A Note on Generalized Quasi-Einstein and (λ, n + m)-Einstein Manifolds with Harmonic Conformal Tensor
Abstract
:1. Introduction
2. Results
- 1.
- the Hessian and the Ricci tensor gain the perfect fluid form;
- 2.
- the unit time-like vectoris a torse-forming vector field;
- 3.
- is a generalized Robertson–Walker spacetime with Einstein fibers.
- and so is time-like if and only if is time-like.
- Let and , then .
- The Hessian tensors are related as follows
- The manifold where is a generalized quasi-Einstein manifold.
- 1.
- The Hessian and the Ricci tensor gain the perfect fluid form,
- 2.
- the unit time-like vector field is torse-forming, and
- 3.
- is a GRW spacetime with Einstein fibers.
- 1.
- and the Chen vector field are orthogonal where the corresponding eigenvalues φ and μ satisfy
- 2.
- and are dependent.
- The vector fields and have different eigenvalues and therefore
- The vector fields and have the same, eigenvalue i.e., .
- 1.
- reduces to a perfect fluid manifold if is a -vector field on M.
- 2.
- reduces to an Einstein manifold if is a -vector field on M.
- 1.
- reduces to a perfect fluid manifold if is a -vector field on M.
- 2.
- reduces to an Einstein manifold if is a -vector field on M.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Petersen, P.; Wylie, W. On the classification of warped product Einstein metrics. Commun. Anal. Geom. 2012, 20, 271–311. [Google Scholar] [CrossRef]
- Case, J.; Shu, Y.-J.; Wei, G. Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 2011, 29, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.; Ribeiro, E. Integral formulae on quasi-Einstein manifolds and applications. Glas. J. 2012, 54, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Zeng, F. A note on gradient generalized quasi-Einstein manifolds. J. Geom. 2015, 106, 297–311. [Google Scholar] [CrossRef]
- Munteanu, O.; Sesum, N. On gradient Ricci solitons. J. Geom. Anal. 2013, 23, 539–561. [Google Scholar] [CrossRef]
- Petersen, P.; Wylie, W. Rigidity of gradient Ricci solitons. Pac. J. Math. 2009, 241, 329–345. [Google Scholar] [CrossRef]
- Petersen, P.; Wylie, W. On the classification of gradient Ricci solitons. Geom. Topol. 2010, 14, 2277–2300. [Google Scholar] [CrossRef] [Green Version]
- Defever, F. On semi-Riemannian manifolds satisfying the condition R·R = Q(S,R). In Geometry and Topology of Submanifolds; World Scientific: Singapore, 1991; Volume 3, pp. 108–130. [Google Scholar]
- Chaki, M.C. On quasi Einstein manifolds. Publ. Math. Debr. 2000, 57, 297–306. [Google Scholar]
- Deszcz, R.; Hotlos, G.M.; Senturk, Z. On certain quasi-Einstein semisymmetric hypersurfaces. Ann. Sci. Budapest. Eotovos Sect. Math 1998, 41, 151–164. [Google Scholar]
- Deszcz, R.; Dillen, F.; Verstraelen, L.; Vrancken, L. Quasi-Einstein totally real submanifolds of the nearly Kahler 6-sphere. Tohoku Math. J. Second Ser. 1999, 51, 461–478. [Google Scholar] [CrossRef]
- Unal, I. Generalized Quasi-Einstein manifolds in contact geometry. Mathematics 2020, 8, 1592. [Google Scholar] [CrossRef]
- De, U.C.; Shenawy, S. Generalized quasi-Einstein GRW space-times. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950124. [Google Scholar] [CrossRef] [Green Version]
- De, U.C.; Ghosh, G.C. On quasi Einstein and special quasi Einstein manifolds. In Proceedings of the International Conference of Mathematics and Its Applications, Kuwait University, Kuwait City, Kuwait, 5–7 April 2004; pp. 178–191. [Google Scholar]
