Convergence Bounds for Limited Processor Sharing Queue with Impatience for Analyzing Non-Stationary File Transfer in Wireless Network
Abstract
:1. Introduction
2. Queuing System
2.1. Overview and Assumptions
2.2. Continuous-Time Markov Chain
2.3. Performance Measures
3. Convergence Analysis
3.1. Definitions of Terms
3.2. Preliminary Considerations
3.3. Bounds on the Rate of Convergence for Large Service Rates
3.4. Bounds on the Rate of Convergence for Large Arrival Rates
3.5. Perturbed CTMC and Bounds
4. File Transfer in Wireless Network
4.1. Multi-Service Network
4.2. Dataset Structure
4.3. Daily Traffic Profile
4.4. Fourier Series Approximation
4.5. Numerical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kochetkov, D.; Almaganbetov, M. Using patent landscapes for technology benchmarking: A case of 5g networks. Adv. Syst. Sci. Appl. 2021, 21, 20–28. [Google Scholar] [CrossRef]
- Kochetkov, D.; Vuković, D.; Sadekov, N.; Levkiv, H. Smart cities and 5G networks: An emerging technological area? J. Geogr. Inst. Jovan Cvijic SASA 2019, 69, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Barakabitze, A.A.; Ahmad, A.; Mijumbi, R.; Hines, A. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Comput. Netw. 2020, 167, 106984. [Google Scholar] [CrossRef]
- Khan, L.U.; Yaqoob, I.; Tran, N.H.; Han, Z.; Hong, C.S. Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges. IEEE Access 2020, 8, 36009–36028. [Google Scholar] [CrossRef]
- Muhizi, S.; Ateya, A.A.; Muthanna, A.; Kirichek, R.; Koucheryavy, A. A novel slice-oriented network model. Commun. Comput. Inf. Sci. 2018, 919, 421–431. [Google Scholar] [CrossRef]
- Ageev, K.A.; Sopin, E.S.; Yarkina, N.V.; Samouylov, K.E.; Shorgin, S.Y. Analysis of the network slicing mechanisms with guaranteed allocated resources for various traffic types. Inform. Primen. 2020, 14, 94–100. [Google Scholar] [CrossRef]
- Yarkina, N.; Gaidamaka, Y.; Correia, L.M.; Samouylov, K. An analytical model for 5G network resource sharing with flexible SLA-oriented slice isolation. Mathematics 2020, 8, 1177. [Google Scholar] [CrossRef]
- Kochetkova, I.; Vlaskina, A.; Burtseva, S.; Savich, V.; Hosek, J. Analyzing the effectiveness of dynamic network slicing procedure in 5g network by queuing and simulation models. Lect. Notes Comput. Sci. 2020, 12525, 71–85. [Google Scholar] [CrossRef]
- Vlaskina, A.; Polyakov, N.; Gudkova, I. Modeling and Performance Analysis of Elastic Traffic with Minimum Rate Guarantee Transmission under Network Slicing. Lect. Notes Comput. Sci. 2019, 11660, 621–634. [Google Scholar] [CrossRef]
- Vlaskina, A.S.; Polyakov, N.A.; Gudkova, I.A.; Gaidamaka, Y.V. Performance analysis of elastic traffic with minimum bit rate guarantee transmission in wireless network under network slicing, Izvestiya of Saratov University. Informatics 2020, 20, 378–387. [Google Scholar] [CrossRef]
- Gudkova, I.; Korotysheva, A.; Zeifman, A.; Shilova, G.; Korolev, V.; Shorgin, S.; Razumchik, R. Modeling and analyzing licensed shared access operation for 5G network as an inhomogeneous queue with catastrophes. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Lisbon, Portugal, 18–20 October 2016; pp. 282–287. [Google Scholar] [CrossRef]
