Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. GPR Preparation and GABA Content Analysis
2.2. Birds and Experimental Design
2.3. Assessment of Egg Performance, Shell Hardness and GABA Content
2.4. Blood and Serum Samples Collection
2.5. Serum Assay
2.6. Proteomic Analysis Using LC-MS/MS Technique
2.6.1. Sample Preparation for Shotgun Proteomics
2.6.2. LC-MS/MS
2.6.3. Bioinformatics and Data Analysis
2.7. Gene Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Egg Performance, Shell Hardness and GABA Content
3.2. Biochemical Parameters and Hormone Contents
3.3. Antioxidation and Immune Activity
3.4. LC-MS/MS Identification
Differentially Abundant Protein in All Treatments during Induction Times
3.5. Quantitative Real-Time Reverse Transcription PCR (qPCR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selvam, R.; Saravanakumar, M.; Suresh, S.; Sureshbabu, G.; Sasikumar, M.; Prashanth, D. Effect of vitamin E supplementation and high stocking density on the performance and stress parameters of broilers. Braz. J. Poult. Sci. 2017, 19, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Abudabos, A.M.; Samara, E.M.; Hussein, E.O.S.; Al-Ghadi, M.Q.; Al-Atiyat, R.M. Impacts of stocking density on the performance and welfare of broiler chickens. Ital. J. Anim. Sci. 2013, 12, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Sarica, M.; Boga, S.; Yamak, U.S. The effects of space allowance on egg yield, egg quality and plumage condition of laying hens in battery cages. Czech. J. Anim. Sci. 2008, 53, 346–353. [Google Scholar] [CrossRef]
- Jeong, S.-B.; Kim, Y.B.; Lee, J.-W.; Kim, D.-H.; Moon, B.-H.; Chang, H.-H.; Choi, Y.-H.; Lee, K.-W. Role of dietary gamma-aminobutyric acid in broiler chickens raised under high stocking density. Anim. Nutr. 2020, 6, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Beloor, J.; Kang, H.K.; Kim, Y.J.; Subramani, V.K.; Jang, I.S.; Sohn, S.H.; Moon, Y.S. The Effect of Stocking Density on Stress Related Genes and Telomeric Length in Broiler Chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 437–443. [Google Scholar] [CrossRef]
- Najafi, P.; Zulkifli, I.; Jajuli, N.A.; Farjam, A.S.; Ramiah, S.K.; Amir, A.A.; O’Reily, E.; Eckersall, D. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens. Int. J. Biometeorol. 2015, 59, 1577–1583. [Google Scholar] [CrossRef]
- Oh, S.-k.; Hwang, P.-S.; Kim, K.-J.; Kim, Y.-K.; Lee, J.-H. Changes in nutritional components throughout germination in paddy rice and brown rice. Prev. Nutr. Food Sci. 2010, 15, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kinnersley, A.M.; Turano, F.J. Gamma aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 2000, 19, 479–509. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, X.T.; Li, H.; Dong, X.Y.; Zhao, W. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim. Sci. J. 2012, 83, 141–147. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Cheng, J.L.; Ren, M.; Yin, L.; Piao, X.S. Effect of γ-aminobutyric acid-producing Lactobacillus strain on laying performance, egg quality and serum enzyme activity in Hy-Line brown hens under heat stress. Asian-Australas. J. Anim. Sci. 2015, 28, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Likittrakulwong, W.; Srikaeo, K.; Poolprasert, P.; Laorodphan, N.; Incharoen, T.; Koonawootrittriron, S. Chemical composition, nutrient digestibility and metabolizable energy of germinated paddy rice. Anim. Nutr. Feed Technol. 2020, 20, 333–343. [Google Scholar] [CrossRef]
- Paredi, G.; Raboni, S.; Bendixen, E.; de Almeida, A.M.; Mozzarelli, A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J. Proteom. 2012, 75, 4275–4289. [Google Scholar] [CrossRef] [PubMed]
- Higdon, R.; Kala, J.; Wilkins, D.; Yan, J.F.; Sethi, M.K.; Lin, L.; Liu, S.; Montague, E.; Janko, I.; Choiniere, J.; et al. Integrated proteomic and transcriptomic-based approaches to identifying signature biomarkers and pathways for elucidation of Daoy and UW228 subtypes. Proteomes 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thadikkaran, L.; Siegenthaler, M.A.; Crettaz, D.; Queloz, P.; Schneider, P.; Tissot, J. Recent advances in blood-related proteomics. Proteomics 2005, 5, 3019–3034. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef] [Green Version]
- Digby, M.R.; Lowenthal, J.W. Cloning and expression of the chicken interferon-γ gene. J. Interf. Cytokine Res. 1995, 15, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules 2018, 23, 2846. [Google Scholar] [CrossRef] [Green Version]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Arif, M.; Taha, A.E.; Noreldin, A.E. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 2019, 79, 120–134. [Google Scholar] [CrossRef]
- Park, N.; Lee, T.K.; Nguyen, T.T.H.; An, E.B.; Kim, N.M.; You, Y.H.; Park, T.-S.; Kim, D. The effect of fermented buckwheat on producing l-carnitine-and γ-aminobutyric acid (GABA)-enriched designer eggs. J. Sci. Food Agric. 2017, 97, 2891–2897. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry; National Academies Press: Washington, DC, USA, 1994.
