Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface
Abstract
:1. Introduction
2. Mathematical Model Description
3. Stability Analysis
4. Results and Discussion
5. Conclusions
- Increasing nanoparticle volume fraction tends to increase the heat transfer at the surface, while decreasing the temperature gradient in both nanofluids;
- The heat transfer rate at the surface is increased by suction parameter, whereas it decreases by rotating flow parameter in both nanofluids;
- In both nanofluids, increasing the nanoparticle volume fraction reduces the friction on the surface in the and directions, whereas rotational flow increases it;
- The friction in direction is higher than in direction in both nanofluids.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceeding of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Das, S.K.S.; Choi, U.S.; Yu, W.; Pradeep, T. Nanofluids: Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–10. [Google Scholar]
- Waqas, H.; Farooq, U.; Alghamdi, M.; Muhammad, T. Significance of surface-catalyzed reactions in SiO2-H2O nanofluid flow through porous media. Case Stud. Therm. Eng. 2021, 27, 101228. [Google Scholar] [CrossRef]
- Subhashini, S.V.; Sumathi, R. Dual solutions of a mixed convection flow of nanofluids over a moving vertical plate. Int. J. Heat Mass Transf. 2014, 71, 117–124. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Pop, I. Flow and heat transfer characteristics on a moving plate in a nanofluid. Int. J. Heat Mass Transf. 2012, 55, 642–648. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Ghasempour, R. A review of thermal conductivity of various nanofluids. J. Mol. Liq. 2018, 265, 181–188. [Google Scholar] [CrossRef]
- Othman, N.A.; Yacob, N.A.; Bachok, N.; Ishak, A.; Pop, I. Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid. Appl. Therm. Eng. 2017, 115, 1412–1417. [Google Scholar] [CrossRef]
- Jamaludin, A.; Nazar, R.; Pop, I. Mixed convection stagnation point flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of thermal radiation and heat source/sink. Energies 2019, 12, 788. [Google Scholar] [CrossRef] [Green Version]
- Komeilibirjandi, A.; Raffiee, A.H.; Maleki, A.; Nazari, M.A.; Shadloo, M.S. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J. Therm. Anal. Calorim. 2019, 139, 2679–2689. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Patel, P.R.; Sharma, S.; Tiwari, S.K. Governing parameters for pull-out of carbon nanotubes from aluminium composites: A review. Mater. Today Proc. 2021, 44, 4827–4832. [Google Scholar] [CrossRef]
- Taherian, H.; Alvarado, J.L.; Languri, E.M. Enhanced thermophysical properties of multi-walled carbon nanotubes based nanofluids. Part 1: Critical review. Renew. Sustain. Energy Rev. 2018, 82, 4326–4336. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, Z.H.; Rahi, M. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl. Nanosci. 2014, 4, 633–641. [Google Scholar]
- Akbar, N.S.; Khan, Z.H.; Nadeem, S. The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J. Mol. Liq. 2014, 196, 21–25. [Google Scholar] [CrossRef]
- Hayat, T.; Hussain, Z.; Alsaedi, A.; Asghar, S. Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Adv. Powder Technol. 2016, 27, 1677–1688. [Google Scholar] [CrossRef]