- De, U.C.; Shenawy, S. ON LOCAL CURVATURE SYMMETRIES OF GRW SPACE-TIMES. Rep. Math. Phys. 2021, 88, 313–325. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G.; De, U.C. A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time. J. Math. Phys. 2016, 57, 022508, Erratum in J. Math. Phys. 2016, 57, 049901. [Google Scholar] [CrossRef] [Green Version]
- Mantica, C.A.; Molinari, L.G. Generalized Robertson–Walker spacetimes—A survey. Int. Geom. Methods Mod. Phys. 2017, 14, 1730001. [Google Scholar] [CrossRef] [Green Version]
- Mantica, C.A.; Molinari, L.G.; Suh, Y.J.; Shenawy, S. Perfect-fluid, generalized Robertson-Walker space-times, and Gray’s decomposition. J. Math. Phys. 2019, 60, 052506. [Google Scholar] [CrossRef]
- Capozziello, S.; Mantica, C.A.; Molinari, L.G. Cosmological perfect-fluids in f(R) Gravity. Int. J. Geom. Meth Mod. Phys. 2019, 16, 1950008. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, M.D.; Chaubey, S.K.; Khan, M.N.I. f(R, T)-Gravity Model with Perfect Fluid Admitting Einstein Solitons. Mathematics 2021, 10, 82. [Google Scholar] [CrossRef]
- Catino, G. Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 2012, 271, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Brozos-Vazquez, M.; Garcia-Rio, E.; Gavino-Fernandez, S. Locally conformally flat Lorentzian quasi-Einstein manifolds. Monatshefte Math. 2014, 173, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Al-Dayel, I.; Deshmukh, S.; Siddiqi, M. A Characterization of GRW Spacetimes. Mathematics 2021, 9, 2209. [Google Scholar] [CrossRef]
- Chen, B.-Y. A simple characterization of generalized Robertson–Walker spacetimes. Gen. Relativ. Gravit. 2014, 46, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. 2015, 52, 1535–1547. [Google Scholar] [CrossRef] [Green Version]
- Mantica, C.A.; Molinari, L.G. On the Weyl and the Ricci Tensors of Generalized Robertson-Walker Space-Times. J. Math. Phys. 2016, 57, 102502. [Google Scholar] [CrossRef]
- Hinterleitner, I.; Kiosak, V.A. ϕ(Ric)-vector fields in Riemannian spaces. Arch. Math. (Brno) 2008, 44, 385–390. [Google Scholar]
- Bishop, R.L.; O’Neill, B. Manifolds of negative curvature. Trans. Am. Math. 1969, 145, 1–49. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press Limited: London, UK, 1983. [Google Scholar]
- Besse, A.L. Einstein Manifolds; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenawy, S.; Mantica, C.A.; Molinari, L.G.; Bin Turki, N. A Note on Generalized Quasi-Einstein and (λ, n + m)-Einstein Manifolds with Harmonic Conformal Tensor. Mathematics 2022, 10, 1731. https://doi.org/10.3390/math10101731
Shenawy S, Mantica CA, Molinari LG, Bin Turki N. A Note on Generalized Quasi-Einstein and (λ, n + m)-Einstein Manifolds with Harmonic Conformal Tensor. Mathematics. 2022; 10(10):1731. https://doi.org/10.3390/math10101731
Chicago/Turabian StyleShenawy, Sameh, Carlo Alberto Mantica, Luca Guido Molinari, and Nasser Bin Turki. 2022. "A Note on Generalized Quasi-Einstein and (λ, n + m)-Einstein Manifolds with Harmonic Conformal Tensor" Mathematics 10, no. 10: 1731. https://doi.org/10.3390/math10101731
APA StyleShenawy, S., Mantica, C. A., Molinari, L. G., & Bin Turki, N. (2022). A Note on Generalized Quasi-Einstein and (λ, n + m)-Einstein Manifolds with Harmonic Conformal Tensor. Mathematics, 10(10), 1731. https://doi.org/10.3390/math10101731