Insights into Mycobacterium leprae Proteomics and Biomarkers—An Overview
Abstract
:1. Introduction
2. Mycobacterium leprae
3. Vaccine
4. Diagnosis
5. Proteomics
6. Proteomics and Mycobacterium leprae
7. Biomarkers in Leprosy
Origin and Functions of Some Biomarkers at a Glance
- (a)
- Phenolic glycolipid-1 (PGL-1): It is specific to M. leprae and present mainly in the cell wall and capsule of the bacteria. It is highly specific due to the trisaccharide units and gets entered inside the cell by binding specifically to the G domain of the laminin a2 chain in the basal lamina of Schwann cell-axon units [83].
- (b)
- Natural disaccharide octyl bovine serum albumin (ND-O-BSA) or human serum albumin (ND-O-HSA): It is the modified (conjugated with protein BSA), semisynthetic antigen representing the PGL-1 molecule of M. leprae developed later and is still in use. This antigen is superior to other derivatives of the PGL-I antigen [84,85]. An increased level of serum IgM antibodies against ND-O-HSA has been observed in MB patients [86].
- (c)
- L-ESAT-6: Early secreted antigenic target-6 (L-ESAT-6): M. leprae ESAT-6 (L-ESAT-6) is the homologue of M. tb ESAT-6 (T-ESAT-6) having 36% similarity at an amino acid level. It is an important M. leprae antigen that stimulates T-cell dependent IFN-γ production in M. leprae-exposed individuals. Remarkable cross-reactivity was observed between T-ESAT-6 and L-ESAT-6, which suggests that L-ESAT-6 may play a crucial role in the diagnosis of leprosy [87,88]
- (d)
- Leprosy IDRI diagnostic (LID-1): This marker was developed by the fusion of two selected proteins ML0405 and ML2331 (involved in the diagnosis of MB patients) and has been named LID-1 (Leprosy Infectious Disease Research Institute Diagnostic-1) [75]. A significant increment in the level of serum IgG1 and IgG3 antibodies against LID-1 was notified in MB patients [86].
- (e)
- Natural disaccharide octyl and LID-1 (NDO–LID): As the name suggests, it is the conjugate of NDO and LID-1 into the single fusion complex. This complex possesses antibody-detecting capabilities of the individual antigens and is good for antibody-based detection for leprosy patients than singly [89]. An increment in the level of serum IgG1 and IgG3 antibodies against NDO–LID in MB patients was observed [86].
- (f)
- Monocyte chemoattractant protein-1 (MCP-1) or CCL2: It is a signaling molecule secreted by monocytes, memory T cells, and recruiting other immune cells to the sites of inflammation and infection. An increased level of this chemokine has been observed in leprosy patients than in healthy individuals [90].
- (g)
- (h)
- Platelet-derived growth factor-BB (PDGF-BB): These molecules are processed by SSV-transformed or PDGF-B expressing cells. There are two genes viz. PDGF-A and PDGF-B which encode three proteins—PDGF-AA, PDGF-AB, and PDGF-BB—comprising PDGF family [93]. PDGF-BB represents one of the promising markers of T2R [94].
- (i)
8. Performance of Biomarkers
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sengupta, U. Elimination of leprosy in India: An analysis. Indian J. Dermatol. Venereol. Leprol. 2018, 84, 131–136. [Google Scholar] [CrossRef]
- Rao, P.N.; Suneetha, S. Current Situation of Leprosy in India and its Future Implications. Indian Dermatol. Online J. 2018, 9, 83–89. [Google Scholar] [CrossRef]
- World Health Organization. Global Leprosy Update, 2018: Moving towards a Leprosy Free World; Weekly Epidemiological Record; World Health Organization: Geneva, Switzerland, 2019; Volume 94, pp. 389–412. [Google Scholar]
- Kundakci, N.; Erdem, C. Leprosy: A great imitator. Clin. Dermatol. 2019, 37, 200–212. [Google Scholar] [CrossRef]
- Smith, W.C.; van Brakel, W.; Gillis, T.; Saunderson, P.; Richardus, J.H. The missing millions: A threat to the elimination of leprosy. PLoS Negl. Trop. Dis. 2015, 9, e0003658. [Google Scholar] [CrossRef]
- Balamayooran, G.; Pena, M.; Sharma, R.; Truman, R.W. The armadillo as an animal model and reservoir host for Mycobacterium leprae. Clin. Dermatol. 2015, 33, 108–115. [Google Scholar] [CrossRef]
- Shepard, C.C. The Experimental Disease That Follows the Injection of Human Leprosy Bacilli Into Foot-Pads of Mice. J. Exp. Med. 1960, 112, 445–454. [Google Scholar] [CrossRef]
- Job, C.K.; McCormick, G.T.; Scollard, D.M.; Truman, R.W. Electron microscope appearance of lepromatous footpads of nude mice. Int. J. Lepr. Other Mycobact. Dis. 2003, 71, 231–239. [Google Scholar] [CrossRef]
- Ploemacher, T.; Faber, W.R.; Menke, H.; Rutten, V.; Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis. 2020, 14, 1–27. [Google Scholar] [CrossRef]
- Avanzi, C.; Del-Pozo, J.; Benjak, A.; Stevenson, K.; Simpson, V.R.; Busso, P.; McLuckie, J.; Loiseau, C.; Lawton, C.; Schoening, J.; et al. Red squirrels in the British Isles are infected with leprosy bacilli. Science 2016, 354, 744–747. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Leprosy Strategy 2016–2020: Accelerating towards a Leprosy-Free World; WHO: Geneva, Switzerland, 2016; Volume 1, ISBN 9789290225096. [Google Scholar]
- Job, C.K.; Sanchez, R.M.; Hastings, R.C. Manifestations of experimental leprosy in the armadillo. Am. J. Trop. Med. Hyg. 1985, 34, 151–161. [Google Scholar] [CrossRef]
- Lastória, J.C.; de Abreu, M.A.M.M. Leprosy: Review of the epidemiological, clinical, and etiopathogenic aspects—Part 1. An. Bras. Dermatol. 2014, 89, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, R. Nine-banded armadillo Dasypus novemcinctus animal model for leprosy (Hansen’s Disease). Scand. J. Lab. Anim. Sci. 2009, 36, 167–176. [Google Scholar]
- Cole, S.T.; Eiglmeier, K.; Parkhill, J.; James, K.D.; Thomson, N.R.; Wheeler, P.R.; Honoré, N.; Garnier, T.; Churcher, C.; Harris, D.; et al. Massive gene decay in the leprosy bacillus. Nature 2001, 409, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Monot, M.; Honoré, N.; Garnier, T.; Zidane, N.; Sherafi, D.; Paniz-Mondolfi, A.; Matsuoka, M.; Taylor, G.M.; Donoghue, H.D.; Bouwman, A.; et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat. Genet. 2009, 41, 1282–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, E.P.C.; Latorre, A.; Silva, F.J. Reconstructing the ancestor of Mycobacterium leprae: The dynamics of gene loss and genome reduction. Genome Res. 2007, 1178–1185. [Google Scholar] [CrossRef]
- Moya, A.; Gil, R.; Latorre, A.; Peretó, J.; Pilar Garcillán-Barcia, M.; De La Cruz, F. Toward minimal bacterial cells: Evolution vs. design. FEMS Microbiol. Rev. 2009, 33, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Cole, S. Mycobacterium leprae: Genes, pseudogenes and genetic diversity. Future Microbiol. 2011, 6, 57–71. [Google Scholar] [CrossRef] [Green Version]
- SAGE Working Group on BCG Vaccines and WHO Secretariat. Report on BCG Vaccine Use for Protection against Mycobacterial Infections Including Tuberculosis, Leprosy, and Other Nontuberculous Mycobacteria (NTM) Infections. BCG Vaccine 2017, 1–77. Available online: https://www.who.int/immunization/sage/meetings/2017/october/presentations_background_docs/en/ (accessed on 28 January 2021).