- Likittrakulwong, W.; Moonsatan, S.; Incharoen, T. Enhancement of tibia bone and eggshell hardness through the supplementation of bio-calcium derived from fish bone mixed with chelated trace minerals and vitamin D3 in laying duck diet. Vet. Anim. Sci. 2021, 14, 100204. [Google Scholar] [CrossRef] [PubMed]
- Likittrakulwong, W.; Poolprasert, P.; Roytrakul, S. Morphological Trait, Molecular Genetic Evidence and Proteomic Determination of Different Chickens (Gallus gallus) Breeds. J. Appl. Biol. Biotechnol. 2019, 7, 65–70. [Google Scholar]
- Nakharuthai, C.; Rodrigues, P.M.; Schrama, D.; Kumkhong, S.; Boonanuntanasarn, S. Effects of Different Dietary Vegetable Lipid Sources on Health Status in Nile Tilapia (Oreochromis niloticus): Haematological Indices, Immune Response Parameters and Plasma Proteome. Animals 2020, 10, 1377. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Hiller, L.W.; Miller, W.; Birney, E.; Warren, W.; Hardison, R.C.; Ponting, C.P.; Bork, P.; Burt, D.W.; Groenen, M.A.M.; Delany, M.E.; et al. Sequence and comparative analysis of the chicken genome provide unique perspective on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Santos, A.; Von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, 380–384. [Google Scholar] [CrossRef]
- Likittrakulwong, W.; Na-Nakorn, U.; Poompuang, S.; Koonawootrittriron, S.; Srisapoome, P. Molecular identification and expression profiling of a novel alpha2-macroglobulin gene in giant freshwater prawn (Macrobrachium rosenbergii, De Man). Agric. Nat. Resour. 2017, 51, 25–35. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- An, Y.S.; Park, J.G.; Jang, I.S.; Sohn, S.H.; Moon, Y.S. Effects of high stocking density on the expressions of stress and lipid metabolism associated genes in the liver of chicken. J. Life Sci. 2012, 22, 1672–1679. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.H.; Cho, E.J.; Park, D.B.; Jang, I.S.; Moon, Y.S. Comparison of stress response between Korean Native Chickens and Single Comb White Leghorns subjected to a high stocking density. Korean J. Poult. Sci. 2014, 41, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.F.; Gao, F.; Zhang, W.H.; Song, S.X.; Xu, X.L.; Zhou, G.H. Effects of dietary glutamine and gamma-aminobutyric acid on performance, carcass characteristics and serum parameters in broilers under circular heat stress. Anim. Feed Sci. Technol. 2011, 168, 51–60. [Google Scholar] [CrossRef]
- Fouad, A.M.; Chen, W.; Ruan, D.; Wang, S.; Xia, W.G.; Zheng, C.T. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci. 2016, 15, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Min, Z.; Yuan, J.; Zhang, B.; Guo, Y. Effects of dietary tryptophan and stocking density on the performance, meat quality, and metabolic status of broilers. J. Anim. Sci. Biotechnol. 