- Markova, E.; Satin, Y.; Kochetkova, I.; Zeifman, A.; Sinitcina, A. Queuing system with unreliable servers and inhomogeneous intensities for analyzing the impact of non-stationarity toperformance measures of wireless network under licensed shared access. Mathematics 2020, 8, 800. [Google Scholar] [CrossRef]
- Zeifman, A.; Korolev, V.; Satin, Y. Two approaches to the construction of perturbation bounds for continuous-time Markov chains. Mathematics 2020, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Zeifman, A.; Satin, Y.; Kryukova, A.; Razumchik, R.; Kiseleva, K.; Shilova, G. On the Three Methods for Bounding the Rate of Convergence for some Continuous-time Markov Chains. arXiv 2020, arXiv:1911.04086. [Google Scholar]
- Arns, M.; Buchholz, P.; Panchenko, A. On the numerical analysis of inhomogeneous continuous-time Markov chains. Informs J. Comput. 2010, 22, 416–432. [Google Scholar] [CrossRef]
- Andreychenko, A.; Sandmann, W.; Wolf, V. Approximate adaptive uniformization of continuous-time Markov chains. Appl. Math. Model. 2018, 61, 561–576. [Google Scholar] [CrossRef]
- Katoen, J.-P.; Zapreev, I.S. Safe on-the-fly steady-state detection for time-bounded reachability. In Proceedings of the 3rd International Conference on the Quantitative Evaluation of Systems, California, CA, USA, 11–14 September 2016. [Google Scholar]
Parameter | Description |
---|---|
Intensity of the flow of requests for the transfer of elastic data | |
b | Minimum guaranteed elastic data block transfer rate |
Average value of data block length | |
r | The queue of applications for the transfer of a block of elastic data |
The rate of loss of impatient claims | |
C | Network bandwidth (service speed) |
N. | Service Name | Description |
---|---|---|
1 | DB Transactions | Transaction in a database—for example, transfer of funds from a credit card through a mobile application. |
2 | File Systems | Work with remote file systems. This is how ATMs are arranged, for example. There is a machine with an operating system, and ATMs are connected to it and all information is stored there. |
3 | File Transfer | File transfer via FTP. |
4 | Games | Online game traffic. |
5 | Instant Messaging Applications | Instant messaging systems - messengers WhatsApp, Viber, Telegram, etc. |
6 | Legacy Protocols | Deprecated protocols. |
7 | Email. | |
8 | Music Streaming | Streaming services for listening to music. |
9 | Network Operation | Network services. |
10 | Others | Others |
11 | P2P Applications | Applications where data transmission is based on the principles of peer-to-peer networks. The simplest example is Bittorrent applications. |
12 | Security | Online video cameras, data from alarm sensors, etc. |
13 | Streaming Applications | Streaming services for watching movies and video-chats. |
14 | Terminals | Mobile terminals for credit card payments. |
15 | VoIP | IP-telephony. For example, calls via WhatsApp or Skype. |
16 | Web Applications | Web applications—client-server applications in which the client interacts with the server using a browser (Microsoft Office Online, Google Documents). |
START_HOUR | MASKED_MSISDN | APP_CLASS | UPLOAD | DOWNLOAD |
---|---|---|---|---|
12.02.2018 10:00 | 9BFA3001DE8C58C2453B6 9CE2E4A3704 | Web Applications | 111,339 | 78,208 |