- Sharma, P.; Mukherjee, R.; Talwar, G.P.; Sarathchandra, K.G.; Walia, R.; Parida, S.K.; Pandey, R.M.; Rani, R.; Kar, H.; Mukherjee, A.; et al. Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: Clinical field trials with a follow up of 8-10 years. Lepr. Rev. 2005, 76, 127–143. [Google Scholar] [CrossRef]
- Kamal, R.; Natrajan, M.; Katoch, K.; Arora, M. Clinical and histopathological evaluation of the effect of addition of immunotherapy with Mw vaccine to standard chemotherapy in borderline leprosy. Indian J. Lepr. 2012, 84, 287–306. [Google Scholar]
- Kamal, R.; Pathak, V.; Kumari, A.; Natrajan, M.; Katoch, K.; Kar, H.K. Addition of Mycobacterium indicus pranii vaccine as an immunotherapeutic to standard chemotherapy in borderline leprosy: A double-blind study to assess clinical improvement (preliminary report). Br. J. Dermatol. 2017, 176, 1388–1389. [Google Scholar] [CrossRef]
- Duthie, M.S.; Frevol, A.; Day, T.; Coler, R.N.; Vergara, J.; Rolf, T.; Sagawa, Z.K.; Marie Beckmann, A.; Casper, C.; Reed, S.G. A phase 1 antigen dose escalation trial to evaluate safety, tolerability and immunogenicity of the leprosy vaccine candidate LepVax (LEP-F1 + GLA–SE) in healthy adults. Vaccine 2020, 38, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Duthie, M.S.; Pena, M.T.; Ebenezer, G.J.; Gillis, T.P.; Sharma, R.; Cunningham, K.; Polydefkis, M.; Maeda, Y.; Makino, M.; Truman, R.W.; et al. LepVax, a defined subunit vaccine that provides effective pre-exposure and post-exposure prophylaxis of M. leprae infection. NPJ Vaccines 2018, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duthie, M.S.; Balagon, M.F. Combination chemoprophylaxis and immunoprophylaxis in reducing the incidence of leprosy. Risk Manag. Healthc. Policy 2016, 9, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Ridley, D.S.; Jopling, W.H. Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. Other Mycobact. Dis. 1966, 34, 255–273. [Google Scholar] [PubMed]
- WHO Expert Committee on Leprosy: Sixth Report; Technical Report Series; World Health Organisation: Geneva, Switzerland, 1988; p. 768.
- Pardillo, F.E.F.; Fajardo, T.T.; Abalos, R.M.; Scollard, D.; Gelber, R.H. Methods for the Classification of Leprosy for Treatment Purposes. Clin. Infect. Dis. 2007, 44, 2005–2008. [Google Scholar] [CrossRef]
- Maymone, M.B.C.; Laughter, M.; Venkatesh, S. Leprosy: Clinical aspects and diagnostic techniques. J. Am. Dermatol. 2020, 83, 1–14. [Google Scholar] [CrossRef] [PubMed]
- National Leprosy Eradication Program, Disability Prevention & Medical Rehabilitation. In Guidelines for Primary, Secondary and Tertiary Level Care; Central Leprosy Division: New Delhi, India, 2009.
- Young, D.B.; Buchanan, T.M. A serological test for leprosy with a glycolipid specific for Mycobacerium leprae. Science 1983, 221, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- Izumi, S.; Fujiwara, T.; Ikeda, M.; Nishimura, Y.; Sugiyama, K.; Kawatsu, K. Novel gelatin particle agglutination test for serodiagnosis of leprosy in the field. J. Clin. Microbiol. 1990, 28, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Buhrer-Sekula, S.; Sarno, E.N.; Oskam, L.; Koop, S.; Wichers, I.; Nery, J.A.C.; Vieira, L.M.; De Matos, H.J.; Faber, W.R.; Klatser, P.R. Use of ML dipstick as a tool to classify leprosy patients. Int. J. Lepr. Other Mycobact. Dis. 2000, 68, 456–463. [Google Scholar]
- Buhrer-Sékula, S.; Smits, H.L.; Gussenhoven, G.C.; Van Leeuwen, J.; Amador, S.; Fujiwara, T.; Klatser, P.R.; Oskam, L. Simple and Fast Lateral Flow Test for Classification of Leprosy Patients and Identification of Contacts with High Risk of Developing Leprosy. J. Clin. Microbiol. 2003, 41, 1991–1995. [Google Scholar] [CrossRef] [Green Version]
- Palit, A.; Kar, H.K. Prevention of transmission of leprosy: The current scenario. Indian J. Dermatol. Venereol. Leprol. 2020, 86, 115–123. [Google Scholar] [CrossRef]
- Leturiondo, A.L.; Noronha, A.B.; Do Nascimento, M.O.O.; de Oliveira Ferreira, C.; da Costa Rodrigues, F.; Moraes, M.O.; Talhari, C. Performance of serological tests PGL1 and NDO-LID in the diagnosis of leprosy in a reference Center in Brazil 11 Medical and Health Sciences 1103 Clinical Sciences. BMC Infect. Dis. 2019, 19, 1–6. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, L.; Huang, C.; Li, Q.; Nice, E.C. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 2017, 17. [Google Scholar] [CrossRef]
- Sengupta, U. Recent laboratory advances in diagnostics and monitoring response to treatment in leprosy. Indian Dermatol. Online J. 2019, 10, 106–114. [Google Scholar]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between Protein and mRNA Abundance in Yeast. Mol. Cell. Biol. 1999, 19, 1720–1730. [Google Scholar] [CrossRef] [Green Version]
- Marguerat, S.; Schmidt, A.; Codlin, S.; Chen, W.; Aebersold, R.; Bähler, J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2012, 151, 671–683. [Google Scholar] [CrossRef] [Green Version]
- Karp, N.A.; Huber, W.; Sadowski, P.G.; Charles, P.D.; Hester, S.V.; Lilley, K.S. Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell. Proteom. 2010, 9, 1885–1897. [Google Scholar] [CrossRef] [Green Version]