2014, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incharoen, T.; Tartrakoon, W.; Nakhon, S.; Treetan, S. Effects of dietary silicon derived from rice hull ash on the meat quality and bone breaking strength of broiler chickens. Asian J. Anim. Vet. Adv. 2016, 11, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Incharoen, T.; Maneechote, P. The effects of dietary whole rice hull as insoluble fiber on the flock uniformity of pullets and on the egg performance and intestinal mucosa of laying hens. Am. J. Agric. Biol. Sci. 2013, 8, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Chand, N.; Muhammad, S.; Khan, R.U.; Alhidary, I.A.; ur Rehman, Z. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. Environ. Sci. Pollut. Res. 2016, 23, 23930–23935. [Google Scholar] [CrossRef]
- El-Naggar, K.; El-Kassas, S.; Abdo, S.E.; Kirrella, A.A.K. Role of gamma-aminobutyric acid in regulating feed intake in commercial broilers reared under normal and heat stress conditions. J. Therm. Biol. 2019, 84, 164–175. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, J.; Sun, Y.Q.; Xie, J. Protective effect of γ-aminobutyric acid on antioxidation function in intestinal mucosa of Wenchang chicken induced by heat stress. J. Anim. Plant Sci. 2013, 23, 1634–1641. [Google Scholar]
- Houshmand, M.; Azhar, K.; Zulkifli, I.; Bejo, M.H.; Kamyab, A. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers. Poult. Sci. 2012, 91, 393–401. [Google Scholar] [CrossRef]
- Zhigang, S.; Sheikhahmadi, A.; Li, Z. Effect of dietary γ-aminobutyric acid on performance parameters and some plasma metabolites in Cherry Valley ducks under high ambient temperature. Iran J. Vet. Res. 2013, 14, 283–290. [Google Scholar]
- Freeman, B.A.; Crapo, J.D. Biology of disease: Free radicals and tissue injury. Lab. Investig. 1982, 47, 412–426. [Google Scholar] [PubMed]
- Holley, A.K.; Dhar, S.K.; St. Clair, D.K. Manganese superoxide dismutase versus p53: The mitochondrial center. Ann. N. Y. Acad. Sci. 2010, 1201, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Meyerson, M. Role of Telomerase in Normal and Cancer Cells. J. Clin. Oncol. 2000, 18, 2626–2634. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.H.; Subramani, V.K.; Moon, Y.S.; Jang, I.S. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens. Poult. Sci. 2012, 91, 829–836. [Google Scholar] [CrossRef]
- Soleimani, A.F.; Zulkifli, I.; Hair-Bejo, M.; Omar, A.R.; Raha, A.R. The role of heat shock protein 70 in resistance to Salmonella enteritidis in broiler chickens subjected to neonatal feed restriction and thermal stress. Poult. Sci. 2012, 91, 340–345. [Google Scholar] [CrossRef]
- Richards, M.P.; Poch, S.M.; Coon, C.N.; Rosebrough, R.W.; Ashwell, C.M.; McMurtry, J.P. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 2003, 133, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Regassa, A.; Kim, W.K. Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes. Cell Biol. Int. 2013, 37, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Güell, M.; Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009, 583, 3966–3973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroonluk, S.; Roytrakul, S.; Jantasuriyarat, C. Identification and Characterization of Phosphoproteins in Somatic Embryogenesis Acquisition during Oil Palm Tissue Culture. Plants 2020, 9, 36. [Google Scholar] [CrossRef] [Green Version]
Item | Dietary GPR, g/kg | ||
---|---|---|---|
0 | 74 | 148 | |