- Hussain, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B. Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: A numerical study. Comput. Methods Appl. Mech. Eng. 2018, 329, 40–54. [Google Scholar] [CrossRef]
- Sreedevi, P.; Reddy, P.S.; Chamkha, A.J. Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition. Int. J. Mech. Sci. 2018, 135, 646–655. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Role of multiple solutions in flow of nanofluids with carbon nanotubes over a vertical permeable moving plate. Alex. Eng. J. 2020, 59, 763–773. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sreedevi, P. Effect of thermal radiation and volume fraction on carbon nanotubes based nanofluid flow inside a square chamber. Alex. Eng. J. 2020, 60, 1807–1817. [Google Scholar] [CrossRef]
- Ramzan, M.; Shah, S.R.Z.; Kumam, P.; Thounthong, P. Unsteady MHD carbon nanotubes suspended nanofluid flow with thermal stratification and nonlinear thermal radiation. Alex. Eng. J. 2020, 59, 1557–1566. [Google Scholar] [CrossRef]
- Ul Haq, R.; Soomro, F.A.; Öztop, H.F.; Mekkaoui, T. Thermal management of water-based carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle. Int. J. Heat Mass Transf. 2019, 131, 724–736. [Google Scholar] [CrossRef]
- Reddy, P.S.; Jyothi, K.; Reddy, M.S. Flow and heat transfer analysis of carbon nanotubes based Maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 576. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Zou, C. The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: A surface modification approach. Powder Technol. 2020, 361, 957–967. [Google Scholar] [CrossRef]
- Peter, R.N.C. Rotating Flow; Elsevier: Woburn, UK, 2011; pp. 1–2. [Google Scholar]
- Singh, M.P.; Sathi, H.L. An Exact Solution in Rotating Flow. J. Math. Mech. 1968, 18, 193–200. [Google Scholar] [CrossRef]
- Wang, C.Y. Stretching a surface in a rotating fluid. Z. Angew. Math. Phys. ZAMP 1988, 39, 177–185. [Google Scholar] [CrossRef]
- Nazar, R.; Amin, N.; Pop, I. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech. Res. Comm. 2004, 31, 121–128. [Google Scholar] [CrossRef]
- Ali, F.M.; Nazar, R.; Arifin, N.M.; Pop, I. Unsteady shrinking sheet with mass transfer in a rotating fluid. Int. J. Numer. Meth. Fluids 2011, 66, 1465–1474. [Google Scholar] [CrossRef]
- Sreelakshmi, K.; Nagendramma, V.; Sarojamma. Unsteady boundary layer flow induced by a stretching sheet in a rotating fluid with thermal radiation. Procedia Eng. 2015, 127, 678–685. [Google Scholar]
- Rosali, H.; Ishak, A.; Nazar, R.; Pop, I. Rotating flow over an exponentially shrinking sheet with suction. J. Mol. Liq. 2015, 211, 965–969. [Google Scholar] [CrossRef]
- Rana, P.; Bhargava, R.; Bég, O.A. Finite element simulation of unsteady magneto-hydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2013, 227, 77–99. [Google Scholar] [CrossRef]
- Bakar, N.A.A.; Bachok, N.; Arifin, N.M. Rotating flow over a shrinking sheet in nanofluid using Buongiorno model and thermophysical properties of nanoliquids. J. Nanofluids 2017, 6, 1215–1226. [Google Scholar] [CrossRef]
- Krishna, M.V. Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int. Commun. Heat Mass Transf. 2021, 126, 105399. [Google Scholar] [CrossRef]