- Lau, E.; Lam, M.P.Y.; Siu, S.O.; Kong, R.P.W.; Chan, W.L.; Zhou, Z.; Huang, J.; Lo, C.; Chu, I.K. Combinatorial use of offline SCX and online RP-RP liquid chromatography for iTRAQ-based quantitative proteomics applications. Mol. Biosyst. 2011, 7, 1399–1408. [Google Scholar] [CrossRef]
- Shen, R.-F.; Baek, S.J.; Wang, G.; Wu, W.W. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res. 2006, 5, 651–658. [Google Scholar]
- Kumar, S.; Gaur, V.; Khurana, S.; Bose, S.; Kiran, M.; Sharawat, S. Proteomics Tools—An Update. Clin. Oncol. 2017, 2, 1358. [Google Scholar]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Bisht, D.; Sharma, D.; Sharma, D.; Singh, R.; Gupta, V.K. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic. Expert Rev. Proteom. 2019, 16, 443–456. [Google Scholar] [CrossRef]
- Parkash, O.; Singh, B.P. Advances in Proteomics of Mycobacterium leprae. Scand. J. Immunol. 2012, 75, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Pessolani, M.C.V.; Brennan, P.J. Molecular definition and identification of new proteins of Mycobacterium leprae. Infect. Immun. 1996, 64, 5425–5427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.A.M.; Espinosa, B.J.; Da Silveira, E.K.X.; Pessolani, M.C.V.; Chapeaurouge, A.; Perales, J.; Dobos, K.M.; Belisle, J.T.; Spencer, J.S.; Brennan, P.J. Continued proteomic analysis of Mycobacterium leprae subcellular fractions. Proteomics 2004, 4, 2942–2953. [Google Scholar] [CrossRef] [PubMed]
- Wiker, H.G.; Tomazella, G.G.; de Souza, G.A. A quantitative view on Mycobacterium leprae antigens by proteomics. J. Proteom. 2011, 74, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.A.; Chitale, S.; Brennan, P.J.; Pessolani, M.C. Mapping and Identification of the Major Cell Wall-Associated Components of Mycobacterium leprae. Infect.Immun. 1998, 66, 2625–2631. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.A.M.; Neves-Ferreira, A.G.C.; Xavier Da Silveira, E.K.; Valente, R.H.; Chapeaurouge, A.; Perales, J.; Bernardes, R.D.S.; Dobos, K.M.; Spencer, J.S.; Brennan, P.J.; et al. Deciphering the proteomic profile of Mycobacterium leprae cell envelope. Proteomics 2008, 8, 2477–2491. [Google Scholar] [CrossRef]
- Silva, C.A.M.; Danelishvili, L.; McNamara, M.; Berredo-Pinho, M.; Bildfell, R.; Biet, F.; Rodrigues, L.S.; Oliveira, A.V.; Bermudez, L.E.; Pessolani, M.C.V. Interaction of Mycobacterium leprae with human airway epithelial cells: Adherence, entry, survival, and identification of potential adhesins by surface proteome analysis. Infect. Immun. 2013, 81, 2645–2659. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.; Thakur, S.; Bhardwaj, N.; Kumar, D.; Akhter, Y. Excavating the surface-associated and secretory proteome of Mycobacterium leprae for identifying vaccines and diagnostic markers relevant immunodominant epitopes. Pathog. Dis. 2016, 74, 1–17. [Google Scholar] [CrossRef]
- Patil, S.A.; Sihna, S.; Ramu, G.; Sengupta, U. Studies on serum proteins in leprosy by polyacrylamide gel electrophoresis (page)--I. Indian J. Lepr. 1986, 58, 202–207. [Google Scholar] [PubMed]
- Gupta, N.; Shankernarayan, N.P.; Dharmalingam, K. Serum proteome of leprosy patients undergoing erythema nodosum leprosum reaction: Regulation of expression of the isoforms of haptoglobin. J. Proteome Res. 2007, 6, 3669–3679. [Google Scholar] [CrossRef]
- Gupta, N.; Shankernarayan, N.P.; Dharmalingam, K. α1-Acid glycoprotein as a putative biomarker for monitoring the development of the type II reactional stage of leprosy. J. Med. Microbiol. 2010, 59, 400–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, M.A.; de Carvalho, D.S.; Amadeu, T.P.; de Andrade Silva, B.J.; da Silva Prata, R.B.; da Silva, C.O.; Ferreira, H.; de Andrea Hacker, M.; Nery, J.A.C.; Pinheiro, R.O.; et al. Elevated Pentraxin-3 Concentrations in Patients With Leprosy: Potential Biomarker of Erythema Nodosum Leprosum. J. Infect. Dis. 2017, 216, 1635–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deval, H.; Katoch, K.; Chauhan, D.S.; Tyagi, A.K.; Gupta, R.K.; Kamal, R.; Kumar, A.; Yadav, V.S.; Katoch, V.M.; Hussain, T. TlyA protein of Mycobacterium leprae: A probable bio-marker of active infection. Lepr. Rev. 2016, 87, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.T.; Fachin, L.R.V.; Trombone, A.P.F.; Rosa, P.S.; Ghidella, C.C.; Belone, A.F.F. Potential of AKR1B10 as a Biomarker and Therapeutic Target in Type 2 Leprosy Reaction. Front. Med. 2018, 5, 263. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.D.S.; de Sousa, I.B.A.; Simionatto, S.; Borsuk, S.; Marchioro, S.B. Recombinant polypeptide of Mycobacterium leprae as a potential tool for serological detection of leprosy. AMB Express 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Manta, F.S.N.; Barbieri, R.R.; Moreira, S.J.M.; Santos, P.T.S.; Nery, J.A.C.; Duppre, N.C.; Sales, A.M.; Pacheco, A.G.; Hacker, M.A.; Machado, A.M.; et al. Quantitative PCR for leprosy diagnosis and monitoring in household contacts: A follow-up study, 2011–2018. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Spencer, J.S.; Duthie, M.S.; Geluk, A.; Balagon, M.F.; Kim, H.J.; Wheat, W.H.; Chatterjee, D.; Jackson, M.; Li, W.; Kurihara, J.N.; et al. Identification of serological biomarkers of infection, disease progression and treatment efficacy for leprosy. Memórias do Instituto Oswaldo Cruz 2012, 107, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Al-Mubarak, R.; Vander Heiden, J.; Broeckling, C.D.; Balagon, M.; Brennan, P.J.; Vissa, V.D. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: Potential markers for susceptibility and pathogenesis. PLoS Negl. Trop. Dis. 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.M.; Belisle, J.T. Host lipid mediators in leprosy: The hypothesized contributions to pathogenesis. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Vardhini, D.; Suneetha, S.; Ahmed, N.; Joshi, D.S.M.; Karuna, S.; Magee, X.; Vijayalakshmi, D.S.R.; Sridhar, V.; Karunakar, K.V.; Archelos, J.J.; et al. Comparative proteomics of the Mycobacterium leprae binding protein myelin P0: Its implication in leprosy and other neurodegenerative diseases. Infect. Genet. Evol. 2004, 4, 21–28. [Google Scholar] [CrossRef]
- Singh, I.; Yadav, A.R.; Mohanty, K.K.; Katoch, K.; Sharma, P.; Pathak, V.K.; Bisht, D.; Gupta, U.D.; Sengupta, U. Autoimmunity to tropomyosin-specific peptides induced by Mycobacterium leprae in leprosy patients: Identification of mimicking proteins. Front. Immunol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Alban, S.M.; De Moura, J.F.; Thomaz-Soccol, V.; Sékula, S.B.; Alvarenga, L.M.; Mira, M.T.; Olortegui, C.C.; Minozzo, J.C. Phage display and synthetic peptides as promising biotechnological tools for the serological diagnosis of leprosy. PLoS ONE 2014, 9, e106222. [Google Scholar] [CrossRef] [Green Version]
- Mayboroda, O.A.; van Hooij, A.; Derks, R.; van den Eeden, S.J.F.; Dijkman, K.; Khadge, S.; Thapa, P.; Kunwar, C.B.; Hagge, D.A.; Geluk, A. Exploratory urinary metabolomics of type 1 leprosy reactions. Int. J. Infect. Dis. 2016, 45, 46–52. [Google Scholar] [CrossRef] [Green Version]
- van Hooij, A.; van den Eeden, S.; Richardus, R.; Tjon Kon Fat, E.; Wilson, L.; Franken, K.L.M.C.; Faber, R.; Khatun, M.; Alam, K.; Sufian Chowdhury, A.; et al. Application of new host biomarker profiles in quantitative point-of-care tests facilitates leprosy diagnosis in the field. EBioMedicine 2019, 47, 301–308. [Google Scholar] [CrossRef] [Green Version]
- da Silva, D.S.; Teixeira, L.A.C.; Beghini, D.G.; da Silva Ferreira, A.T.; de Berredo Moreira Pinho, M.; Rosa, P.S.; Ribeiro, M.R.; Freire, M.D.C.; Hacker, M.A.; da Costa Nery, J.A.; et al. Blood coagulation abnormalities in multibacillary leprosy patients. PLoS Negl. Trop. Dis. 2018, 12, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Stefani Martins, M. Challenges in the post genomic era for the development of tests for leprosy diagnosis. Rev. Soc. Bras. Med. Trop. 2008, 41, 89–94. [Google Scholar]
- Araoz, R.; Honore, N.; Cho, S.; Kim, J.; Cho, S.; Monot, M.; Demangel, C.; Brennan, P.J.; Cole, S.T. Antigen Discovery: A Postgenomic Approach to Leprosy Diagnosis. Infect. Immun. 2006, 74, 175–182. [Google Scholar] [CrossRef]
- Duthie, M.S.; Goto, W.; Ireton, G.C.; Reece, S.T.; Cardoso, L.P.V.; Martelli, C.M.T.; Stefani, M.M.A.; Nakatani, M.; De Jesus, R.C.; Netto, E.M.; et al. Use of protein antigens for early serological diagnosis of leprosy. Clin. Vaccine Immunol. 2007, 14, 1400–1408. [Google Scholar] [CrossRef] [Green Version]
- Reece, S.T.; Ireton, G.; Mohamath, R.; Guderian, J.; Goto, W.; Gelber, R.; Groathouse, N.; Spencer, J.; Brennan, P.; Reed, S.G. ML0405 and ML2331 are antigens of Mycobacterium leprae with potential for diagnosis of leprosy. Clin. Vaccine Immunol. 2006, 13, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.B.; De Oliveira, D.T.; Cazzaniga, R.A.; Varj, C.S.; Santos, P.L.; Duthie, M.S.; De Almeida, R.P.; Jesus, A.R. De Distinct Roles of Th17 and Th1 Cells in Inflammatory Responses Associated with the Presentation of Paucibacillary Leprosy and Leprosy Reactions. Scand. J. Immunol. 2017, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Benjak, A.; Avanzi, C.; Singh, P.; Loiseau, C.; Girma, S.; Busso, P.; Fontes, A.N.B.; Miyamoto, Y.; Namisato, M.; Bobosha, K.; et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- de Macedo, C.S.; Lara, F.A.; Pinheiro, R.O.; Schmitz, V.; de Berrêdo-Pinho, M.; Pereira, G.M.; Pessolani, M.C.V. New insights into the pathogenesis of leprosy: Contribution of subversion of host cell metabolism to bacterial persistence, disease progression, and transmission. F1000Research 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Girdhar, A.; Chakma, J.K. Incidence of leprosy in Firozabad district (Uttar Pradesh). Indian J. Dermatol. Venereol. Leprol. 2018, 84, 403–407. [Google Scholar] [CrossRef]
- Nicchio, M.V.C.; Araujo, S.; Martins, L.C.; Pinheiro, A.V.; Pereira, D.C.; Borges, A.; Antunes, D.E.; Barreto, J.G.; Goulart, I.M.B. Spatial and temporal epidemiology of Mycobacterium leprae infection among leprosy patients and household contacts of an endemic region in Southeast Brazil. Acta Trop. 2016, 163, 38–45. [Google Scholar] [CrossRef]
- Romero-Montoya, M.; Beltran-Alzate, J.C.; Cardona-Castro, N. Evaluation and Monitoring of Mycobacterium leprae Transmission in Household Contacts of Patients with Hansen’s Disease in Colombia. PLoS Negl. Trop. Dis. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Ng, V.; Zanazzi, G.; Timpl, R.; Talts, J.F.; Salzer, J.L.; Brennan, P.J.; Rambukkana, A. Role of the Cell Wall Phenolic Glycolipid-1 in the Peripheral Nerve Predilection of Mycobacterium leprae. Cell 2000, 103, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.X.; Ye, G.Y.; Li, X.Y.; Wu, Q.X.; Ye, G.Y.; Li, X.Y. Serological activity of natural disaccharide octyl bovine serum albumin (ND-O-BSA) in sera from patients with leprosy, tuberculosis, and normal controls. Int. J. Lepr. Other Mycobact. Dis. 1988, 56, 50–55. [Google Scholar]