Ingredients | |||
Corn | 460.0 | 460.0 | 460.0 |
Paddy rice | 148.0 | 74.0 | - |
GPR | - | 74.0 | 148.0 |
Palm oil | 44.0 | 44.0 | 44.0 |
Soybean meal, 460 g/kg CP | 170.0 | 170.0 | 170.0 |
Fish meal, 600 g/kg CP | 60.0 | 60.0 | 60.0 |
Calcium carbonate | 99.0 | 99.0 | 99.0 |
Dicalcium phosphate, 180 g/kg P | 11.0 | 11.0 | 11.0 |
Vitamin-mineral premix 1 | 3.0 | 3.0 | 3.0 |
DL-Methionine | 2.0 | 2.0 | 2.0 |
Pigments | 2.0 | 2.0 | 2.0 |
Salt | 1.0 | 1.0 | 1.0 |
Total | 1000 | 1000 | 1000 |
Calculated chemical composition 2 | |||
Metabolizable energy, kcal/kg | 2750 | 2750 | 2750 |
Crude Protein | 165.0 | 165.0 | 165.0 |
Ether extract | 69.5 | 69.5 | 69.5 |
Crude Fiber | 40.2 | 40.2 | 40.2 |
Calcium | 45.0 | 45.0 | 45.0 |
Available phosphorus | 3.9 | 3.9 | 3.9 |
GABA content, mg/kg | 0.0 | 3.1 | 6.3 |
Gene 1 | Sequence (5′-3′) | Annealing Temperature (°C) | Product Size (bp) | Ref. |
---|---|---|---|---|
HPS70 | F:AATCTATCATCATGTCTGGCAAAGGGCCGG | 58 °C | 220 bp | [5] |
R:GCGGCCGATGAGACGCTTGGCATCAAAGAT | ||||
HPS90 | F:ATGCCGGAAGCTGTGCAAACACAGGACCAA | 55 °C | 242 bp | [5] |
R:GGAATCAGGTTAATTTTCAGGTCTTTTCCA | ||||
HMGCR | F:ATGCATGGCCTTTTTGTGGCCTCTCATCCA | 55 °C | [5] | |
R:CTTGAGAAGATTGTGAGGAGACCAGCAATA | ||||
FASN | F:TTCGTGTTACCGCCTCAG | 55 °C | 91 bp | [30] |
R:TTCCCACTGCCTGCTTAG | ||||
FABP4 | F:ATGGCAAAGAGACTGTTATCAA | 55 °C | 118 bp | [30] |
R-TGAAGACGGCTTCCTCAT | ||||
Beta-actin | F-CCACCGCAAATGCTTCTA | 60 °C | 96 bp | [31] |
R-GCCAATCTCGTCTTGTTTTATG |
Item | ADFI, g/b | AEW, g | HD, % | EM, g/b/d | SS, gf/m2 | GABA in Egg, mg/100 g | ||
---|---|---|---|---|---|---|---|---|
Treatment | Stocking density | GPR, g/kg | ||||||
T1 | LSD | 0 | 96.9 | 46.7 | 80.5 | 37.6 | 2657.4 b | 9.5 |
T2 | 74 | 93.3 | 51.7 | 82.2 | 42.5 | 2732.6 b | 10.3 | |
T3 | 148 | 91.5 | 50.3 | 82.0 | 41.2 | 3454.6 a | 12.8 | |
T4 | HSD | 0 | 83.7 | 47.0 | 76.6 | 36.0 | 2062.0 c | 8.4 |
T5 | 74 | 82.6 | 48.0 | 76.0 | 36.5 | 2553.6 b | 8.9 | |
T6 | 148 | 82.0 | 49.5 | 73.6 | 36.4 | 2795.1 b | 12.1 | |
Pooled SEM | 1.32 | 0.67 | 0.86 | 0.73 | 91.74 | 0.37 | ||
Main effect | ||||||||
Stocking density | ||||||||
LSD | 93.9 a | 49.5 | 81.5 a | 40.4 a | 2948.2 a | 10.9 a | ||
HSD | 82.8 b | 48.1 | 75.4 b | 36.2 b | 2470.2 b | 9.8 b | ||
GPR, g/kg | ||||||||
0 | 90.3 | 46.8 | 78.5 | 36.8 | 2360.0 c | 8.9 b | ||
74 | 87.9 | 49.8 | 79.1 | 39.5 | 2643.1 b | 9.6 b | ||
148 | 86.7 | 49.9 | 77.8 | 38.8 | 3124.9 a | 12.4 a | ||
Effect (p-value) | ||||||||
Stocking density | <0.010 | 0.287 | <0.010 | <0.010 | <0.010 | <0.010 | ||
GPR | 0.067 | 0.103 | 0.682 | 0.157 | <0.010 | <0.010 | ||
Stocking density × GPR | 0.447 | 0.417 | 0.324 | 0.272 | 0.036 | 0.668 |
Item | BUN, mg/dL | GLU, mg/dL | CHO, mg/dL | TG, mg/dL | ALB, g/dL | Ca, mg/dL | P, mg/dL | CORT, ng/dL | ||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Stocking density | GPR, g/kg | ||||||||
T1 | LSD | 0 | 2.8 | 179.5 c | 126.8 | 763.3 | 1.9 | 18.0 | 3.3 b | 212.5 b |
T2 | 74 | 2.5 | 185.5 c | 138.0 | 997.0 | 2.0 | 22.4 | 7.1 a | 38.0 cd | |
T3 | 148 | 3.0 | 210.3 b | 153.3 | 1001.0 | 2.0 | 20.9 | 6.2 a | 8.1 d | |
