Adaptive Rejection of a Sinusoidal Disturbance with Unknown Frequency in a Flexible Rotor with Lubricated Journal Bearings
Abstract
:1. Introduction
1.1. Problem Statement: Flexible Rotor with Lubricated Journal Bearings
1.2. Literary Review: Active Noise Rejection Control
1.3. Proposed Control Strategy: ANC with Frequency Estimation
- generalization of ANC-TC control devised in [24] to the unknown/uncertain operating frequency;
- application of I&I robust technique for frequency estimation (FE), considering as input an analytical reconstruction of the closed-loop output noise signals;
- plug-in integration of the FE module with the ANC-TC control;
- formulation of a mathematical proposition for the novel ANC-FE control;
- structural proof of the proposition under assumptions on closed-loop output signals.
2. Materials and Methods
2.1. Adaptive Noise Cancellation Tracking Control (ANC-TC)
2.2. Adaptive Noise Cancellation with Frequency Estimation (ANC-FE) Control
2.2.1. ANC-FE Control Design with Measured Output Noise ()
2.2.2. ANC-FE Control Design with Analytical Output Noise ()
3. Closed-Loop ANC-FE Control Convergence Proof
3.1. Proposition Statement
- i.
- the equilibrium pointis asymptotically stable;
- ii.
- . is an asymptotic estimate of the analytical output noise derivativeandis an asymptotic estimate of the rotor operating frequency; □□
- iii.
3.2. Proof
4. Results
4.1. Numerical Simulation Setup and Method Description
4.2. Figure Descriptions
5. Discussions and Conclusions
5.1. Discussions
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Friswell, M.I.; Penny, J.E.T.; Garvey, S.D.; Lees, A.W. Dynamics of Rotating Machines; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780511780509. [Google Scholar]
- Lund, J.W. Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings. J. Tribol. ASME US 1987, 109, 37–41. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Schmid, S.R. Fundamental of Fluid Film Lubrication, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0824753712. [Google Scholar]
- Salazar, J.G.; Santos, I.F. Active tilting-pad journal bearings supporting flexible rotors: Part I—The hybrid lubrication. Tribol. Int. 2017, 107, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, R.; Sugita, N.; Mao, J.; Shinshi, T. Identification of bearing dynamic parameters and unbalanced forces in a flexible rotor system supported by oil-film bearings and active magnetic devices. Actuators 2021, 10, 216. [Google Scholar] [CrossRef]
- Muszynska, A. Stability of whirl and whip in rotor/bearing systems. J. Sound Vib. 1988, 127, 49–64. [Google Scholar] [CrossRef]
- D’Agostino, V.; Guida, D.; Ruggiero, A.; Senatore, A. An analytical study of the fluid film force in finite-length journal bearings. Part I. Lubr. Sci. 2001, 13, 329–340. [Google Scholar] [CrossRef]
- Poritsky, H. Contribution to the theory of oil whip. Trans. ASME 1953, 75, 1153–1161. [Google Scholar]
- Tripathy, D.; Bhattacharyya, K. Analysis of a Hydrodynamic Journal Bearing of Circular Cross Section Lubricated by a Magnetomicropolar Fluid. In Proceedings of the Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 1495–1502. [Google Scholar]
- Das, S.; Guha, S.K. Non-linear stability analysis of micropolar fluid lubricated journal bearings with turbulent effect. Ind. Lubr. Tribol. 2019, 71, 31–39. [Google Scholar] [CrossRef]
- Bhattacharjee, B.; Chakraborti, P.; Choudhuri, K. Evaluation of the performance characteristics of double-layered porous micropolar fluid lubricated journal bearing. Tribol. Int. 2019, 138, 415–423. [Google Scholar] [CrossRef]
- Harika, E.; Bouyer, J.; Fillon, M.; Hélène, M. Measurements of lubrication characteristics of a tilting pad thrust bearing disturbed by a water-contaminated lubricant. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 2013, 227, 16–25. [Google Scholar] [CrossRef]
- Vania, A.; Pennacchi, P.; Chatterton, S. Dynamic Effects Caused by the Non-Linear Behavior of Oil-Film Journal Bearings in Rotating Machines. In Proceedings of the Volume 7: Structures and Dynamics, Parts A and B; ASME: New York, NY, USA, 2012; p. 657. [Google Scholar]