- Fujiwara, T.; Hunter, S.W.; Cho, S.; Aspinall, G.; Brennan, J. Chemical Synthesis and Serology of Disaccharides and Trisaccharides of Phenolic Glycolipid Antigens from the Leprosy Bacillus and Preparation of a Disaccharide Protein Conjugate for Serodiagnosis of Leprosy OC2P. Infect. Immun. 1984, 43, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Henrique, P.; Marçal, F.; Alves, L.; Fraga, D.O.; Márcia, A.; De Mattos, M.; Menegati, L.; Oliveira, C.; Pinheiro, R.O.; Sarno, E.N.; et al. Utility of immunoglobulin isotypes against LID-1 and NDO-LID for, particularly IgG1, confirming the diagnosis of multibacillary leprosy. Mem. Inst. Oswaldo Cruz 2018, 113, 1–8. [Google Scholar] [CrossRef]
- Geluk, A.; Van Meijgaarden, K.E.; Franken, K.L.M.C.; Subronto, Y.W.; Wieles, B.; Arend, S.M.; Sampaio, E.P.; De Boer, T.; Faber, W.R.; Naafs, B.; et al. Identification and Characterization of the ESAT-6 Homologue of Mycobacterium leprae and T-Cell Cross-Reactivity with Mycobacterium tuberculosis. Infect. Immun. 2002, 70, 2544–2548. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.S.; Marques, M.A.M.; Lima, M.C.B.S.; Junqueira-kipnis, A.P.; Gregory, B.C.; Truman, R.W.; Brennan, P.J. Antigenic Specificity of the Mycobacterium leprae Homologue of ESAT-6. Infect. Immun. 2002, 70, 1010–1013. [Google Scholar] [CrossRef] [Green Version]
- Duthie, M.S.; Raychaudhuri, R.; Tutterrow, Y.L.; Misquith, A.; Bowman, J.; Casey, A.; Balagon, M.F.; Maghanoy, A.; Beltran-alzate, J.C.; Romero-alzate, M.; et al. A rapid ELISA for the diagnosis of MB leprosy based on complementary detection of antibodies against a novel protein-glycolipid conjugate. Diagn. Microbiol. Infect. Dis. 2014, 79, 233–239. [Google Scholar] [CrossRef]
- Hussain, R.; Ansari, A.; Talat, N.; Hasan, Z.; Dawood, G. CCL2/MCP-I Genotype-Phenotype Relationship in Latent Tuberculosis Infection. PLoS ONE 2011, 6, e25803. [Google Scholar] [CrossRef] [Green Version]
- Joosten, S.A.; Van Meijgaarden, K.E.; Savage, N.D.L.; De Boer, T.; Triebel, F.; Van Der Wal, A.; De Heer, E.; Klein, M.R.; Geluk, A.; Ottenhoff, T.H.M. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc. Natl. Acad. Sci. USA 2007, 104, 8029–8034. [Google Scholar] [CrossRef] [Green Version]
- Geluk, A.; Bobosha, K.; Van Der, J.J.; Schip, P.; Spencer, J.S.; Banu, S.; Marcia, V.; Martins, S.B.; Cho, S.; Franken, K.L.M.C.; et al. New Biomarkers with Relevance to Leprosy Diagnosis Applicable in Areas Hyperendemic for Leprosy. J. Immunol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Heldin, C.; Westermark, B. Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor. Physiol. Rev. 1999, 79, 1283–1316. [Google Scholar] [CrossRef]
- Stefani, M.M.; Guerra, J.G.; Sousa, A.L.M.; Costa, M.B.; Oliveira, M.L.W.; Martelli, C.T.; Scollard, D.M. Potential plasma markers of type 1 and type 2 leprosy reactions: A preliminary report. BMC Infect. Dis. 2009, 9, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Burgler, S.; Ouaked, N.; Bassin, C.; Fh, D.I.; Basinski, T.M.; Mantel, P. Differentiation and functional analysis of human TH 17 cells. J. Allergy Clin. Immunol. 2009, 123, 588–595. [Google Scholar] [CrossRef]
- Liu, P.T.; Wheelwright, M.; Teles, R.; Komisopoulou, E.; Ferguson, B.; Mehta, M.D.; Vazirnia, A.; Rea, T.H.; Sarno, N.; Graeber, T.G.; et al. MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat. Med. 2012, 18, 267–273. [Google Scholar] [CrossRef]
- Cho, S.N.; Yanagihara, D.L.; Hunter, S.W.; Gelber, R.H.; Brennan, P.J. Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect. Immun. 1983, 41, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Parkash, O.; Pandey, R.; Kumar, A.; Kumar, A. Performance of recombinant ESAT-6 antigen ( ML0049 ) for detection of leprosy patients. Lett. Appl. Microbiol. 2007, 6, 524–530. [Google Scholar] [CrossRef]
- Corstjens, P.L.A.M.; Zuiderwijk, M.; Tanke, H.J.; Van Der Ploeg-schip, J.; Ottenhoff, T.H.M.; Geluk, A. A user-friendly, highly sensitive assay to detect the IFN-γ secretion by T cell. Clin. Biochecm. 2009, 41, 440–444. [Google Scholar] [CrossRef] [Green Version]
- Parkash, O. Serological detection of leprosy employing Mycobacterium leprae derived serine-rich 45 kDa, ESAT-6, CFP-10 and PGL-I: A compilation of data from studies in Indian populations. Lepr. Rev. 2011, 82, 383–388. [Google Scholar] [CrossRef]
- Spencer, J.S.; Kim, H.J.; Wheat, W.H.; Chatterjee, D.; Balagon, M.V.; Cellona, R.V.; Tan, E.V.; Gelber, R.; Saunderson, P.; Duthie, M.S.; et al. Analysis of Antibody Responses to Mycobacterium leprae Phenolic Glycolipid I, Lipoarabinomannan, and Recombinant Proteins To Define Disease Subtype-Specific Antigenic Profiles in Leprosy. Clin. Vaccine Immunol. 2011, 18, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Bobosha, K.; Tjon Kon Fat, E.M.; van den Eeden, S.J.F.; Bekele, Y.; van der Ploeg-van Schip, J.J.; de Dood, C.J.; Dijkman, K.; Franken, K.L.M.C.; Wilson, L.; Aseffa, A.; et al. Field-Evaluation of a New Lateral Flow Assay for Detection of Cellular and Humoral Immunity against Mycobacterium leprae. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Berrington, W.R.; Kunwar, C.B.; Neupane, K.; van den Eeden, S.J.F.; Vary, J.C.; Peterson, G.J.; Wells, R.D.; Geluk, A.; Hagge, D.A.; Hawn, T.R. Differential Dermal Expression of CCL17 and CCL18 in Tuberculoid and Lepromatous Leprosy. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef]