12.02.2018 8:00 | 0C2C88351A593CD02727A 6207EB85E9E | Instant Messaging Applications | 11,946 | 6741 |
12.02.2018 10:00 | B9F45E1542162096408D9 4DD94499B89 | Web Applications | 67,143,832 | 4,230,675 |
12.02.2018 10:00 | 3CF6B81BC186E4C188D69 E1FE8919BB6 | Web Applications | 18,844 | 9769 |
11.02.2018 18:00 | 7EE1FCE60945D869A14EF 30E896E9131 | Streaming Applications | 17,219,335 | 403,361 |
11.02.2018 17:00 | A746CCDCAC507B95C83 A3475C63C6BFD | Web Applications | 235,455 | 131,712 |
11.02.2018 16:00 | EA9D75DEB103F439A8C2 8300C2CC1757 | Streaming Applications | 136,767,000 | 4,078,817 |
12.02.2018 9:00 | 610FF30F1C9EC8939B4F BD259255BD63 | Streaming Applications | 3,330,234 | 112,395 |
12.02.2018 10:00 | 6DFD256C104B394A884E0 6A6EF7BE156 | File Transfer | 26,804,578 | 2,111,659 |
11.02.2018 17:00 | 6C9A6A5D444E7416C0C43 10E617EB611 | Web Applications | 587,786 | 87,897 |
… | … | … | … | … |
Times of Day, t | ||
---|---|---|
0 | 0.484847494 | 0.040711044 |
1 | 0.341865943 | 0.031079608 |
2 | 0.190823262 | 0.018468431 |
3 | 0.132143012 | 0.013982313 |
4 | 0.118697844 | 0.011683847 |
5 | 0.105803565 | 0.009923712 |
6 | 0.116474526 | 0.012585431 |
7 | 0.242942093 | 0.019329354 |
8 | 0.548677837 | 0.045828017 |
9 | 0.882484275 | 0.062668489 |
10 | 0.916328538 | 0.091028611 |
11 | 0.920243822 | 0.087240118 |
12 | 0.814816002 | 0.08172834 |
13 | 0.710077612 | 0.0853086 |
14 | 0.820103586 | 0.095698016 |
15 | 0.879327048 | 0.090266848 |
16 | 0.951204391 | 0.098226292 |
17 | 0.945908433 | 0.09180442 |
18 | 0.990004516 | 0.082148071 |
19 | 0.991890388 | 0.074312104 |
20 | 0.907643325 | 0.067218977 |
21 | 0.957584488 | 0.066221158 |
22 | 0.926637206 | 0.112652817 |
23 | 0.755175635 | 0.067874847 |
Condition | w | |||||||
---|---|---|---|---|---|---|---|---|
one | 0.2519 | 0.6472 | −0.168 | −0.3675 | – | – | – | – |
two | 0.2617 | 0.6521 | −0.07656 | −0.3992 | 0.1479 | −0.1348 | – | – |
three | 0.2603 | 0.6521 | −0.08888 | −0.3963 | 0.1384 | −0.1411 | −0.01446 | 0.05875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochetkova, I.; Satin, Y.; Kovalev, I.; Makeeva, E.; Chursin, A.; Zeifman, A. Convergence Bounds for Limited Processor Sharing Queue with Impatience for Analyzing Non-Stationary File Transfer in Wireless Network. Mathematics 2022, 10, 30. https://doi.org/10.3390/math10010030
Kochetkova I, Satin Y, Kovalev I, Makeeva E, Chursin A, Zeifman A. Convergence Bounds for Limited Processor Sharing Queue with Impatience for Analyzing Non-Stationary File Transfer in Wireless Network. Mathematics. 2022; 10(1):30. https://doi.org/10.3390/math10010030
Chicago/Turabian StyleKochetkova, Irina, Yacov Satin, Ivan Kovalev, Elena Makeeva, Alexander Chursin, and Alexander Zeifman. 2022. "Convergence Bounds for Limited Processor Sharing Queue with Impatience for Analyzing Non-Stationary File Transfer in Wireless Network" Mathematics 10, no. 1: 30. https://doi.org/10.3390/math10010030
APA StyleKochetkova, I., Satin, Y., Kovalev, I., Makeeva, E., Chursin, A., & Zeifman, A. (2022). Convergence Bounds for Limited Processor Sharing Queue with Impatience for Analyzing Non-Stationary File Transfer in Wireless Network. Mathematics, 10(1), 30. https://doi.org/10.3390/math10010030