- Das, S.; Guha, S.K.; Chattopadhyay, A.K. Linear stability analysis of hydrodynamic journal bearings under micropolar lubrication. Tribol. Int. 2005, 38, 500–507. [Google Scholar] [CrossRef]
- Sukumaran Nair, V.P.; Prabhakaran Nair, K. Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants. Finite Elem. Anal. Des. 2004, 41, 75–89. [Google Scholar] [CrossRef]
- Prabhakaran Nair, K.; Sukumaran Nair, V.P.; Jayadas, N.H. Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol. Int. 2007, 40, 297–305. [Google Scholar] [CrossRef]
- Marko, L.; Saxinger, M.; Steinboeck, A.; Kugi, A. Cancellation of unknown multi-harmonic disturbances in multivariable flexible mechanical structures. Automatica 2022, 137, 110123. [Google Scholar] [CrossRef]
- Liu, L.; Shao, N.; Deng, R.; Ding, S. Immersion and invariance adaptive decentralized control for the speed and tension system of the reversible cold strip rolling mill. Int. J. Adapt. Control Signal Process. 2022, 36, 785–801. [Google Scholar] [CrossRef]
- Burrows, C.R.; Sahinkaya, M.N. Vibration control of multi-mode rotor-bearing systems. Proc. R. Soc. Lond. A 1983, 386, 77–94. [Google Scholar]
- Ruggiero, A.; D’Amato, R.; Magliano, E.; Kozak, D. Dynamical simulations of a flexible rotor in cylindrical uncavitated and cavitated lubricated journal bearings. Lubricants 2018, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Shi, J. Active balancing and vibration control of rotating machinery: A survey. Shock Vib. Dig. 2001, 33, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Stanway, R.; Burrows, C.R. Active vibration control of a flexible rotor on flexibly-mounted journal bearings. J. Dyn. Syst. Meas. Control 1981, 103, 383–388. [Google Scholar] [CrossRef]
- Zheng, S.; Li, H.; Peng, C.; Wang, Y. Experimental Investigations of Resonance Vibration Control for Noncollocated AMB Flexible Rotor Systems. IEEE Trans. Ind. Electron. 2017, 64, 2226–2235. [Google Scholar] [CrossRef]
- D’Amato, R.; Amato, G.; Wang, C.; Ruggiero, A. A Novel Tracking Control Strategy with Adaptive Noise Cancellation for Flexible Rotor Trajectories in Lubricated Bearings. IEEE ASME Trans. Mechatron. 2022, 27, 753–765. [Google Scholar] [CrossRef]
- Lei, S.; Palazzolo, A. Control of flexible rotor systems with active magnetic bearings. J. Sound Vib. 2008, 314, 19–38. [Google Scholar] [CrossRef]
- Marko, L.; Saxinger, M.; Steinboeck, A.; Kemmetmüller, W.; Kugi, A. Frequency-adaptive cancellation of harmonic disturbances at non-measurable positions of steel strips. Mechatronics 2020, 71, 102423. [Google Scholar] [CrossRef]
- Marino, R.; Tomei, P. Adaptive disturbance rejection for unknown stable linear systems. Trans. Inst. Meas. Control 2016, 38, 640–647. [Google Scholar] [CrossRef]
- Kumar, P.; Tiwari, R. Dynamic analysis and identification of unbalance and misalignment in a rigid rotor with two offset discs levitated by active magnetic bearings: A novel trial misalignment approach. Propuls. Power Res. 2020, 10, 58–82. [Google Scholar] [CrossRef]
- D’Amato, R.; Amato, G.; Ruggiero, A. Adaptive Noise Cancellation-Based Tracking Control for a Flexible Rotor in Lubricated Journal Bearings. In Proceedings of the 2019 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Vance, J.M. Rotordynamics of Turbomachinery; Wiley: Hoboken, NJ, USA, 1988; ISBN 0471802581. [Google Scholar]
- Avramov, K.V.; Borysiuk, O.V. Nonlinear dynamics of one disk asymmetrical rotor supported by two journal bearings. Nonlinear Dyn. 2012, 67, 1201–1219. [Google Scholar] [CrossRef]
- Carnevale, D.; Astolfi, A. A minimal dimension observer for global frequency estimation. Proc. Am. Control Conf. 2008, 2, 5236–5241. [Google Scholar] [CrossRef]
- Carnevale, D. Robust hybrid estimation and rejection of multi-frequency signals. Int. J. Adapt. Control Signal Process. 2016, 30, 1649–1673. [Google Scholar] [CrossRef]
- Hoad, K.; Robinson, S.; Davies, R. Automating warm-up length estimation. J. Oper. Res. Soc. 2010, 61, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- Ballnus, B.; Schaper, S.; Theis, F.J.; Hasenauer, J. Bayesian parameter estimation for biochemical reaction networks using region-based adaptive parallel tempering. Bioinformatics 2018, 34, i494–i501. [Google Scholar] [CrossRef] [Green Version]