- Meneses, G.C.; Libório, A.B.; De Daher, E.F.; Bezerra, G.; Felipe, M.; Araci, M.; Pontes, A.; Maria, A.; Martins, C. Urinary monocyte chemotactic protein-1 ( MCP-1 ) in leprosy patients: Increased risk for kidney damage. BMC Infect. Dis. 2014, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Khadge, S.; Banu, S.; Bobosha, K.; Schip, J.J.V.D.P.; Goulart, I.M.; Thapa, P.; Kunwar, C.B.; Van Meijgaarden, K.E.; Van Den Eeden, S.J.F.; Wilson, L.; et al. Longitudinal immune profiles in type 1 leprosy reactions in Bangladesh, Brazil, Ethiopia and Nepal. BMC Infect. Dis. 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Van Hooij, A.; Tjon, E.M.; Fat, K.; Van Den Eeden, S.J.F.; Wilson, L.; Batista, M.; Salgado, C.G.; Spencer, J.S.; Corstjens, P.L.A.M. Field-friendly serological tests for determination of M. leprae -specific antibodies. Sci. Rep. 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Negera, E.; Walker, S.L.; Lema, T.; Aseffa, A.; Lockwood, D.N.; Dockrell, H.M. Complement C1q expression in Erythema nodosum leprosum. PLoS Negl. Trop. Dis. 2018, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Van Hooij, A.; Tjon, E.M.; Fat, K.; Batista, M.; Bouth, R.C.; Caroline, A.; Messias, C.; Gobbo, A.R.; Lema, T.; Bobosha, K.; et al. Evaluation of Immunodiagnostic Tests for Leprosy in Brazil, China and Ethiopia. Sci. Rep. 2018, 1–9. [Google Scholar] [CrossRef]
- Corstjens, P.L.A.M.; Van Hooij, A.; Tjon, E.M.; Fat, K.; Alam, K.; Vrolijk, L.B.; Dlamini, S.; Batista, M.; Spencer, J.S.; Salgado, C.G.; et al. Fingerstick test quantifying humoral and cellular biomarkers indicative for M. leprae infection. Clin. Biochem. 2019, 66, 76–82. [Google Scholar] [CrossRef]
- Lima, C.P.; Costa, E.M.; Sampaio, L.S. Expression of FoxP3 in different forms of leprosy and reactions. J. Bras. Patol. e Med. Lab. 2019, 55, 434–437. [Google Scholar] [CrossRef]
- Medeiros, M.F.; Rodrigues, M.J.; Vital, R.T.; Jose, A.; Nery, C.; Sales, A.M.; Hacker, M.D.A.; Ferreira, H.; Chimelli, L.; Sarno, E.N.; et al. CXCL10,MCP-1and Other Immunologic Markers Involved in Neural Leprosy. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 1–10. [Google Scholar]
- Kampirapap, K.; Singtham, N. Anti-PGL-1 antibody levels in Thai leprosy patients. Southeast Asian J. Trop. Med. Public Health 1996, 27, 728–733. [Google Scholar]
S. No. | Biomarker | Total No. of Subjects | Sample Type | Applied Technique | Sensitivity/Specificity | Remark | Specimen Collection Location | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
1. | Anti PGL-1 Ab | Hyperimmune anti- M. leprae rabbit antiserum, leprosy (TT, LL) patients sera | Serum | ELISA | Sensitivity: For Anti PGL-1-IgM Abs LL-96%, TT-62% | Sera were analyzed against both the IgM- and IgG-conjugated reagents, high anti-PGL I IgM was present in LL than TT cases. This assay of IgM against M. leprae glycolipid especially in LL cases may result in earlier diagnosis and treatment. | U.S. (Denver-Colorado, Dale, California) | 1983 | [97] |
Leprosy (114 MB, 85 PB) patients, 42 HHC, 20 EC, 106 ODD, 234 HI The Netherlands: 99 HI, 59 other diseases | Whole blood and serum | ML flow test, ELISA | Sensitivity: For MB-97.4%, untreated PB-40%, household contacts-28.6% | It is a simple, stable, and rapid tool to categorize the leprosy patients (MB/PB) and identification of leprosy contact patients. It detects IgM antibodies to PGL-1 of M. leprae. | Brazil (Manaus), Indonesia (South Sulawesi), Philippines (Cebu), Ghana and Netherlands | 2003 | [35] | ||
Specificity: For control group-90.2% | |||||||||
2. | IgG against ESAT-6 (ML0049) | 48 Leprosy (PB, MB) patients, 13 untreated TB patients, 14 ODD. patients, 21 HI | Serum | ELISA | Sensitivity: For smear positive-82·4%, smear negative-19·4%, both together-41.7% | Results of ESAT-6 based assay was equivalent to anti-PGL-1 antibody detecting ELISA. ESAT-6 act immunologically in leprosy patients and aid in early diagnosis of leprosy, especially in MB cases. | India (Agra, Uttar Pradesh) | 2007 | [98] |
Specificity: 100% | |||||||||
3. | IFN-γ | M. leprae Ags, HI | Whole blood and PBMC supernatant | ELISA PBMC, UCP-LF IFN-γ (ULIGA) | n/a | Analytical sensitivity of ULIGA assay was near about 2 pg/mL IFN-γ in IMDM-HS, thereby 10 folds more sensitive than IFN-γ ELISA. It uses LF-based avidin–biotin capture and detects IFN-γ concentration above 100 pg/mL. | Netherlands (Leiden) | 2009 | [99] |
Immuno-sandwich assay | |||||||||
4. | For T1R: CXCL10 & IL6 | Leprosy (10 T1R, 10 T2R), 29 leprosy patients without reaction | Plasma | The multiplex bead-based technique (Cytokine array) | n/a | These markers aid in differentiating these groups, and provide adequacy in clinical diagnosis and treatment of disease. | Central Brazil (Goiania) | 2009 | [94] |
