacterium pseudotuberculosis biovar ovis after passage in a murine host demonstrated through comparative proteomics. BMC Microbiol. 2017, 17, 55. [Google Scholar] [CrossRef]
- Silva, W.M.; Carvalho, R.D.D.O.; Dorella, F.A.; Folador, E.L.; Souza, G.H.M.F.; Pimenta, A.M.C.; Figueiredo, H.C.P.; Le Loir, Y.; Silva, A.; Azevedo, V. Quantitative proteomic analysis reveals changes in the benchmark Corynebacterium pseudotuberculosis biovar equi exoproteome after passage in a murine host. Front. Cell. Infect. Microbiol. 2017, 7, 325. [Google Scholar] [CrossRef]
- Raynal, J.T.; Bastos, B.L.; Vilas-Boas, P.C.B.; Sousa, T.d.J.; Costa-Silva, M.; Sá, M.d.C.A.d.; Portela, R.W.; Moura-Costa, L.F.; Azevedo, V.; Meyer, R. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum. BMC Res. Notes 2018, 11, 73. [Google Scholar] [CrossRef]
- de Sá, M.C.A.; da Silva, W.M.; Rodrigues, C.C.S.; Rezende, C.P.; Marchioro, S.B.; Filho, J.T.R.R.; Sousa, T.D.J.; de Oliveira, H.P.; da Costa, M.M.; Figueiredo, H.C.P.; et al. Comparative proteomic analyses between biofilm-forming and non-biofilm-forming strains of Corynebacterium pseudotuberculosis isolated from Goats. Front. Vet. Sci. 2021, 8, 614011. [Google Scholar] [CrossRef] [PubMed]
- Dorella, F.A.; Gala-Garcia, A.; Pinto, A.C.; Sarrouh, B.; Antunes, C.A.; Ribeiro, D.; Aburjaile, F.F.; Fiaux, K.K.; Guimarães, L.C.; Seyffert, N.; et al. Progression of ‘OMICS’ methodologies for understanding the pathogenicity of Corynebacterium pseudotuberculosis: The Brazilian experience. Comput. Struct. Biotechnol. J. 2013, 6, e201303013. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; Tiwari, S.; Guimarães, L.C.; Jamal, S.B.; Folador, E.; Sharma, N.B.; Soares, S.D.C.; Almeida, S.; Ali, A.; Islam, A.; et al. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. BMC Genom. 2014, 15 (Suppl. S7), S3. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.L.; Alves, J.; Nogueira, W.; Pereira, L.C.; Gomide, A.C.; Ramos, R.; Azevedo, V.; Silva, A.; Folador, A. Prediction of new vaccine targets in the core genome of Corynebacterium pseudotuberculosis through omics approaches and reverse vaccinology. Gene 2019, 702, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Rezende, A.D.F.S.; Brum, A.A.; Reis, C.G.; Angelo, H.R.; Leal, K.S.; Silva, M.T.D.O.; Simionatto, S.; Azevedo, V.; Santos, A.; Portela, R.W.; et al. In silico identification of Corynebacterium pseudotuberculosis antigenic targets and application in immunodiagnosis. J. Med Microbiol. 2016, 65, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Bodenschatz, M.; Sangal, V.; Hofmann, J.; Burkovski, A. Multi-omics of Corynebacterium Pseudotuberculosis 12CS0282 and an in silico reverse vaccinology approach reveal novel vaccine and drug targets. Proteomes 2022, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- de Pinho, R.B.; Silva, M.T.d.O.; Bezerra, F.S.B.; Borsuk, S. Vaccines for caseous lymphadenitis: Up-to-date and forward-looking strategies. Appl. Microbiol. Biotechnol. 2021, 105, 2287–2296. [Google Scholar] [CrossRef]
- Seyffert, N.; Silva, R.F.; Jardin, J.; Silva, W.M.; Castro, T.L.d.P.; Tartaglia, N.R.; Santana, K.T.d.O.; Portela, R.W.; Silva, A.; Miyoshi, A.; et al. Serological proteome analysis of Corynebacterium pseudotuberculosis isolated from different hosts reveals novel candidates for prophylactics to control caseous lymphadenitis. Veter-Microbiol. 2014, 174, 255–260. [Google Scholar] [CrossRef]
- Fu, M.; Yan, Y.; Su, H.; Wang, J.; Shi, X.; Zhou, H.; Zhang, Q.; Xu, X. Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. J. Proteom. 2021, 248, 104352. [Google Scholar] [CrossRef]
- Fu, M.; Xu, X.; Cheng, Z.; Zhu, J.; Sun, A.; Xu, G.; An, X. Combined transcriptomic and proteomic of Corynebacterium pseudotuberculosis infection in the spleen of dairy goats. Animals 2022, 12, 3270. [Google Scholar] [CrossRef]
- Berger, A.; Hogardt, M.; Konrad, R.; Sing, A. Detection Methods for Laboratory Diagnosis of Diphtheria. In Corynebacterium diphtheriae and Related Toxigenic Species; Burkovski, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 171–205. [Google Scholar]