T4 | HSD | 0 | 2.3 | 246.3 a | 111.8 | 682.5 | 2.0 | 16.1 | 6.7 a | 357.5 a |
T5 | 74 | 2.5 | 194.8 bc | 138.5 | 796.3 | 2.0 | 18.5 | 6.8 a | 65.0 c | |
T6 | 148 | 2.5 | 197.0 bc | 116.8 | 858.0 | 2.0 | 18.4 | 6.8 a | 67.5 c | |
Pooled SEM | 0.10 | 5.28 | 9.90 | 62.40 | 0.04 | 1.09 | 0.36 | 26.27 | ||
Main effect | ||||||||||
Stocking density | ||||||||||
LSD | 2.8 | 191.8 b | 139.3 | 920.4 | 2.0 | 20.4 | 5.5 b | 86.2 b | ||
HSD | 2.4 | 212.7 a | 122.3 | 778.9 | 2.0 | 17.6 | 6.8 a | 163.3 a | ||
GPR, g/kg | ||||||||||
0 | 2.5 | 212.9 a | 119.3 | 722.9 | 1.9 | 17.0 | 5.0 b | 285.0 a | ||
74 | 2.5 | 190.1 b | 138.3 | 896.6 | 2.0 | 20.5 | 7.0 a | 51.5 b | ||
148 | 2.8 | 203.6 ab | 135.0 | 929.5 | 2.0 | 19.6 | 6.5 a | 37.8 b | ||
Effect (p-value) | ||||||||||
Stocking density | 0.120 | <0.010 | 0.437 | 0.290 | 0.837 | 0.234 | 0.032 | <0.010 | ||
GPR | 0.526 | 0.020 | 0.744 | 0.396 | 0.661 | 0.449 | 0.020 | <0.010 | ||
Stocking density × GPR | 0.526 | <0.010 | 0.780 | 0.931 | 0.765 | 0.937 | 0.027 | <0.010 |
Item | ACH50, U/mL | Total Ig, mg/mL | LZY, U/mL | SOD, U/mL | ||
---|---|---|---|---|---|---|
Treatment | Stocking density | GPR, g/kg | ||||
T1 | LSD | 0 | 59.4 ab | 3.0 d | 1014.4 | 105.4 b |
T2 | 74 | 56.8 ab | 3.8 b | 1733.3 | 99.0 b | |
T3 | 148 | 37.4 c | 3.4 c | 1257.5 | 110.4 b | |
T4 | HSD | 0 | 36.0 c | 4.1 a | 1056.3 | 105.0 b |
T5 | 74 | 66.3 a | 4.0 a | 1945.4 | 119.0 b | |
T6 | 148 | 53.3 b | 4.0 a | 1266.7 | 153.6 a | |
Pooled SEM | 2.66 | 0.08 | 74.07 | 4.58 | ||
Main effect | ||||||
Stocking density | ||||||
LSD | 51.2 | 3.4 b | 1335.1 b | 104.9 b | ||
HSD | 51.9 | 4.0 a | 1422.8 a | 125.9 a | ||
GPR, g/kg | ||||||
0 | 47.7 b | 3.6 c | 1035.3 c | 105.2 b | ||
74 | 61.6 a | 3.9 a | 1839.4 a | 109.0 b | ||
148 | 45.3 b | 3.7 b | 1262.1 b | 132.0 a | ||
Effect (p-value) | ||||||
Stocking density | 0.816 | <0.010 | 0.048 | <0.010 | ||
GPR | <0.010 | <0.010 | <0.010 | <0.010 | ||
Stocking density × GPR | <0.010 | <0.010 | 0.128 | 0.024 |
Uniprot Accession Number | Protein Name | Unique Peptide Sequences | Number of Unique Peptide | Unique Sequence Coverage (%) | Q-Value | Log2 Abundance of Protein 1 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WK0 | WK7 | WK14 | WK0 | WK7 | WK14 | |||||||||||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | T4 | T5 | T6 | T4 | T5 | T6 | T4 | T5 | T6 | |||||||
1. | A0A1D5P6I3 | Conserved oligomeric Golgi complex subunit 1 | LDADCERVETR | 1 | 1.2 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.72 | 0 | 0 | 13.42 |
2. | Q9PTK0 | Homeodomain protein | AEPGALK | 10 | 26.6 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.93 | 0 | 0 | 14.90 |
3. | Q9DEA6 | Tropomodulin | ACAEALKTNTYVK | 1 | 4.1 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.91 | 0 | 0 | 12.82 |
4. | A0A089FGZ7 | MHC class I antigen | GITGDELIDCGSMWQVTHSEGTQNRRR | 1 | 7.8 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.11 | 0 | 0 | 15.70 |
5. | Q5ZHK3 | ABC transporter domain-containing protein | EAERLAHEDAECEKLMEFYER | 4 | 14.1 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.34 | 0 | 0 | 13.12 |