- Nadeem, S.; Rehman, A.U.; Mehmood, R. Boundary Layer Flow of Rotating Two Phase Nanofluid Over a Stretching Surface. Heat Transf. Asian Res. 2016, 45, 285–298. [Google Scholar] [CrossRef]
- Dzulkifli, N.F.; Bachok, N.; Yacob, N.A.; Arifin, N.M.; Rosali, H. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a stretching sheet. Malays. J. Math. Sci. 2017, 11, 21–33. [Google Scholar]
- Salleh, S.N.A.; Bachok, N.; Arifin, N.M. Stability analysis of a rotating flow toward a shrinking permeable surface in nanofluid. Malays. J. Math. Sci. 2019, 38, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [Google Scholar] [CrossRef]
- Harris, S.D.; Ingham, D.B.; Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Med. 2009, 77, 267–285. [Google Scholar] [CrossRef]
- Mustafa, I.; Abbas, Z.; Arif, A.; Javed, T.; Ghaffari, A. Stability analysis for multiple solutions of boundary layer flow towards a shrinking sheet: Analytical solution by using least square method. Phys. A Stat. Mech. Appl. 2020, 540, 123028. [Google Scholar] [CrossRef]
- Tshivhi, K.S.; Makinde, O.D. Magneto-nanofluid coolants past heated shrinking/stretching surfaces: Dual solutions and stability analysis. Results Eng. 2021, 10, 100229. [Google Scholar] [CrossRef]
- Hafeez, M.U.; Hayat, T.; Alsaedi, A.; Khan, M.I. Numerical simulation for electrical conducting rotating flow of Au (Gold)-Zn (Zinc)/EG (Ethylene glycol) hybrid nanofluid. Int. Commun. Heat Mass Transf. 2021, 124, 105234. [Google Scholar] [CrossRef]
- Mehdipour, M.; Keshavarz, P.; Rahimpour, M.R. Rotating liquid sheet contactor: A new gas-liquid contactor system in CO2 absorption by nanofluids. Chem. Eng. Process. Process Intensif. 2021, 165, 108447. [Google Scholar] [CrossRef]
- Acharya, N.; Das, K.; Kundu, P.K. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: A comparative study. Appl. Nanosci. 2018, 8, 369–378. [Google Scholar] [CrossRef]
- Shah, Z.; Bonyah, E.; Islam, S.; Gul, T. Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet. AIP Adv. 2019, 9, 015115. [Google Scholar] [CrossRef] [Green Version]
- Noranuar, W.N.N.; Mohamad, A.Q.; Shafie, S.; Khan, I.; Jiann, L.Y.; Ilias, M.R. Non-coaxial rotation flow of MHD Casson nanofluid carbon nanotubes past a moving disk with porosity effect. Ain Shams Eng. J. 2021, 12, 4099–4110. [Google Scholar] [CrossRef]
- Hussain, A.; Arshad, M.; Hassan, A.; Rehman, A.; Ahmad, H.; Baili, J.; Gia, T.N. Heat transport investigation of engine oil based rotating nanomaterial liquid flow in the existence of partial slip effect. Case Stud. Therm. Eng. 2021, 28, 101500. [Google Scholar] [CrossRef]
- Manjunatha, P.T.; Punith Gowda, R.J.; Kumar, R.N.; Suresha, S.; Sarwe, D.U. Numerical simulation of carbon nanotubes nanofluid flow over vertically moving disk with rotation. Partial Differ. Equ. Appl. Math. 2021, 4, 100124. [Google Scholar] [CrossRef]
- Anusha, T.; Mahabaleshwar, U.S.; Sheikhnejad, Y. An MHD of Nanofluid Flow Over a Porous Stretching/Shrinking Plate with Mass Transpiration and Brinkman Ratio. Transp. Porous Med. 2021, in press. [Google Scholar] [CrossRef]