For T2R: IL7, PDGF-BB & IL6, | |||||||||
5. | M. leprae derived Ags: Serine-rich 45 kDa protein (45 kDa), ESAT-6, CFP-10, PGL-1 | Leprosy (PB, MB) patients | Serum | ELISA | Sensitivity: For PB patients, 73%, (providing 36% improvement over conventional PGL-1 based ELISA) | These Ags focused on the detection of PB cases. Antibodies formation against secretory protein ESAT-6 and CFP-10 aid in the detection of early infections and for the monitoring of treatment efficiency. | India | 2011 | [100] |
6. | Abs against PGL-1, LAM and six recombinant M. leprae proteins (ML1877, ML0841, ML2028, ML2038, ML0380, ML0050) | Leprosy patients (37 LL, 13 BL, 20 TT/BT, 42 HHC, 23 HI, 30 TB patients | Serum | Western blot, ELISA, ML/lateral flow test | Sensitivity: By lateral flow test for: -BL/LL-97.4%, TT/BT-40% By ELISA a) against ML2028 for: -BL/LL-90%, TT/BT-65% b) against LAM for: -BL/LL-100%, TT/BT-90%, TB-87% c) against ND-O-BSA for: -BL/LL-96%, TT/BT-80% | By Western blot analysis, four of the recombinant proteins, ML1877, ML0841, ML2028, and ML2038, were recognized by sera from all BL/LL and TT/BT patients, while ML2028 and ML2038 showed good response for both MB and PB groups. ML test flow is an important tool to diagnose borderline leprosy. These simple and inexpensive serological test uses the combination of protein Ags in early diagnosis and treatment of disease with high accuracy. | Philippines (Cebu), U.S. (Fort Collins, Colorado) | 2011 | [101] |
Specificity: By lateral flow test for: -BT/LL-90.2% By ELISA (a) against ML2028—89% (b) against LAM-21% (c) against ND-O-BSA-93% | |||||||||
7. | MCP-1 (CCL2), MIP-1β (CCL4), IL-1β and IFN-γ induced protein 10 (CXCL10, IP-10) | Bangladesh: Leprosy (10 TT/BT) patients, 10 HHC, 10 HI | Whole blood and armadillo-derived M. leprae whole cells | ELISA, PBMC | n/a | M. leprae recombinant protein induced chemokines/cytokines in leprosy patients and EC. ML2478 and ML0840 induced high IFN-γ concentrations in EC. ML2478 induced higher concentrations of MCP-1, MIP-1b, and IL-1b in patients compared with EC is an important Ag that differentiate between pathogenic and non-pathogenic cases. | Bangladesh (Dhaka), Brazil (Fiocruz Fortaleza), Ethiopia (Addis Ababa), South Korea (Seoul) | 2012 | [92] |
Brazil: Leprosy (10 TT/BT) patients 10 HHC, 10 EC, 10 HI | |||||||||
Ethiopia: 35 HC, 18 EC (high); 17 EC (low) | |||||||||
Korea: 10 pulmonary TB, 10 HI | |||||||||
8. | Abs against LID-1, LAM, ML2028 (Ag85B), ND-O-BSA | Philippines: Leprosy {21 MB (2 BL), 10 LL} Patients, 51 HHC | Serum | Western blot, ELISA | n/a | By Western blot analysis, out of all recombinant protein ML2028 and LID-1 Ag showed extreme response in the BL/LL group while weaker response toward other protein Ag. A very strong response was observed to LAM in BT/LL group. The ELISA result showed gradual decay and upraised ND-O-BSA Ag level in high bacillary load patients. | Philippines (Cebu), U.S. (Fort Collins, Colorado) | 2012 | [64] |
9. | IP-10, IL-10, anti-PGL-1 antibodies | For kinetics of IP-10: Ethopia (5 BL, 2BT), Netherlands (3 BT), 8 EC | Serum | Dry-format UCP-LFAs for: IP-10 and anti-PGL-1 antibodies | n/a | The remarkable difference was observed in the ratio of IP-10/IL-10 in sera of all three groups. Results of dry format UCP dry-format UCP-LFAs were equally sensitive as ELISAs. | Ethiopia (Addis Ababa), Netherlands (Leiden) | 2014 | [102] |
For cytokine profile: Ethopia (2 BT, 9 BL, 12 EC) | Multiplex UCP-LFA format for: anti-PGL-1 antibodies and IP-10 ELISA | ||||||||
Correlation b/w ELISA and UCP-LFAs: Ethiopia (2 BT, 8 BL, 12 EC) | |||||||||
10. | CCL18, CCL17, IL-10, CD14 | 85 Leprosy (38 BT/TT, 3 BB, 44 BL/LL) patients, 6 EC | Serum and skin biopsies | RT PCR assay for: Measuring mRNA level in skin lesion ELISA | n/a | An elevated level of CCL18 and IL-10 was found in lepromatous while CCL17 and CD14 were found in tuberculoid patient lesions. However, CCL17 and CCL18 were more strongly linked with leprosy polarity as compared to TH1 and TH2 cytokines. | Nepal (Kathmandu) | 2014 | [103] |
11. | MCP-1, MDA | 44 Leprosy (14 TT/BT, 19 BB, 11 LL/BL) patients, 15 HI | Urine | Thiobarbituric acid (TBARS) test for: MDA. | n/a | Increased levels of MCP-1 and MDA were observed in leprosy patients with no clinical kidney disease. The level of MCP-1 increased in MB patients than PB. MCP-1 and oxidative stress markers indicate high chances of developing kidney disease in leprosy patients. | Brazil (Fortaleza) | 2014 | [104] |
ELISA for: MCP-1 | |||||||||
12. | IFN-γ, IP-10-, IL-17- VEGF, IL-10 | Bangladesh: Leprosy patient (31 BL/LL, 20 RR) Patient, 20 EC | Whole blood and serum | ELISA, PBMC | n/a | PBMC peaked stimulation occurs by IFN-γ-, IP-10-, IL-17, and VEGF through M. leprae Ag that diagnosed T1R. However, a decline in IL-10 level was observed in T1R while it was elevated after treatment. The ratio of these biomolecules (pro-inflammatory cytokines with IL-10) allows early diagnosis of T1R and its cure. | Bangladesh (Dhaka), Brazil (Uberlandia), Ethiopia and Nepal (Kathmandu) | 2015 | [105] |
Brazil: Leprosy patient (23 BL/LL, 25 RR) Patient, 20 EC | |||||||||
Ethiopia: Leprosy patient (11 BL/LL, 25 RR) Patient, 15 EC | |||||||||