- Zasada, A.A.; Mosiej, E. Contemporary microbiology and identification of Corynebacteria spp. causing infections in human. Lett. Appl. Microbiol. 2018, 66, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Konrad, R.; Berger, A.; Huber, I.; Boschert, V.; Hörmansdorfer, S.; Busch, U.; Hogardt, M.; Schubert, S.; Sing, A. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill. 2010, 15, 19699, Erratum in Euro Surveill. 2010, 15, pii:19702. [Google Scholar] [CrossRef]
- Rau, J.; Eisenberg, T.; Peters, M.; Berger, A.; Kutzer, P.; Lassnig, H.; Hotzel, H.; Sing, A.; Sting, R.; Contzen, M. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Veter-Microbiol. 2019, 237, 108399. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.M.; Folador, E.L.; Soares, S.C.; Souza, G.H.M.F.; Santos, A.V.; Sousa, C.S.; Figueiredo, H.; Miyoshi, A.; Le Loir, Y.; Silva, A.; et al. Label-free quantitative proteomics of Corynebacterium pseudotuberculosis isolates reveals differences between Biovars ovis and equi strains. BMC Genom. 2017, 18, 451. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, R.G.; Seyffert, N.; Dorneles, E.M.S.; Aguiar, E.R.G.R.; Ramos, C.P.; Haas, D.J.; Assis, G.B.N.; Portela, R.D.; Goes-Neto, A.; Pacheco, L.G.C.; et al. Exploring the MALDI biotyper for the identification of Corynebacterium pseudotuberculosis biovar ovis and equi. J. Am. Soc. Mass Spectrom. 2022, 33, 2055–2062. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/ (accessed on 15 December 2023).
- Clancy, S. RNA splicing: Introns, exons and spliceosome. Nature 2008, 1, 31. [Google Scholar]
- Ntai, I.; LeDuc, R.D.; Fellers, R.T.; Erdmann-Gilmore, P.; Davies, S.R.; Rumsey, J.; Early, B.P.; Thomas, P.M.; Li, S.; Compton, P.D.; et al. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts. Mol. Cell. Proteom. 2016, 15, 45–56. [Google Scholar] [CrossRef]
- Lima, D.B.; Dupré, M.; Duchateau, M.; Gianetto, Q.G.; Rey, M.; Matondo, M.; Chamot-Rooke, J. Proteo Combiner: Integrating bottom-up with top-down proteomics data for improved proteoform assessment. Bioinformatics 2020, 37, 2206–2208. [Google Scholar] [CrossRef]
- da Silva, W.M.; Seyffert, N.; Silva, A.; Azevedo, V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2021, 9, e12456. [Google Scholar] [CrossRef]
Protein | In Silico Identification | In Vitro Identification |
---|---|---|
BioB | [21] | [23] |
DIP0983 | [21] | [23] |
DIP1084 | [21] | |
GlpX, fructose 1,6-bisphosphatase II | [21,22] | [23] |
HisE, phosphoribosyl-ATP pyrophosphatase | [21,22] | |
NusB | [21] | [23] |
RpsH, 30S ribosomal protein S8 | [21,22] | [23] |
SmpB | [21] | [23] |
Protein | Host Homolog Identified | In Silico Identification | In Vitro Protein Detection |
---|---|---|---|
Adk, adenylate kinase | yes | [67] | |
AspA, aspartate ammonia lyase | yes | [67] | |
CopC, copper resistance protein | n.d. * | [68] | |
CP0126a, hypothetical protein | n.d. * | [69] | |
CP0369, phosphoesterase PA-phosphatase related protein | n.d. * | [69] | |
CP1957, CmtB, trehalose corynomycolyl transferase B | n.d. * | [69] | |
FtsI, penicillin-binding protein | n.d. * | [68] | [70] |
FumC, class II fumarate hydratase | yes | [67] | |
GlyA, hydroxymethyltransferase | yes | [67] | |
Gnd, 6-phosphogluconate dehydrogenase | yes | [67] | |
IspH, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase | no | [67] | |
MtrA, DNA-binding response regulator | no | [67] | |
MtrB, sensor histidine kinase | n.d. * | [68] | |
Ndh, NADH dehydrogenase | n.d. * | [68] | [70] |
NrdI, ribonucleoside-diphosphate reductase alpha chain | no | [67] | |
SenX3, signal transduction histidine kinase | n.d. * | [68] | [70] |
TcsR, two-component system transcriptional regulator protein | no | [67] | |
YkuE, metallophosphoesterase | n.d. * | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkovski, A. Proteomics of Toxigenic Corynebacteria. Proteomes 2024, 12, 2. https://doi.org/10.3390/proteomes12010002
Burkovski A. Proteomics of Toxigenic Corynebacteria. Proteomes. 2024; 12(1):2. https://doi.org/10.3390/proteomes12010002
Chicago/Turabian StyleBurkovski, Andreas. 2024. "Proteomics of Toxigenic Corynebacteria" Proteomes 12, no. 1: 2. https://doi.org/10.3390/proteomes12010002
APA StyleBurkovski, A. (2024). Proteomics of Toxigenic Corynebacteria. Proteomes, 12(1), 2. https://doi.org/10.3390/proteomes12010002