6. | Q7T269 | Forkhead transcription factor L2 | KPPYSYVALIAMAIR | 4 | 28.2 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.51 | 0 | 0 | 11.75 |
7. | A0A3Q2TVB9 | Protein Mdm4 | MTSSSSAQHPAAENACR | 2 | 7.2 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.94 | 0 | 0 | 15.82 |
8. | Q5ZQU2 | Neuronal PAS domain-containing protein 2 | DSGSSLDPEQHFNALDIGASILSASR | 2 | 6.4 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.24 | 0 | 0 | 17.16 |
9. | B3VMQ8 | CD3 epsilon chain | AAAGSRPRAQKMQRPPPVPNPDYEPIR | 2 | 16.6 | 0.99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.42 | 0 | 0 | 12.12 |
10. | H6UQ73 | Gonadotrophin releasing hormone-II | DQAEKRSQVVER | 1 | 2.2 | 0.99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15.04 | 0 | 0 | 15.39 |
11. | A0A1D5PT78 | Lipopolysaccharide-binding protein | DWSLPYHSGSSR | 3 | 6.6 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15.48 | 0 | 0 | 15.67 |
12. | O42561 | Apoptosis associated protein | FGELTGGVTNAFCR | 4 | 73.2 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.60 | 0 | 0 | 16.29 |
13. | Q3YAE7 | Telomerase reverse transcriptase isoform I | LILRVHGIELINNHLMQLFFTFLT | 2 | 60 | 0.99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.05 | 0 | 0 |
14. | G0W2S9 | Low-density lipoprotein receptor-related protein-2 | HCNISHCAALSCQYRC | 1 | 5 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.37 |
15. | A0A1D5P5R0 | Heat shock protein HSP 90-alpha | DKEEVFRLIPYGIFQSK | 1 | 5.3 | 1.00 | 0 | 12.73 | 0 | 0 | 0 | 0 | 0 | 0 | 9.49 | 0 | 0 | 0 | 0 | 0 | 12.12 | 11.89 | 10.97 | 0 |
16. | O73885 | Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) | ARFEKLNADLFR | 11 | 21.5 | 0.99 | 15.05 | 13.23 | 0 | 14.10 | 15.67 | 0 | 0 | 0 | 0 | 16.76 | 15.70 | 0 | 15.54 | 11.50 | 12.01 | 0 | 0 | 13.62 |
17. | V9IPH9 | 3-hydroxy-3-methylglutaryl-coenzyme A reductase | LGVQGASQDNPGENAR | 2 | 85 | 0.99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.65 | 0 | 12.36 | 15.34 | 15.39 | 0 | 0 | 0 | 12.36 |
18. | P12276 | Fatty acid synthase | AGVAFHSYYMASIAPALLSALK | 9 | 4.8 | 0.99 | 0 | 0 | 0 | 18.282 | 14.97 | 13.93 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.38 | 0 | 0 |
19. | A0A0N7G7I8 | Adipocyte-type fatty acid-binding protein | CDQFVGTWK | 2 | 27.3 | 0.99 | 0 | 0 | 12.41 | 0 | 15.98 | 0 | 11.94 | 0 | 0 | 13.77 | 0 | 0 | 0 | 14.20 | 12.68 | 14.67 | 0 | 12.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Incharoen, T.; Roytrakul, S.; Likittrakulwong, W. Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress. Proteomes 2021, 9, 48. https://doi.org/10.3390/proteomes9040048
Incharoen T, Roytrakul S, Likittrakulwong W. Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress. Proteomes. 2021; 9(4):48. https://doi.org/10.3390/proteomes9040048
Chicago/Turabian StyleIncharoen, Tossaporn, Sittiruk Roytrakul, and Wirot Likittrakulwong. 2021. "Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress" Proteomes 9, no. 4: 48. https://doi.org/10.3390/proteomes9040048
APA StyleIncharoen, T., Roytrakul, S., & Likittrakulwong, W. (2021). Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress. Proteomes, 9(4), 48. https://doi.org/10.3390/proteomes9040048