- Ypma, T.J. Local Convergence of Inexact Newton Methods. SIAM J. Numer. Anal. 2006, 21, 583–590. [Google Scholar] [CrossRef]
- Sastry, S.; Bodson, M. Adaptive Control—Stability, Convergence, and Robustness; Prentice-Hall: Hoboken, NJ, USA, 1989; p. 201. [Google Scholar]
- Marino, R.; Tomei, P. Output Regulation for Unknown Stable Linear Systems. IEEE Trans. Autom. Control 2015, 60, 2213–2218. [Google Scholar] [CrossRef]
- Sun, X.; Member, S.; Wu, M.; Yin, C.; Wang, S.; Tian, X. Multiple-Iteration Search Sensorless Control for Linear Motor in Vehicle Regenerative Suspension. IEEE Trans. Transp. Electrif. 2021, 7, 1628–1637. [Google Scholar] [CrossRef]
- Marino, R.; Tomei, P. Nonlinear Control Design: Geometric, Adaptive and Robust; Prentice Hall: London, UK, 1995; Volume 1. [Google Scholar]
- Marino, R.; Tomei, P.; Verrelli, C.M. Induction Motor Control Design; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 1849962847. [Google Scholar]
Authors | Year | Source | Section Content | Authors | Year | Source | Section Content |
---|---|---|---|---|---|---|---|
Poritsky | 1953 | [8] | PS | Avramov and Borysiuk | 2012 | [31] | PCS |
Stanway and Burrows | 1981 | [22] | LR | Harika et al. | 2013 | [12] | PS |
Burrows and Sahinkaya | 1983 | [19] | LR | Marino and Tomei | 2016 | [27] | LR |
Lund | 1987 | [2] | PS | Carnevale | 2016 | [33] | PCS |
Vance | 1988 | [30] | PCS | Salazar and Santos | 2017 | [4] | PS |
Muszynska | 1988 | [6] | PS | Zheng et al. | 2017 | [23] | LR |
D’Agostno et al. | 2001 | [7] | PS | Ruggiero et al. | 2018 | [20] | LR, PCS |
Zhou and Shi | 2001 | [21] | LR | Ballnus et al. | 2018 | [35] | PCS |
Hamrock and Schimd | 2004 | [3] | PS | Das and Guha | 2019 | [10] | PS |
Sukumaran Nair and Prabhakaran | 2004 | [15] | PS | Bhattacharjee et al. | 2019 | [11] | PS |
Das et al. | 2005 | [14] | PS | D’Amato et al. | 2019 | [29] | PCS |
Ypma | 2006 | [36] | PCS | Marko et al. | 2020 | [26] | LR |
Prabhakaran Nair et al. | 2007 | [16] | PS | Kumar and Tiwari | 2020 | [28] | LR |
Lei and Palazzolo | 2008 | [25] | LR | Chen et al. | 2021 | [5] | PS |
Carnevale and Astolfi | 2008 | [32] | PCS | Tripathy and Bhattacharyya | 2022 | [9] | PS |
Friswell et al. | 2010 | [1] | PS | Liu et al. | 2022 | [18] | LR, PCS |
Hoad et al. | 2010 | [34] | PCS | Marko et al. | 2022 | [17] | LR, PCS |
Vania et al. | 2012 | [13] | PS | D’Amato et al. | 2022 | [24] | PCS |
PS: Problem Statement
| LR: Literary Review
| PCS: Proposed Control Strategy
|
Dynamical Parameters | Values | Initial Conditions | Values | Operating Parameters | Values |
---|---|---|---|---|---|
m(kg) | 1.5 | xc(0) | 0 | f(Hz) | 500 |
K(N/m) | 4 × 106 | (0) | 0 | ) | 3141 |
u(m) | 10−3 | yc(0) | −10−5 | μ0 (m kg/s) | 7.06 × 104 |
R (m) | 1.6 × 10−2 | (0) | 0 | ρ0 (N) | 1 × 10−3 |
L (m) | 1.6 × 10−2 | xj(0) | 0 | t0 (s−1) | 1.45 × 10−8 |
μ (kg/s) | 3.4 × 10−2 | yj(0) | −10−5 | p0 (bar) | 2 |
c (m) | 3.16 × 10−5 | (rad) | [5.2, 5.2] | ||
g (m/s2) | 9.81 | ||||
π | 180° | ||||
Step | 5 × 10−6 | ||||
Time (s) | 12 |
Control Gains | Values | Initial Conditions | Values |
---|---|---|---|
[s−1] | −400 | 0 | |
k1, k2 | 2000 | 0 | |
50.66 | (rad) | [4, 4] | |
50.66 | (rad/s) | 2985 | |
7.5 | (m) | [0, −2 × 10−5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, G.; D’Amato, R.; Ruggiero, A. Adaptive Rejection of a Sinusoidal Disturbance with Unknown Frequency in a Flexible Rotor with Lubricated Journal Bearings. Mathematics 2022, 10, 1703. https://doi.org/10.3390/math10101703
Amato G, D’Amato R, Ruggiero A. Adaptive Rejection of a Sinusoidal Disturbance with Unknown Frequency in a Flexible Rotor with Lubricated Journal Bearings. Mathematics. 2022; 10(10):1703. https://doi.org/10.3390/math10101703
Chicago/Turabian StyleAmato, Gerardo, Roberto D’Amato, and Alessandro Ruggiero. 2022. "Adaptive Rejection of a Sinusoidal Disturbance with Unknown Frequency in a Flexible Rotor with Lubricated Journal Bearings" Mathematics 10, no. 10: 1703. https://doi.org/10.3390/math10101703
APA StyleAmato, G., D’Amato, R., & Ruggiero, A. (2022). Adaptive Rejection of a Sinusoidal Disturbance with Unknown Frequency in a Flexible Rotor with Lubricated Journal Bearings. Mathematics, 10(10), 1703. https://doi.org/10.3390/math10101703