- Xue, Q.Z. Model for thermal conductivity of carbon nanotube-based composites. Phys. Rev. B Condens. Matter. 2005, 368, 302–307. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 2006, 44, 730–737. [Google Scholar] [CrossRef]
- Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with Matlab; Cambridge University Press: New York, NY, USA, 2006; pp. 133–168. [Google Scholar]
- Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A. Rotating flow of magnetite-water nanofluid over a stretching surface inspired by nonlinear thermal radiation. PLoS ONE 2016, 11, e0149304. [Google Scholar] [CrossRef] [Green Version]
- Mabood, F.; Ibrahim, S.M.; Kumar, P.V.; Khan, W.A. Viscous dissipation effects on unsteady mixed convective stagnation point flow using Tiwari-Das nanofluid model. Results Phys. 2017, 7, 280–287. [Google Scholar] [CrossRef]
- Dinarvand, S.; Hosseini, R.; Pop, I. Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technol. 2017, 311, 147–156. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Xu, B.; Yuan, M. Nanofluid research and applications: A review. Int. Commun. Heat Mass Transf. 2021, 127, 105543. [Google Scholar] [CrossRef]
- Fabre, E.; Murshed, S.M.S. A comprehensive review of thermophysical properties and prospects of ionanocolloids in thermal energy applications. Renew. Sustain. Energy Rev. 2021, 151, 111593. [Google Scholar] [CrossRef]
Physical Properties | Base Fluids | Nanoparticles | ||
---|---|---|---|---|
Water | Kerosene | SWCNT | MWCNT | |
997 | 783 | 2600 | 1600 | |
4179 | 2090 | 425 | 796 | |
0.613 | 0.145 | 6600 | 3000 |
Wang [26] | Mustafa et al. [53] | Present Study | ||||
---|---|---|---|---|---|---|
0 | −1 | 0 | −1 | 0 | −1 | 0 |
0.5 | −1.1384 | −0.5128 | −1.13838 | −0.51276 | −1.138381 | −0.512760 |
1.0 | −1.3250 | −0.8371 | −1.32503 | −0.83709 | −1.325029 | −0.837098 |
2.0 | −1.6523 | −1.2873 | −1.65235 | −1.28726 | −1.652352 | −1.287259 |
Water | Kerosene | |||||
---|---|---|---|---|---|---|
SWCNT | MWCNT | SWCNT | MWCNT | |||
0.01 | 0 | 0 | −1.02075 | −1.01570 | −1.02432 | −1.01791 |
2.1 | 0.1 | −2.54543 | −2.52381 | −2.56079 | −2.53326 | |
0.2 | −2.55136 | −2.52976 | −2.56670 | −2.53921 | ||
0.3 | −2.56096 | −2.53939 | −2.57628 | −2.54882 | ||
2.2 | 0.1 | −2.63319 | −2.61061 | −2.64922 | −2.62049 | |
0.2 | −2.63865 | −2.61610 | −2.65467 | −2.62596 | ||
0.3 | −2.64751 | −2.62499 | −2.66351 | −2.63484 | ||
0.02 | 2.1 | 0.1 | −2.58922 | −2.54595 | −2.61994 | −2.56488 |
0.2 | −2.59532 | −2.55210 | −2.62602 | −2.57101 | ||
0.3 | −2.60520 | −2.56204 | −2.63585 | −2.58092 | ||
2.2 | 0.1 | −2.67828 | −2.63311 | −2.71036 | −2.65286 | |
0.2 | −2.68390 | −2.63877 | −2.71595 | −2.65851 | ||
0.3 | −2.69302 | −2.64796 | −2.72502 | −2.66767 | ||
0.03 | 2.1 | 0.1 | −2.63333 | −2.56839 | −2.67943 | −2.59680 |
0.2 | −2.63962 | −2.57475 | −2.68567 | −2.60312 | ||
0.3 | −2.64979 | −2.58501 | −2.69577 | −2.61335 | ||
2.2 | 0.1 | −2.72368 | −2.65589 | −2.77181 | −2.68555 | |
0.2 | −2.72948 | −2.66175 | −2.77756 | −2.69138 | ||
0.3 | −2.73887 | −2.67125 | −2.78688 | −2.70083 |
Water | Kerosene | |||||
---|---|---|---|---|---|---|
SWCNT | MWCNT | SWCNT | MWCNT | |||
0.01 | 0 | 0 | −1.02075 | 0 | 0 | 0 |
2.1 | 0.1 | −0.07556 | −0.07541 | −0.07566 | −0.07547 | |
0.2 | −0.15042 | −0.15011 | −0.15063 | −0.15025 | ||