Nepal: Leprosy patient (20 BL/LL, 13 RR) Patient, 20 EC | |||||||||
13. | Abs against PGL-1 LID-1 | Cohort 1 (Philippine): 127 LL/BL, 24 BT/TT, 4 LL | Serum | ELISA, Ab Rapid test (Gold-LFA) for: detection of IgG antibodies directed against LID-1 | Philippine (MB with low BI) Sensitivity: 94% UCP-LFA, 78% gold LFA Specificity: 100% by both | Comparison of two field-friendly assays i.e., Gold-LFA and UCP-LFA aid in the detection of M. leprae-specific humoral immune responses. The accuracy of UCP-LFA assay in MB patients (BI+) was more than Gold-LFA. PGL-1 and LID-1 both are reported in MB patients. In the Bangladesh cohort, most of the PB patients were found negative by using both these methods along with ELISA against PGL-1. | Philippine (Cebu), Bangladesh (Nilphamari), Brazil (Pará) | 2017 | [106] |
Bangladesh (MB with high BI) Sensitivity: 41% UCP-LFA, 44% gold LFA | |||||||||
Cohort 2 (Bangladesh): 34 MB (8 BL/LL, 26 BT), 45 PB (41 BT, 4 TT), 54 HHC, 50 HHC & BCG | PGL-1 UCP-LFA for detection of IgM antibodies directed against PGL-1. | ||||||||
Cohort 3 (Brazil): 60 hyperendemic area | |||||||||
Brazil Sensitivity: 28% by both | |||||||||
14. | C1q (C1qA, C1qB, and C1qC) | 30 untreated ENL, 30 non-reactional LL | Whole blood and skin biopsies | qPCR, ELISA | n/a | C1q was used as a potential diagnostic marker for active ENL reactions, and it was also used for monitoring ENL treatment. qPCR determines the three components of C1q mRNA expression in blood and dermal biopsies. | Ethiopia (Addis Ababa) | 2018 | [107] |
15. | anti-PGL-1 IgM antibody, IP-10, CCL4, CRP | Cohort 1 (Brazil): Leprosy (30 LL/BL, 41 BT/TT) patients, 103 HHC, 237 EC | Whole blood | UCP-LFA | Sensitivity: | This technique ease in rapid testing based on selected biomarkers using finger stick blood (FSB). For LL/BL and BT/TT leprosy patients, IP-10 was the most significant marker for identification. For LL/BL cases, anti-PGL-1 IgM and CRP are prominent for diagnosis and CCL4 is prominent for the detection of BT/TT patients. | Brazil (Pará), China (Qianxinan and the Guiyang prefecture), Ethiopia (Kokosa Woreda) | 2018 | [108] |
for LL/BL patients: 91% (China), 97% (Brazil), 75% (Ethiopia) | |||||||||
Cohort 2 (China): Leprosy (47 LL/BL, 4 BT/TT) patients, 87 HHC, 56 EC | |||||||||
for BT/TT patients: 80% (China), 71% (Brazil), 75% (Ethiopia) | |||||||||
Cohort 3 (Ethiopia): Leprosy (17 LL/BL, 4 BT/TT) patients, 24 HHC, 25 EC | |||||||||
16. | ApoA1 (Apolipoprotein A1), IL-1Ra, S100A12 (calgranulin C) | Cohort 1: Leprosy (34 MB, 45 PB) patients, 54 HHC, 51 EC | Whole blood and plasma | Multiplex bead arrays, ELISAs and UCP-LFAs | Sensitivity: UCP-LFAs 86% | Along with these three new biomarkers, five (CCL4, CRP, IL-10, IP-10, αPGL-1 IgM) previously identified biomarkers were also confirmed. Overnight WBAs stimulation increased specificity for IL-10, IL-1Ra and CCL4 markers. The rest of the other markers can be detected in plasma for rapid POC tests, LFAs utilized these markers in the detection of MB and PB patients. | Bangladesh (Nilphamari, Rangpur, Panchagar, and Thakurgaon) | 2019 | [71] |
Cohort 2: Leprosy (27 MB, 28 PB), patients, 27 EC | Specificity: UCP-LFAs 90% | ||||||||
Cohort 3: Leprosy (21 MB, 15 PB) patients, 28 EC | |||||||||
17. | CCL4, CRP, IL-10, IP-10, αPGL-1 IgM | Bangladesh: Leprosy (27 MB, 15 PB) patients, 27 HHC, 12 EC | Fingerstick blood (FSB) and serum | UCP-LFAs | n/a | Minimally invasive and user-friendly quantitative UCP-LF along with FSB aid in the detection of the biomarker for M. leprae infection. All MB cases were perfectly identified by αPGL-1 FSB test conferring a good quantitative correlation with the BI. | Bangladesh (Nilphamari), Brazil (Marituba), South Africa (Cape Town), and the Netherlands (Rotterdam) | 2019 | [109] |
Brazil: Leprosy (8 MB, 4 PB) patients, 4 HHC, 5 ODD | |||||||||
South Africa: 4 MB, 1 HI | |||||||||
The Netherlands: 3 MB, 6 PB, 1 ODD | |||||||||
18. | FoxP3 | Leprosy (PB, MB, T1R, T2R) patients, EC (10 individuals selected for each case) | Whole blood and plasma | ELISA, PBMC | n/a | ELISA is an inexpensive method involved in the detection of the FoxP3 marker. A rise in FoxP3+ cells in T1R patients could be advantageous to the host as a protection mechanism, while the decline in Th1 immune response by FoxP3+ cells in MB patients leads to survival and dispersion of the bacilli. | Brazil (Goiânia) | 2019 | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, S.; Sharma, D.; Goel, A.; Patil, S.A.; Bisht, D. Insights into Mycobacterium leprae Proteomics and Biomarkers—An Overview. Proteomes 2021, 9, 7. https://doi.org/10.3390/proteomes9010007
Gautam S, Sharma D, Goel A, Patil SA, Bisht D. Insights into Mycobacterium leprae Proteomics and Biomarkers—An Overview. Proteomes. 2021; 9(1):7. https://doi.org/10.3390/proteomes9010007
Chicago/Turabian StyleGautam, Sakshi, Devesh Sharma, Anjana Goel, Shripad A. Patil, and Deepa Bisht. 2021. "Insights into Mycobacterium leprae Proteomics and Biomarkers—An Overview" Proteomes 9, no. 1: 7. https://doi.org/10.3390/proteomes9010007
APA StyleGautam, S., Sharma, D., Goel, A., Patil, S. A., & Bisht, D. (2021). Insights into Mycobacterium leprae Proteomics and Biomarkers—An Overview. Proteomes, 9(1), 7. https://doi.org/10.3390/proteomes9010007