0.3 | −0.22397 | −0.22349 | −0.22430 | −0.22370 | ||
2.2 | 0.1 | −0.07342 | −0.07328 | −0.07352 | −0.07334 | |
0.2 | −0.14624 | −0.14596 | −0.14644 | −0.14609 | ||
0.3 | −0.21792 | −0.21749 | −0.21822 | −0.21768 | ||
0.02 | 2.1 | 0.1 | −0.07735 | −0.07705 | −0.07756 | −0.07718 |
0.2 | −0.15398 | −0.15336 | −0.15441 | −0.15363 | ||
0.3 | −0.22925 | −0.22829 | −0.22992 | −0.22871 | ||
2.2 | 0.1 | −0.07517 | −0.07489 | −0.07537 | −0.07502 | |
0.2 | −0.14972 | −0.14915 | −0.15012 | −0.14940 | ||
0.3 | −0.22309 | −0.22220 | −0.22370 | −0.22259 | ||
0.03 | 2.1 | 0.1 | −0.07920 | −0.07874 | −0.07952 | −0.07894 |
0.2 | −0.15765 | −0.15670 | −0.15830 | −0.15712 | ||
0.3 | −0.23470 | −0.23322 | −0.23571 | −0.23387 | ||
2.2 | 0.1 | −0.07698 | −0.07655 | −0.07727 | −0.07674 | |
0.2 | −0.15331 | −0.15244 | −0.15391 | −0.15282 | ||
0.3 | −0.22841 | −0.22706 | −0.22934 | −0.22766 |
Water | Kerosene | |||||
---|---|---|---|---|---|---|
SWCNT | MWCNT | SWCNT | MWCNT | |||
0.01 | 0 | 0 | 1.891986 | 1.882514 | 3.745629 | 3.726123 |
2.1 | 0.1 | 13.36019 | 13.36137 | 44.48189 | 44.52129 | |
0.2 | 13.35999 | 13.36118 | 44.48181 | 44.52122 | ||
0.3 | 13.35967 | 13.36086 | 44.48168 | 44.52109 | ||
2.2 | 0.1 | 13.95826 | 13.95984 | 46.55247 | 46.59429 | |
0.2 | 13.95809 | 13.95968 | 46.55240 | 46.59422 | ||
0.3 | 13.95781 | 13.95941 | 46.55230 | 46.59412 | ||
0.02 | 2.1 | 0.1 | 13.31519 | 13.31824 | 44.42055 | 44.49977 |
0.2 | 13.31494 | 13.31799 | 44.42045 | 44.49967 | ||
0.3 | 13.31453 | 13.31759 | 44.42027 | 44.49950 | ||
2.2 | 0.1 | 13.90693 | 13.91074 | 46.48099 | 46.56501 | |
0.2 | 13.90671 | 13.91053 | 46.48090 | 46.56492 | ||
0.3 | 13.90636 | 13.91019 | 46.48076 | 46.56478 | ||
0.03 | 2.1 | 0.1 | 13.26841 | 13.27395 | 44.35873 | 44.47819 |
0.2 | 13.26810 | 13.27364 | 44.35859 | 44.47806 | ||
0.3 | 13.26758 | 13.27315 | 44.35837 | 44.47784 | ||
2.2 | 0.1 | 13.85391 | 13.86056 | 46.40909 | 46.53571 | |
0.2 | 13.85364 | 13.86030 | 46.40898 | 46.53560 | ||
0.3 | 13.85320 | 13.85988 | 46.40879 | 46.53542 |
First Solutions | Second Solutions | ||
---|---|---|---|
0.0 | −1.1826 | 0.0891 | −0.0861 |
−1.1820 | 0.0946 | −0.0912 | |
−1.1800 | 0.1110 | −0.1063 | |
0.01 | −1.1849 | 0.0732 | −0.0712 |
−1.1840 | 0.0829 | −0.0803 | |
−1.1800 | 0.1168 | −0.1117 | |
0.02 | −1.1899 | 0.0268 | −0.0265 |
−1.1890 | 0.0473 | −0.0464 | |
−1.1800 | 0.1333 | −0.1267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yacob, N.A.; Dzulkifli, N.F.; Salleh, S.N.A.; Ishak, A.; Pop, I. Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface. Mathematics 2022, 10, 7. https://doi.org/10.3390/math10010007
Yacob NA, Dzulkifli NF, Salleh SNA, Ishak A, Pop I. Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface. Mathematics. 2022; 10(1):7. https://doi.org/10.3390/math10010007
Chicago/Turabian StyleYacob, Nor Azizah, Nor Fadhilah Dzulkifli, Siti Nur Alwani Salleh, Anuar Ishak, and Ioan Pop. 2022. "Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface" Mathematics 10, no. 1: 7. https://doi.org/10.3390/math10010007
APA StyleYacob, N. A., Dzulkifli, N. F., Salleh, S. N. A., Ishak, A., & Pop, I. (2022). Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface. Mathematics, 10(1), 7. https://doi.org/10.3390/math10010007